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ABSTRACT Automatic image annotation is an effective and straightforward way to facilitate many
applications in computer vision. However, manually annotating images is a computation-expensive and
labor-intensive task. To address these problems, this paper proposes a novel approach by using a cograph
regularized collective nonnegative matrix factorization method to annotate images, which is referred to as
CG-CNMF; CG-CNMF maximizes the annotation consistency for each image and minimizes the semantic
gap for good annotation performance. To reduce the computation cost, this method formulates the annotation
problem as a recommending issue and uses nonnegative matrix factorization (NMF) to recover the image-to-
label relation for the testing images. Moreover, to find the most similar latent image features and latent label
features during the matrix factorization, it exploits the image-to-image relation and label-to-label relation
by utilizing the visual content information of images and the semantic cooccurrence information of labels,
respectively. To reduce the semantic gap between the image visual content and semantic concepts, both the
semantic features and convolutional neural networks (CNNs)-based visual features are considered. More-
over, to address the label-imbalance and incomplete-label problems, the visual-based label cooccurrence
information is also considered. In this way, visually similar images are highly correlated with the true
semantics of the test images. The experimental results for three multilabel image datasets demonstrate the
effectiveness and the efficiency of the proposed method.

INDEX TERMS Image annotation, nonnegative matrix factorization, collective nonnegative matrix
factorization, semantic gap, convolutional neural networks.

I. INTRODUCTION
With the rapid development of the internet, digital images
have achieved an exponential increase. Manually annotating
this huge volume of images is a rather challenging issue. Due
to the capability of describing visual images with semantic
concepts, automatic image annotation has been an effec-
tive and straightforward way to facilitate many applications.
Automatic image annotation attracts extensive attention not
only in the image retrieval [1]–[3] and image understanding
fields [4], [5] but also in other domains, such as biomedical
engineering [6]–[8]. Realistically, due to the high costs and
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time constraints associated with manual annotation, labeling
all these images with semantic information by humans is
impractical. An efficient and accurate automatic image anno-
tation method is urgently needed.

To resolve this problem, researchers have devoted many
efforts to solving the image annotation issue automatically.
A large number of methods have been proposed. These
approaches assign one or more keywords to describe the
visual content of the images, which demonstrates the map-
ping from visual content to semantic concepts. In the lit-
erature, some studies solve this issue by extracting global
image features [5], [9], [10], such as global color and
texture features. Moreover, some methods are based on
multiview features [10], [11]. The more features depicted
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FIGURE 1. The overview of the proposed method.

from images, the more comprehensive is the information
that can be attained to improve the performance. However,
the fact remains that the more features there are, the more the
computation will cost. This is one of the challenges for image
annotation.

There is another challenge for image annotation, which
is the semantic gap [12] between low-level visual features
and high-level semantic features of images. With respect to
the former, extracting one type of feature from an image is
usually difficult and complex; this approach requires prior
expert knowledge to design appropriate handcrafted features
manually. With regard to the latter, semantic features cannot
fully preserve the visual content of images. However, deter-
mining how to reduce the semantic gap between human lan-
guages and common visual features for images is also a rather
challenging issue but is vital for automatic image annotation
task. Some researchers have devoted efforts to improving the
visual features extracted from images to narrow down the gap
and boost the annotation performance. To this end, the state-
of-the-art CNN-based feature learning methods [13]–[15]
have achieved the most significant improvement. However,
these feature-based approaches do not preserve the semantic
features well. A fewworks [4], [12], [16] have achieved some
improvements by exploiting the semantic information from
labels to reduce the gap. For example, some of them use
label cooccurrence [4], [12]]; however, this type of method
does not exploit the fine-grained visual features. To make
use of the information from both images and labels, some
efforts have aimed to explore the possibility of obtaining
more useful information not only from the images but also
from labels [10], [17], [18]. For example, some methods
attempt to discover correlations between visual contents and
semantic concepts [17], [18]. In addition, other techniques
have been employed to minimize the gap, such as the super-
vised dictionary learning used in [19]. The authors proposed
a weakly supervised dictionary learning method that uses
both the visual features and feature-to-visual word mappings

to narrow down the semantic gap. Other methods such
as [20] annotate images by coherent semantic con-
cepts learned from visual contents of images. In these
methods, [19], [20] consider both the image-to-image and
image-to-label relations. To jointly consider the three types
of relations, [21]–[23] all employ a loose joint solution for
image annotation. [23] solves the image annotation problem
by a graph learning method based on both the image-based
graph and label-based graph, which conducts the learn-
ing of two graphs as two sequential steps of learning and
does not utilize three relations simultaneously. Among these
approaches, there is a common intuition that similar images
share similar labels. Moreover, the similarity of images is
always defined using only visual features. However, while
visual similarity can deal with correlations among labels
to some extent, it fails to handle the two issues of class
imbalance (different labels have different frequencies in the
dataset) and incomplete labels. To resolve these problems,
we think the image similarity should make use of both visual
similarity and semantic similarity.

To address the aforementioned problems, we propose a
novel image annotation method named cograph regularized
collective nonnegative matrix factorization, which simultane-
ously utilizes the three relations from both images and labels
and employs the image graph and label graph to regularize
the matrix factorization, thus enhancing the information from
the three relations and narrowing down the semantic gap.
We refer to this approach as CG-CNMF. In this method,
we formulate the image annotation issue as a recommending
problem, which uses a collective nonnegative matrix factor-
ization [24] model to combine the three relations of images
and labels. To understand the three relations in our method,
we show the relations in Figure 1.

In this method, we first construct the image-label matrix,
image similarity matrix and label cooccurrence matrix by
the three relations. Then, we factorize each matrix into
two factors simultaneously. This process is similar to the
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FIGURE 2. Overview of the collective nonnegative matrix factorization for image annotation.

collective matrix factorization. To obtain a comprehensive
interpretation of the proposed method, we display the matrix
factorization in Figure 2.

During this process, to reduce the computation cost, we try
to find a new low-dimensional space that bridges the semantic
gap by extracting latent factors from three relation matrices.
These latent features can make more meaningful features and
affect each other, which can help to force the factorizations
to find the most useful latent factors. Finally, we recover the
image-label matrix (R) by the product of these matrices and
recommend the labels for each testing image. To formulate
the image-to-image similarity, we consider two types of sim-
ilarities: visual-based and semantic-based. For visual-based
image similarity, visual feature learning is the key step. Thus,
we employ the CNN feature to construct the similarity, which
avoids manual feature designing and has recently shown the
best performance in computer vision tasks [15], [25], [26].
The visual-based similarity matrix S is factorized into two
latent features U and P. Semantic-based similarity is used in
the terms of the Laplace matrix [27] that is built by pair-
wise image similarity according to their labels. Consequently,
the two image similarities can affect the factorizations of R
and S, and then affect the shared latent feature matrix U in
turn. With respect to label-to-label cooccurrence, we take two
kinds of information into account, pure semantic-based and
visual-based information. Pure semantic-based cooccurrence
mainly depends on the frequencies of labels in the datasets.
We decompose the related matrix C into two matrices P
and Z. The visual-based label cooccurrence is calculated
by the frequencies of visual contents that are related to

some labels. The visual-based label cooccurrence is used as
a Laplace matrix regularization term in the matrix factoriza-
tion. This term affects the factorizations R and C simulta-
neously, then affects the shared latent feature matrix V in
turn.

To conduct latent factor analysis, we learn the low-rank
latent feature spaces by employing the image-label matrix,
image-image matrix and label-label matrix. We connect these
matrices by the label latent feature space and image latent
feature space. That is, the label latent factors in image-label
space are connected to the ones in label-label space, and
the image latent factors in image-label space are tied to the
ones in image-image space. Finally, the learned image latent
factors and label latent factors are used to recover the image-
label matrix, which can be utilized to recommend the image
labels.

Given all of the above, we can summarize the main novelty
and technique contributions of this method as follows:
• We formulate the image annotation problem as a label
recommendation problem, which can simplify the pro-
cess of image annotation.

• To make full use of the three relations, we use a collec-
tive matrix factorization model to factorize three relation
matrices simultaneously.

• To learn a more precise similarity for images, we use a
CNN feature learning method to learn the visual features
from images offline, which reduces the running time and
improves the overall performance of this method.

• To narrow down the semantic gap between images
and labels, we build the image graph by semantic
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information and the label graph by visual-based cooc-
currence information simultaneously.

Experimental results demonstrate that the proposed
method achieves promising annotation performance by using
three relations on both images and labels. To further improve
the performance, this method utilizes both the visual content-
based similarity and semantic-based similarity for images,
and it also explores the visual-based label similarity and
semantic-based label cooccurrence for labels. It makes
full use of both images and labels information for image
annotation.

The remainder of this paper is organized as follows.
In Section II, we review some of the recent works in this
domain. Section III describes the proposed method of this
paper. Section IV analyzes the optimization process of the
method. In Section V, we conduct a set of experiments to
evaluate the performance of our method. Finally, we analyze
the experimental results and state the conclusion for this
paper.

II. RELATED WORK
A. AUTOMATIC IMAGE ANNOTATION
Automatic image annotation plays an important role in com-
puter vision, multimedia and information retrieval domains.
Early annotation works usually can be categorized into four
types: mixture models, generative models, discriminative
models and nearest neighbor-based methods. Mixture mod-
els such as [28]–[30] usually define a joint distribution
between images and labels then estimate the labels over the
cooccurrence of labels and images from training images.
Generative models often utilize topic models to represent
image-label relationships, such as probabilistic latent seman-
tic analysis (PLSA) [31], [32] or latent Dirichlet alloca-
tion (LDA) [33], [34], and nonnegative matrix factorization
(NMF) [11], [35], [36]. Discriminative models often pose
annotation as a classification problem, such as an SVM [9]
and multiple instance learning [37]. These models learn a
separate classifier for each label based on low-level visual
features. Both generative and discriminative models require
clean and large-scale image datasets for training process.

Due to the simplicity and efficiency, nearest neighbor-
based approaches [16], [38]–[40] have primarily been the
most important and popular method for the image annotation
domain. It predicts labels for a test image by calculating the
similarity with the training images. However, these methods
tend to overfit to local distributions of samples. To address
this issue, some techniques have been added, such as metric
learning [41], [42] and weighted KNN [35], [43]. Repre-
sentative examples of these methods are TagProp [41] and
2PKNN [42]. TagProp transfers labels to a test image by
wrapping a logistic discriminant model over a weighted
KNN method, which resolves the class imbalance problem
and boosts the importance of the infrequent labels by sup-
pressing the importance of the frequent labels. This method
directly maximizes the log-likelihood of the tag predictions
in the training data. 2PKNN is a two-step variant of the

KNN method. This method utilizes image-to-tag and image-
to-image similarities and learns weights for multiple features.

Recently, the graph-based methods have achieved huge
successes in image annotation [3], [17], [18], [44]. These
methods usually exploit the image feature distance to estab-
lish relevant graphs of samples. They connect both anno-
tated images and unannotated images according to their
visual similarities. There is an assumption that neighboring
images in the relevant graph have similar labels. Based on
this assumption, these methods propagate the labels from
labeled images to unlabeled images by considering the visual
similarity between nodes. One weakness of these meth-
ods is the complexity. The graph-based methods construct
a k-NN similarity graph with pairwise relations over images
but do not consider the correlations between labels. Another
issue is the high computational time required in the testing
phase. Usually, these methods need to search the nearest
neighbors in the entire dataset with high-dimensional feature
vectors for each testing image. Using dimensional reduc-
tion techniques can reduce the testing time. To this end,
NMF-based approaches [11], [18], [45] are proposed to solve
image annotation problems. In [45], single-view features
are used. References [11] and [18] extend this method to
multiview by simply concatenating multiple feature vectors
into one vector before dimension reduction. However, this
approach causes the dimension disaster problem.

To address these issues, motivated by their advantages
and weaknesses, we do not utilize the multiview features for
image annotation. To resolve this problem in a different way,
we formulate it as a label recommending problem. Based on
this consideration, we factorize the image-label matrix into
an image feature matrix and a label feature matrix. Simul-
taneously, an image visual-based similarity matrix and label
cooccurrence matrix are factorized into two matrices. The
latter two factorizations share the latent image feature matrix
and label feature matrix with the first factorization.

We refer to the proposed method as the cograph nonneg-
ative matrix factorization method. In this method, to reduce
the feature dimension and obtain high efficiency in compu-
tation, we use the NMF-based method. To make full use of
the image and label information, we combined the cograph
regularization terms in this method and consider both the
visual-based and semantic-based information for both images
and labels. To further reduce the semantic gap, we use the
CNN features to build the visual-based image similarity
matrix. Furthermore, we employ the three relations simul-
taneously in the image annotation, allowing the relations to
affect each other in the matrix factorizations.

B. CNN-BASED FEATURE LEARNING
CNNs have the advantages of low complexity, by sharing
weights, and high performance in vision tasks when com-
pared with traditional handcrafted feature learning meth-
ods; further, CNN-based feature learning methods have been
shown to be the most powerful feature learning approaches
in computer vision [13]–[15] and have been applied in
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FIGURE 3. Overview of the proposed method for image annotation.

many tasks, such as image classification [13], object recog-
nition [14], image parsing [46] and image retrieval [25].
There are many CNN models that have achieved good
performances in image feature extraction. Alexnet [47],
a 5-layer network, was proposed for image classification
and won the ILSVRC-2012 competition. In this work, sig-
nificant improvement in large-scale image classification on
ImageNet [48] was achieved by using CNN. In [14], a deeper
architecture VGG-net was proposed and achieved better per-
formance in image classification accuracy. Other CNN mod-
els, such as GoogLeNet [49] and ResNet [50], have refreshed
the accuracy record of recognition. It is known that deeper
CNN can achieve better performance in extracting features.
However, deeper networks have much more computational
cost. Moreover, in [26], VGG-net and ResNet were shown to
perform better than several other famous models. Moreover,
VGG-net has simpler architecture compared with ResNet; as
such, we choose VGG-net as the feature extraction method to
build the visual-based image similarity matrix.

III. COGRAPH REGULARIZED COLLECTIVE NONNEGATIVE
MATRIX FACTORIZATION
In this paper, we focus on the annotation problem in which
an untagged image can be assigned multiple labels. Let
X = {x1, x2, . . . , xm} denote the image set, which has
m images in it. For each image, CNN features have been
extracted.

A. PROBLEM FORMULATION
For the multilabel image annotation task, we suppose there
are m images and n semantic labels L = {l1, . . . ln}. The aim
of this paper is to annotate the unlabeled images efficiently.
To achieve this goal, we exploit three relationships: image-
to-image, label-to-label and image-to-label. To utilize the

three relations, we construct three matrices as image-image
similarity matrix S, label-label cooccurrence matrix C and
image-label matrix R. As the image-to-label matrix R is
incomplete with many missing entries, our objective goal is
to fill these missing entries to obtain a label set for each test
image. We use the nonnegative matrix factorization model to
factorize these three matrices to find the inherent relation-
ships of images and labels. We show the overall view of the
proposed method in Figure 3.

Figure 3 shows the main idea of the proposed method
based on collective matrix factorization. Given the image-
label matrix R ∈ Rm×n, we decompose it into two low-rank
matrices U ∈ Rm×k and V ∈ Rn×k , where k ≤ n. The latent
image information is shared through sharing matrix U with
the image-image similarity matrix S and Laplace matrix of
the image semantic graph. Simultaneously, the image-label
matrix shares the label information through sharing matrix V
with the label-label cooccurrence matrix C and the Laplace
matrix of the label visual-based graph.

B. MODELING THE IMAGE-TO-IMAGE RELATION
For humans, we consider the similarity between two images
usually according to two reasons. One is their low-level fea-
tures, such as color, texture and so on. The other is the anno-
tated labels of them, which denotes the high-level semantic
features of images. Therefore, we design two types of image
similarities: visual-content similarity and semantic similarity.
To calculate the two similarities for images, we construct two
image similarity matrices according to different goals.

1) VISUAL-CONTENT IMAGE SIMILARITY
While calculating the visual-content-based images similarity,
feature extraction plays an important role in this process. The
deep convolutional neural network as an end-to-end feature
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learning method leads this trend. To achieve the optimal
performance, we exploit the CNN as the visual-based feature
learning method.

To avoid designing a new network, we employ the 16-layer
deep CNN architecture VGG-net [14] and recommend read-
ers to refer to the details from the original paper. We utilize
this architecture to extract a 4096-dimensional feature vector
for each image. To be compatible with VGG-net, we resize
each image to 224× 224, and extract visual features through
8 convolutional layers and three fully connected layers. The
activations of the last fully connected layer are the visual
features. To reduce the running time, we extract CNN features
offline.

Let sxi and sxj indicate the feature vector of the ith image
and jth image respectively. We define the pairwise similarity
based on CNN features as follows:

SVSxi,xj =
< sxi, sxj >
‖sxi‖ ‖syi‖

(1)

where < sxi, sxj > calculates the inner product of the two
feature vectors. According to Eq. (1), we can construct the
similarity matrix S for pairwise images without considering
the semantic meaning of each image.

2) SEMANTIC IMAGE SIMILARITY
As discussed above, the visual-content-based similarity does
not take the multilabel information into account. In addition,
this approach cannot employ the label information of training
images. To make full use of the label information collected
from training data, we use the label cooccurrence to build a
semantic similarity graph GU .
In the graph, nodes represent label sets of images in the

training dataset, and edges represent the affinity between the
label sets. The affinity matrix WU

∈ Rm×m of the graph is
defined as

WU
i,j =

{
sim(l(xi), l(xj)) if xi and xj share some classes,
0, otherwise.

(2)

where sim(l(xi), l(xj)) denotes the similarity of the pairwise
label vectors, which is calculated as Eq. (3),

sim(l(xi), l(xj)) =
< l(xi), l(xj) >

‖l(xi)‖
∥∥l(xj)∥∥ , (3)

where l(xi) and l(xj) denote the semantic label vector of
image xi and xj, respectively. < l(xi), l(xj) > computes the
inner product of image-label vectors. SinceWU

i,j in our paper
is only measuring the closeness of the two label sets for the
two images, we only use the simple semantic similarity. Pre-
serving the geometric structure in the image space is reduced
to minimizing the following loss function:

O1 =
1
2

m∑
i,j=1

∥∥ui − uj∥∥2WU
ij = Tr(UTLUU ) (4)

where DU ∈ Rm×m is a diagonal matrix whose entries are
column sums ofWU ,DUii =

∑m
j=1W

U
ij , and LU = DU −WU

is the Laplacian matrix of the graph GU .

C. MODELING THE LABEL-TO-LABEL RELATION
In the multilabel image dataset, one label is usually assigned
to many images if the visual contents of these images are
related to this label. Scanned over the whole dataset, we can
find that the relationships among these labels are not inde-
pendent of the visual contents of the images. Therefore,
in this paper, we consider the label-to-label relation from two
perspectives. First, we consider the semantic-based label rela-
tion, which we named as label cooccurrence. For example,
if two labels are always assigned to the same image in the
dataset, we can calculate the cooccurrence percentage of the
two labels by counting the label pairs annotated jointly in
the whole dataset. Second, if two labels are always shared by
the same image, then these images always have some similar
visual-based characteristics. In the following, we will design
the two cooccurrences.

1) VISUAL-BASED LABEL COOCCURRENCE
Since the visual content is the direct representation of one
image, it should contribute to the label cooccurrence.We con-
sider the visual-based similarity for two labels in the fol-
lowing measures: if two labels always occur as candidates
for the same image xi and never with any other labels, then
they are considered as highly visually similar, and we use
vsim(la, lb) = 1 to denote the similarity. If labels la and
lb never occur together, we consider they are not visually
similar, and vsim(la, lb) = 0. These two cases are the special
cases. In other cases, if two labels occur together with other
labels for the same image, we define the visual-based label
cooccurrence as follows:

vsim(la, lb) =
1
TP
KS (I (la), I (lb))

=
1
TP

∑TP

i=1,j=1
SI (Ii(la), Ij(lb)) (5)

where I (la) and I (lb) indicate the image sets related by
label la and label lb, respectively. Ii(la) is the ith image in
image set I (la). KS (.) denotes the similarity of the two image
sets, and SI means the similarity function between the two
images. TP is the number of the most similar images from
the labeled images. We set Tp = 10 in our paper. That
means we choose 10 images for calculating the visual-based
similarity of labels and then obtain the average value as the
final similarity.

Similar to the semantic similarity graph GU , we construct
the visual-based label graph GV . We use WV

∈ Rn×n to
indicate the affinity matrix and define WV as

WV
ij =

{
vsim(la, lb); la and lb occur together,
0 otherwise
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Then, we get the following loss function:

O2 =
1
2

n∑
i,j=1

∥∥vi − vj∥∥2W v
ij = Tr(V TLVV )

where LV = DV − WV is the Laplacian matrix, DV is a
diagonal matrix and DVii =

∑n
j=1W

V
ij .

2) SEMANTIC-BASED LABEL COOCCURRENCE
Generally, if there are two labels with high cooccurrence
in the training dataset, then there will be a high probabil-
ity to annotate other images simultaneously. In this paper,
to calculate the cooccurrence percentage of the two labels,
we construct an image-label matrix T for the training data,
where the rows denote the images and the columns denote
the labels. If image xi is assigned the label lj, then tij = 1 and
tij = 0 otherwise. We use t:i and t:j to denote the ith and jth

column of matrix T , respectively. Then, we define the label
cooccurrence of the two labels as follows:

sim(li, lj) =
< t:i, t:j >

‖t:i‖
∥∥t:j∥∥ (6)

where< t:i, t:j > calculates the inner product of the two label
vectors in the training data. According to Eq. (6), we can
construct the label cooccurrence matrix C.

D. OBJECTIVE FUNCTION OF CG-CNMF
This multilabel annotation problem can be considered as an
optimization problem.We solve the problem by the following
objective function:

LJWNMF (U ,V ,P,Z )
s.t.U≥0,V≥0,P≥0,Z≥0,

=
1
2

∥∥∥Y � (R− UV T )
∥∥∥2
F
+
α

2

∥∥∥S − UPT∥∥∥2
F

+
β

2

∥∥∥C − VZT∥∥∥2
F

+
λU

2
Tr(UTLUU )+

λV

2
Tr(V TLVV )

+
λ

2
(‖U‖2F + ‖V‖

2
F + ‖P‖

2
F + ‖Z‖

2
F ) (7)

where Y is the indicator matrix of the missing ‘‘rating’’,
of which missing values are addressed by binary weights Yij

Yij =

{
1, if Rij is observed;
0, if Rij is unobserved .

where ‖.‖ denotes the Frobenius norm, � is the Hadamard
product operator. α, β, λU , λV are the regularization param-
eters that balance the reconstruction error of CG-CNMF in
the first three terms and the rest of the terms. Moreover,
the last four terms with λ help the objective function avoid
overfitting.

As shown in Figure 3 and the objective function in Eq. (7),
we aim to propagate the information among the image-
label matrix R, image-to-image matrix S and label-to-label
matrix C by sharing some low-rank matrices U and V.

The first three terms in Eq. (7) control the loss in matrix
factorization, the fourth and fifth term control the information
from semantic-based image similarity and visual-based label
cooccurrence to help the first term find more interpretable
representations, and the last 4 terms help the regularization
over the factorization matrices to prevent overfitting.

IV. OPTIMIZATION PROCESS AND IMAGE
ANNOTATION VIA CG-CNMF
In this section, we will investigate the solution for Eq. (1).
In general, the objective function in Eq. (7) is not jointly
convex to all the variables, and we cannot obtain a closed-
form solution by minimizing this equation with respect to
U, V, P and Z. Therefore, we will optimize the objective
function by an alternating scheme, in which optimizing one
variable can be achieved by fixing the others and repeating
this procedure until convergence.

A. THE OPTIMIZATION PROCESS OF CG-CNMF
In this subsection, we iteratively solve one variable while
fixing all others.

1) UPDATE FOR U
If we fix V, P and Z at the current iteration step, the objective
function in Eq. (7) with respect to U can be written as

L(U ) =
1
2

∥∥∥Y � (R− UV T )
∥∥∥2
F
+
α

2

∥∥∥S − UPT∥∥∥2
F

+
λU

2
Tr(UTLUU )+

λ

2
‖U‖2F

s.t. U ≥ 0

By taking the first derivative of L(U ), we have

∂L(U )
∂U

= −Y � RV + Y � (UV T )V − αSP

+αUPTP+ λULUU + λU

Considering LU may take any signs, following [51], we
introduce LU = L+U+L

−

U , andM
+

ij = (
∣∣Mij

∣∣+Mij)
/
2,M−ij =

(
∣∣Mij

∣∣−Mij)
/
2. Then, we set the above partial derivation to

zero by using the Karush-Kuhn-Tucker (KKT) complemen-
tary condition [52] and attain the following multiplicative
updating rule:

Uij← Uij

√
[Y � RV + αSP+ λUL

−

UU ]ij
[Y � (UV T )V + αUPTP+ λUL

+

UU + λU ]ij
(8)

2) UPDATE FOR V
Considering V only, we need to solve the following problem:

L(V ) =
1
2

∥∥∥Y � (R− UV T )
∥∥∥2
F
+
β

2

∥∥∥C − VZT∥∥∥2
F

+
λV

2
Tr(V TLVV )+

λ

2
‖V‖2F

s.t. V ≥ 0

88344 VOLUME 7, 2019



J. Zhang et al.: CG-CNMF for Multilabel Image Annotation

Considering the symmetry of U and V in Eq. (7), the solu-
tion of the updating rule with respect to V is analogous to that
of U. We can obtain the following updating rule

Vij← Vij

√
[(Y � R)TU + βCTV + λVL

−

V V ]ij
[Y � (UV T )TU + βVZTZ + λVL

+

V V + λV ]ij
(9)

3) UPDATE FOR P AND Z
Similarly, we fix other variables for P and Z, and we can
obtain the following equations

L(P) =
1
2

∥∥∥S − UPT∥∥∥2
F
+
λ

2
‖P‖2F

L(Z ) =
1
2

∥∥∥C − VZT∥∥∥2
F
+
λ

2
‖Z‖2F

Then, we calculate the first derivatives of P and Z,
∂L(P)
∂P

= −STU + PUTU + λP

∂L(Z )
∂Z

= −CTV + ZV TV + λZ

By setting the first derivatives to zero, we will obtain the
following updating rules for P and Z

Pij ← Pij

√√√√ [
STU

]
ij[

PUTU + λP
]
ij

(10)

Zij ← Zij

√√√√ [
CTV

]
j[

ZV TV + λZ
]
jj

(11)

These updating rules are derived one-by-one by fixing
the other three variables. They are analogous to those of
NMF [53]. The difference is how to update the image fea-
ture factors U and the label feature factor V. In Eq. (8),
the update of U mainly depends on two sources of data:
the image-label matrix R and the image-to-image similarity
matrix S. Similarly, the update of V depends on two sources
of data: the image-label matrix R and the label cooccurrence
matrix C.

The successive iterations will lead the objective function
to converge. After convergence, we can easily recover the
image-label matrix by the learned matrices and recommend
the labels for the unlabeled images.

B. THE CONVERGENCE OF CG-CNMF
The objective function in Eq. (7) is not a strict convex function
with respect to U, V, P and Z together; however, it is a convex
function with respect to U, V, P and Z separately. Therefore,
we can solve the optimization problem by the alternative
multiplicative updating rules. To prove the convergence of
Eq. (7), we can obtain the following theorem.
Theorem 1: The objective function in Eq. (7) is nonin-

creasing under the updating rules of Eq. (8)-(11); hence,
it converges to a local minimum.

For a better flow of this paper, we provide the proof of
Theorem 1 in the Appendix. This theorem guarantees the

objective function in Eq. (7) always decreases and hence
converges.

C. IMAGE ANNOTATION VIA CG-CNMF
After learning all the feature matrices U, V, P and Z, we
perform the annotation by reconstructing the image-label
matrix R. We use R̂ to denote the recovered matrix, which
is the product of the image feature matrix U and label feature
matrix V. Each image is labeledwith the top 5 labels bymatrix
R̂. The process is summarized as follows:

Algorithm 1 Image Annotation via CG-CNMF
Input: image-label matrix R with labeled and unlabeled
images, image-to-image semantic similarity matrix WU

and visual-based similarity matrix S, label-to-label seman-
tic cooccurrence matrix C and visual-based cooccur-
rence matrix WV , loss error ε, regularization parameters
α, β, λU , λV , λ > 0, number of images m, number of total
labels n, and number of latent features k;
Output: U ≥ 0,V ≥ 0,Z ≥ 0,P ≥ 0, R̂ ≥ 0
Initialize: U0 ≥ 0,V0 ≥ 0,P0 ≥ 0,Z0 ≥ 0
1: Construct weight matrix Y according R, Yij = 1 if Rij
can be observed; otherwise, Yij = 0;
2: Construct image visual-based similarity matrix S;
3: Construct image semantic-based similarity matrix WU ;
4: Construct label semantic cooccurrence matrix C;
5: Construct label visual-based cooccurrence matrix WV ;
6: while the loss error of Eq. (7) > ε do
7: t := t + 1;
8: update U t+1 according to Eq. (8);
9: update V t+1 according to Eq. (9);
10: update Pt+1 according to Eq. (10);
11: update Z t+1 according to Eq. (11);
12: end while
13: Take R̂ as the approximation of R;
14: Return a tag recommendation list of top 5 tags with
the largest 5 values in the recovered matrix R̂ for each test
image.

The image annotation process via CG-CNMF is summa-
rized in Algorithm 1. In steps 8–11, the algorithm updates U ,
V ,P and Z iteratively until convergence. The optimal solution
of the objective function in Eq. (7) can be obtained simul-
taneously. After the optimization process, we can obtain the
approximate image-label matrix R̂ from the learned feature
matrices U and V according to R̂ = UV .
Then, we take the top 5 entries in a row of the image-label

matrix R̂ as the recommended labels for an image.

D. TIME COMPLEXITY OF CG-CNMF
In this subsection, we discuss the time complexity of the pro-
posed method. We use big O to express the complexity. The
time complexity of Algorithm 1 dominates two parts: matrix
factorization and reconstruction. In the first part, the main
cost is the multiplicative updating rules and the constructions
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TABLE 1. Statistics of datasets.

of the following matrices: image-image visual-based and
sematic-based similarity matrices, label-label visual-based
matrix and semantic-based cooccurrence matrix. We sup-
pose the multiplicative updates stop after tin iterations. The
time cost of the multiplicative updates is O(tinFk (mkn) +
tinmk + tinkn), where Fk denotes the number of the observed
entries in the image-label matrix R. Because k and n are
much smaller than m, the time complexity of updates is
approximate to O(tinFkm). The construction of the image
semantic-based and label visual-based cooccurrence graphs
spend O(2m2

+ 2n2). In the recovering step, the time com-
plexity is O(mkn), which is approximate to O(m). Therefore,
the overall time complexity of Algorithm 1 is approximate to
O(tinFkm+ 2m2

++2n2 + m).

V. EXPERIMENTS AND EVALUATIONS
In this section, we will investigate the effectiveness of the
proposed method by comparing it with other multilabel
approaches. Furthermore, we will analyze the results and
show the influence of related parameters used in this paper.

A. DATASETS AND PREPROCESSING
To evaluate the performance of the proposed method and
make it easy to compare with other annotating meth-
ods, we choose three popular and publicly available mul-
tilabel datasets: Corel5K [54], IAPR TC12 [55] and
ESP-GAME [56]. Corel5k is the standard multilabel dataset
and has been the most common dataset employed for tag-
based image annotation. It has 4,500 training sets and
500 testing sets. The tag per image (TPI) is 3.4. IAPR
TC12 has 19,627 images covering several scenes such as
landscape shots, animals, and city pictures, and the TPI is 5.7.
The last dataset is constructed from an online game. It con-
sists of 18, 689 training images and 2,081 testing images, and
the TPI is 4.7. We summarize the statistics of these datasets
in Table 1.

B. EVALUATION METHODOLOGY
For performance evaluation, we adopt the widely used per-
formance metrics, mean precision (P%), mean recall (R%),
F1 score and N plus (N+). The precision measures the per-
centage of images correctly annotated in the total images.
The recall rate refers to images that are correctly annotated
relevant to the ground-truth annotations. It is a commonly
used metric in the image annotation field. The F1 score is
the harmonic mean of precision and recall. N plus reports the
number of tags with nonzero recall. Similar to other works,
we first automatically annotate each image with 5 tags and

then compute precision and recall for each tag. After that,
we calculate the F1 score and N plus measures. The precision,
recall and F1 score are defined as follows:

precision(li) =
Ncorrect
Nlabeled

, recall(li) =
Ncorrect
Nall

F1 − score(li) = 2
Pr ecision(li)× Re call(li)
Pr ecision(li)+ Re call(li)

where Ncorrect denotes the number of images that are cor-
rectly annotated, Nlabeled is the number of correct images
relevant to the ground-truth annotations and Nall is the total
number of images to be automatically annotated. To reduce
the errors caused by inappropriate sampling, the experiments
were cross-validated on 10 sets of randomly chosen samples.

C. COMPARISON WITH OTHER APPROACHES
To evaluate the annotation performance of CG-CNMF,
we compare it against several other annotation approaches.
The compared methods are summarized as follows:
• TagProp [41]: This is a KNN-based method that uses
the tag propagation to learn a weighted nearest-neighbor
model. It integrates the metric learning by directly max-
imizing the log-likelihood of the tag predictions in the
training set.

• NMF-KNN [35]: NMF-KNN represents a query-
specific generative model, which learns the features
of nearest-neighbors and tags using a weighted exten-
sion of the multiview nonnegative matrix factorization
method.

• 2PKNN [42]: 2PKNN is a two-phase method, in which
the first pass is to address the class imbalance by con-
structing a balanced neighborhood for each test image,
and the second pass is to assign the actual tag impor-
tance based on image similarity. This method uses
‘‘image-to-label’’ similarities in the first step, while it
uses ‘‘image-to-image’’ similarities in the second step,
thus combining the benefits of both. Our method simul-
taneously utilizes three relations including these two
similarities, which is very helpful to the performance of
image annotation.

• FastTag [57]: FastTag recasts a supervised multilabel
classification problem as unlabeled multiview learning.
It jointly learns two classifiers for images and text.
To trade off complexity in the classifiers, it utilizes a
nonlinear mapping for features, which can efficiently
deal with sparsely tagged training data and rare tags.

• CCA-KNN [58]: CCA-KNN is a canonical correla-
tion analysis (CCA) framework with k-nearest neigh-
bor (CCA-KNN) clustering for image annotation. This
method makes use of convolutional neural network
(CNN) features and word embedding vectors to rep-
resent the associated tags of images. It extracts CNN
features for images using a pretrained VGG-16 [59]
network. Meanwhile, the word embedding vectors are
extracted using a pretrained ship-gram architecture
word2vec. Both networks are publicly available.
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• MLDL [60]: MLDL describes a multilabel learning
method by using label consistency regularization and
a partial-identical label embedding method for image
annotation. It incorporates the dictionary learning tech-
nique into multilabel learning in the input feature space.
Moreover, in the output label space, it uses the label
embedding to cluster the samples with the same label
set and collaboratively represents the label set for the
partial-identical samples.

• JEC [61]: This method treats image annotation as a
retrieval issue. It uses a greedy algorithm to transfer a
label from neighbors by using multiple global features.
In Joint Equal Contribution (JEC), each feature con-
tributes equally toward the image distance. It scales the
distances for each feature such that they are bounded
by 0 and 1.

• RMLF [62]: RMLF is a method of late fusion for image
annotation based on rank minimization. It obtains an
optimal matrix by solving a minimization optimization
problem and gives the final prediction of tags with this
matrix.

These eight state-of-the-art algorithms are employed as
benchmark baselines. Considering the three matrices used
in the proposed method, we first construct the image-label
matrix, image-image visual-based similarity and label-label
semantic-based cooccurrence matrix for each dataset. The
image-label matrix shows the relationship between images
and labels. We use the rows as the different images, and
the columns as the different labels. The image-image visual-
based similarity matrix demonstrates the interrelationships
among images. We construct this matrix by CNN features
offline. With respect to the label-label semantic-based cooc-
currence matrix, we use the label frequency for each dataset
to construct the matrices.

To evaluate the effectiveness of the proposed method,
we construct a set of experiments with the three multilabel
datasets to compare with the 8 state-of-the-art algorithms.
The parameters of these compared methods are set according
to their papers or their codes. For fairness, we perform param-
eter tuning in advance for the proposed method and use the
best setting to compare with other methods. Table 2 lists the
parameters used in the experiments.

All these approaches are executed on a desktop computer
with an Intel Core7 2.4 G CPU and 16 GB memory.

D. EXPERIMENTAL RESULTS AND DISCUSSION
In this subsection, we report the image annotation
performance of the proposed method by comparing it with
the existing image annotation approaches for three datasets.
To evaluate the robustness of the method, we conduct the
experiments on different ratios of labeled images. We ran-
domly select 20%, 50%, and 80% of the ratings as the training
data, and the rest of the data is used as the test data to evaluate
the performance of these methods. Table 3, 4 and 5 exhibit
the precision (P), recall (R), F1 score (F1) and N+ for the
three datasets. Because F1 is the harmonic mean of recall and

TABLE 2. Parameters used for experiments.

precision, it is more reliable than the analysis of preci-
sion or recall performed separately. Thus, we just analyze the
F1 score for these methods.

First, we compare the performance among TagProp,
NMF-KNN, 2PKNN, CCA-KNN and the proposed
CG-CNMF on the Corel5K dataset, of which the training
dataset consists of 20%. In these methods, the former four
approaches are all KNN-based methods and show promis-
ing results. Among these methods, the proposed method
completely and significantly outperforms the other methods.
It attains 3.4% achievement under F1 score for Corel5k,
1.6% achievement for IAPR TC12 and 0.7% for ESP when
compared with CCA-KNN. We believe the reasons are the
CNN features that we used to construct the visual-based
image similarity and the three relations we employed. These
techniques help to reduce the semantic gap and enhance the
related information. Moreover, CCA-KNN achieves the best
results compared with the other three KNN-based methods.
This method utilizes visual features extracted by a convolu-
tional neural network (CNN) from images along with word
embedding vectors for semantic concepts. It incorporates
both CNN features and text features. The significant per-
formance proves the efficiency of CNN features used in this
method. NMF-KNN is the second best KNN-based method,
which is better than the traditional weighted nearest neighbor-
based approaches such as TagProp. TagProp addresses the
class imbalance problem by wrapping a logistic discriminant
model over the weighted KNN method. This improves the
performance of the image annotation by boosting the impor-
tance of infrequent labels and suppressing frequent labels
among neighbors. A two-step k-nearest neighbor method
2PKNN works slightly worse than NMF-KNN and a slightly
better than TagProp on Corel5k. This method does not need
to choose the parameter of the neighborhood dimension, but
it implicitly defines this by exploring the most similar images
per label. This advantage is obvious in the ESP dataset, which
has more labels per image, but it fails to achieve promising
results for the IAPR TC12 dataset. We believe that this is
due to the TPI of this dataset, which is higher than that of
Corel5k. The recall is hard to improve on this dataset. Among
these KNN-based methods, FastTag performs the worst.
We think the reason is that it focuses more on the speed of

VOLUME 7, 2019 88347



J. Zhang et al.: CG-CNMF for Multilabel Image Annotation

TABLE 3. Experimental results for the three datasets with 20% training data.

TABLE 4. Experimental results for the three datasets with 50% training data.

TABLE 5. Experimental results for the three datasets with 80% training data.

the tagging rather than the accuracy. Fortunately, CG-CNMF
achieves a 3.4% gain compared with CCA-KNN in the F1
score, and CCA-KNN does better than other KNN-based
methods. This improved performance is due to the advantage
of employing all the word2vec vectors as text features used
in CCA-KNN, which has been proven to be better than a
binary vector of labels [58]. However, our method makes full
use of three relationships among images and labels, which
not only considers the visual-based and semantic-based

image similarities but also utilizes the visual-based label
cooccurrence and semantic-based label cooccurrence. Fur-
thermore, we combined CNN features to calculate the visual-
based image similarity, and the results have proven that
CNN features are better than handcrafted features. All
these techniques help us to achieve a good performance in
annotation.

Second, we compare CG-CNMF with FastTag, MLDL,
JEC and RMLF. Among these methods, JEC performs the
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worst. Even more, it is also the worst among all the meth-
ods. To our knowledge, JEC depends heavily on the features
of images and weights these features equally. It could not
perform any better than using equal weights. This is due to
the limitations of the classification-based metric learning that
they used for annotation. It is interesting that FastTag almost
aligns with TagProp, which is similar in [57]. Moreover, this
method achieves 8.4% gains compared with JEC in F1 on
Corel5k. This improvement occurs because of using two
co-regularized linear mappings in a joint convex function.
RMLF achieves a large margin (7%) in F1 compared with
JEC on Corel5k. Even more, it performs slightly better than
TagProp and FastTag, which is likely because of the rank
minimization-based late fusion method that provides more
useful information for annotation. Due to the use of the label
consistency regularization and partial-identical label embed-
ding method, MLDL achieves the second-best performance
in the F1 score measure, which is slightly worse (0.3%) than
the proposed approach. This proves that label consistency
and label embedding are helpful to the image annotation
inMLDL. Even more, in the output space, theMLDLmethod
employs the label embedding and collaboratively predicting
of the labels for the partial-identical samples, which further
improves the performance of image annotation. CG-CNMF
performs slightly better than MLDL on the Corel5K dataset
when the training set is set at 20%. Moreover, it is also better
than CCA-KNN on the ESP dataset and IAPR TC12 datasets.
We determine there are two reasons for this difference in
performance. On the one hand, CNN feature-based image
similarity is more accurate than handcrafted features-based
similarity. On the other hand, the use of multiple relationships
provides much useful information for the matrix factorization
and affects the annotation performance in turn. Moreover,
the proposed method is much more efficient in computation,
which is due to the low-rank representation solution of NMF.

Third, we deploy the experiments on the 50% and 80%
training datasets. It is not surprising that the performance of
each method is improved as the ratios of training datasets
increase. When the ratio of the training dataset size increases
to 50%, MLDL also performs the best among all the methods
on the Corel5k dataset, and the proposed method is the sec-
ond best approach. Different from this, considering the ESP
dataset, the proposed method achieves the best performance
for the measures of FI and N+. This performance difference
occurs because ESP has a higher TPI than Corel5K. It can
achieve better precision in ESP. We also believe that more
images and more labels provide more useful information
for image annotation. Moreover, the proposed method can
scale well on larger datasets than other methods due to the
neural networks. However, the high computation cost is its
shortcoming, which needs not only the hardware support but
also the algorithm support. Thus, we calculate the CNN fea-
tures offline. With the ratio of the training dataset increasing,
more useful information can be provided. As the training
set continues to increase, the performances of most of these
methods will improve in turn, but due to their limitations, the

performances will be stable to some extent. As the training
set increases to 80% for the three datasets, our method can
achieve the best results under most measures among these
methods. On the one hand, more labeled images can provide
more useful information for our method which can make full
use of such information to improve the performance. More
labeled images not only make the semantic-based image sim-
ilarity more accurate but also provide more meaningful infor-
mation to construct the semantic-based label cooccurrence,
although the visual-based image similarity and visual-based
label cooccurrence is stable. On the other hand, the CNN
features help the method to find the most similar images from
the view of visual features. All of these techniques can boost
the annotation performance.

By summarizing the performances of the above approaches,
we find that nearest-neighbor-based methods usually have
promising results in annotation. However, they depend heav-
ily on how visual features are compared, which is a truly
time-consuming issue. Although MLDL and CCA-KNN
methods achieve better performance than other methods, they
have their own shortcomings. The MLDL model explores
the underlying correlation among labels by using a mul-
tilabel dictionary learning algorithm, which puts the label
correlation in the input space rather than in the output
space. It depends too much on the labeled images. More-
over, a dictionary learning method is a practical time-
consuming method. Additionally, the proposed method and
CCA-KNN model both use the CNN features. The experi-
mental results of the proposed method are slightly better than
that of CCA-KNN. We think there are three reasons for this.
First, the CNN features we used to construct the image simi-
larity matrix can accurately display the similarity of images.
Second, the three relationships we used to factorize make full
use of the relations of images and semantic concepts, further
reducing the semantic gap. Third, we also consider the visual-
based label cooccurrence and semantic-based image simi-
larity, which can help to find some latent features between
images and labels. These promising results have proven the
efficiency of the combination of these techniques.

E. PARAMETER TUNING
In this method, there are 6 important hyperparameters.
These parameters include 5 regularization parameters,
α, β, λU , λV , λ, and the latent rank of the factor matrices K .
In this subsection, the effects of these parameters will be
studied and evaluated.

1) IMPACT OF THE IMAGE-TO-IMAGE VISUAL INFORMATION
The parameter α controls the contribution of image-to-image
visual information to the objective function in Eq. (7).
To study the impact of this information, we vary the value
of α by fixing other parameters. In this study, we fix β =
100, λU = 100, λV = 100, λ = 10 and K = 20. We also set
the ratio of the training set to 20%. Moreover, we implement
these experiments on the three datasets. In this way, we make
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FIGURE 4. Impact of α in different datasets.

sure that both image-label and visual-based image similarity
can contribute to the objective function.

As shown in Figure 4, the F1 score of the proposed method
first increases and later decreases as α increases. This occurs
becausewhen α is too small, themodel cannot fully utilize the
information from the image-image visual-based similarity to
find the most visually similar image features. However, when
α is too large, the image-image visual-based information will
dominate the objective function in Eq. (7), thus overwhelming
the label information from image-label matrix R and label-
label cooccurrence matrix C. Additionally, matrix R is the
relation matrix between images and labels, which mainly
describes the semantic relation of image-to-label. Therefore,
visual-based image information is helpful and necessary for
the factorization. Note that, when α = 0, the method is
equal to only exploiting other additional information sources,
i.e., the label-label information. Thus, the performance at
α = 0 is lower than the performance at α > 0. From Figure 4,
we can see that CG-CNMF achieves the best performance at
the range of α = 90 ∼ 300.

2) IMPACT OF THE LABEL-LABEL COOCCURRENCE
INFORMATION
In this part, we will study the impact of parameter β, which
controls the contribution of the label cooccurrence informa-
tion to the objective function. In this study, we fix α =
200, λU = λV = 100, λ = 10 and K = 40 according to the
previous study. Then, we search the parameter β within the
set {0,0.01,0.1,1,10,30,50,70,90,100,200,300,500,800,1000}
and show the results in Figure 5.

As shown in Figure 5, we similarly observe the method’s
performance, which first increases and later decreases as
β increases. As we know, with β increasing, increasingly
more label-label semantic-based cooccurrence information
can be added to help the matrix factorization to find more
interpretable latent feature factors. However, to some extent,
the information will be saturated; thus, the performance will
be hard to improve. Even more, after saturated, more infor-
mation becomes noisy information that causes a decrease in
performance. In Figure 5, when α ≥ 100, the performance

FIGURE 5. Impact of β in different datasets.

FIGURE 6. Impact of parameter λ.

will decrease. When β = 90 ∼ 100, the method will achieve
a better performance.

3) IMPACT OF REGULARIZATION PARAMETER λ
In this method, the parameter λ has two effects. On
the one hand, it increases the robustness of themethod. On the
other hand, it prevents the method from overfitting when the
other parameters are too small. We conduct the experiment
considering the 20% training set and evaluate the impact of λ.
The other parameters are α = 200, β = λU = λV = 100 and
K = 40. The F1 results are shown in Figure 6.

We can see from the figure that when λ increases, the
performance can be improved slightly. When 10 ≤ λ ≤ 50,
the method can achieve the best performance on the three
datasets. However, a too-large λ cannot improve the perfor-
mance significantly but can introduce much computation and
cause the model to converge slowly. Thus, we take λ = 10
for a tradeoff.

4) IMPACT OF NUMBER OF LATENT FEATURES
This method is based on the low-rank matrix factorization.
Thus, the number of latent features K is an important parame-
ter for the performance. Here, we conduct a set of experiments
on the 20% training sets to evaluate the effect of K. We set
other parameters as α = 200, β = 100, λU = λV = 100
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FIGURE 7. Impact of number of latent features K.

FIGURE 8. Impact of λU and λV on the Corel5K dataset.

and λ = 10. Then, we change the value of K within the fol-
lowing set {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and show
the F1 results in Figure 7.

It is worth noting that the higher the dimensionality
of the latent features, the better the performance is. This
is because the more useful information can be obtained
from images or labels. However, when the dimensional-
ity increases to some extent, the performance will be sta-
ble or even worse. In our empirical study, the range in
Corel5K is K ≥ 50, in IAPR TC12 is K ≥ 40 and ESP is
also K ≥ 40. These results indicate that more labels for each
image can provide more information for the factorization and
there is no need for large dimensionality of latent features.
However, the higher the dimensionality, the more computa-
tion cost will be needed. Consequently, in our experiments,
we set K = 40 to obtain a tradeoff.

5) IMPACT OF REGULARIZATION PARAMETERS λU AND λV
The parameter λU denotes the importance of semantic-based
image similarity, while λV weights the importance of visual-
based label similarity; therefore, they should be set with
nonnegative values. We evaluate these parameters by empir-
ically fixing others and implement the experiments on the
20% training sets for three datasets. Because there is no
prior knowledge about the importance of image or label

FIGURE 9. Impact of λU and λV on the IAPR TC12 dataset.

FIGURE 10. Impact of λU and λV on the ESP dataset.

similarity, we set one of them to a fixed value within the
set {0.01, 1, 10, 30, 50, 70, 90, 100, 200, 300, 500} and iter-
atively increase the value to reach a better result. Moreover,
we fix the other parameters as α = 200, β = 100, λ = 10
and K = 40. The results for the three datasets are shown
in Figure 8, 9 and 10, respectively.

From these figures, we can see that optimal value can
be achieved when λU and λV increase to some extent. The
region is approximately at λU = 90 ∼ 100 and λV =
70 ∼ 90 for the three datasets. Moreover, the results also
indicate that semantic-based image similarity information is
slightly more important than visual-based label similarity
in this collaborative-based image annotation method. This
proves that the performance can benefit from useful visual-
based label cooccurrence information, which compensates
the label information from another view.

6) IMPACT OF REGULARIZATION PARAMETERS α AND β

In our method, if α = 0, λU = 0, we only utilize label
cooccurrence information. When β = 0, λV = 0, we only
use the information from the image visual-based similarity
matrix to help to factorize the image-label matrix. Further-
more, if α = β = 0, λU , λV 6= 0, it is a standard
graph nonnegative matrix factorization (GNMF). To obtain
the best performance, we will search for the best combination
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FIGURE 11. The performance of CG-CNMF by varying the bias terms α and β in Corel5k.

FIGURE 12. The performance of CG-CNMF by varying bias terms α and β in IAPR TC12.

FIGURE 13. The performance of CG-CNMF by varying bias terms α and β in ESP dataset.

of α and β for our method. We fix other parameters as
λU = 100, λV = 90, λ = 10 and K = 40. The results are
shown in Figure 11, 12 and 13 for the three datasets.

From these figures, we can observe that when α = 0
and β = 0, the performance is obviously not satisfactory
since less image and label information is involved. However,
the performance improves as α and β increase. It is worth

noting that there is a region where the optimal values of α
and β ensure the best annotation performance. The region
is approximately at α = 100 ∼ 200 and β = 90 ∼ 100.
Moreover, the results also indicate that image-image visual-
based similarity information plays a more important role
than label-label semantic-based cooccurrence information for
image annotation in this collaborative-based method; due to
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the image-label matrix and label-label cooccurrence, both
provide some semantic information and visual-based infor-
mation for images. Thus, the visual-based information is
relatively more important in the proposed method.

VI. CONCLUSIONS
In this paper, we present a novel method, named CG-CNMF,
for multilabel image annotation. We cast the image anno-
tation problem as a label recommending problem. The first
step of our method is factorizing the incomplete image-label
matrix into two latent feature matrices: the latent image factor
matrix and latent label factor matrix. To fully utilize much
information from images and labels and address the sparsity
of the image-label matrix, we consider multiple sources from
the data to help the matrix factorization procedure find the
most interpretable latent features. By sharing some variables,
this method investigates two other relationships: the image-
to-image relation and the label-to-label relation. These rela-
tions can effectively address the issues of sparsity, semantic
gap, weak labeling and class imbalance, which can boost the
performance of image annotation in turn. To further narrow
down the semantic gap, we use a deep neural network archi-
tecture to extract high-level visual features and then construct
the visual-based image similarity matrix. The results have
proven the efficiency of the CNN features.

In the second step, the image annotation task can be
achieved by recovering the image-label matrix. We recon-
struct the image-label matrix by the product of the learned
latent image matrix and label matrix. Finally, we recommend
the labels for each test image according to the recovered
matrix. Thus, the performance of annotation mainly depends
on the latent image feature matrix and label feature matrix.
To find the most proper latent image and label features,
we not only employ the semantic-based and visual-based
similarity for images but also consider the visual-based and
semantic-based cooccurrence for labels. It is obvious that
such meaningful information can efficiently boost the anno-
tation performance. Experimental results have proven this.

There are remaining issues for us to address. In the future,
wewill investigate how to accelerate the multiplicative updat-
ing process and reduce the time complexity of the method.
Furthermore, we will consider the word embedding model
in our method to further improve the annotation accuracy.
We believe our work will provide a more efficient image
annotation framework.

APPENDIX
To prove Theorem 1, we will show that the objective function
in Eq. (7) is nonincreasing under the steps in Eqs. (8)-(11)
separately and hence converges to a local minimum under
each updating rule. To achieve this, we employ an auxiliary
function that was first used in [53]. First, let us introduce the
following definition and lemmas:
Definition 1: K (A,A′) is an auxiliary function of L(A) if

the following conditions are satisfied:
K (A,A′) ≥ F(A), and K (A,A′) = F(A).

Lemma 1: If K (A,A′) is an auxiliary function of F(A), then
F(A) is nonincreasing under the following updating rule:

At+1 = argmin
A

K (A,At )

where At is the t th update iteration of A.
Because F(At+1) ≤ K (At+1,At ) ≤ K (At ,At ) =

F(At ), thus F(A) is decreasing monotonically. Consequently,
to prove F(A) converges to a local minimum, we can find
an auxiliary function for it. First, we construct the auxiliary
functions for the objection function in Eq. (7) with respect to
U, V, P and Z. The following lemmas will be utilized.
Lemma 2 [63]: For any matrices D ∈ Rm×r

+ ,E ∈

Rm×r
+ ,E ′ ∈ Rm×r

+ , we have the following inequality:

Tr(DTE ′) ≥
∑

ij
DijEij(1+ log

E ′ij
Eij

)

Lemma 3 [64]: For any nonnegative matrices A ∈

Rn×n
+ ,B ∈ Rk×k

+ ,Q ∈ Rn×k
+ ,Q′ ∈ Rn×k

+ , where A and B
are symmetric matrices, we have the following inequality:∑

ij

(AQ′B)ijQ2
ij

Q′ij
≥ Tr(QTAQB)

Lemma 4 [63]: For any symmetric matrix O ∈ Rr×r
+ , and

any matrices W ∈ Rm×r+ ,W ′ ∈ Rm×r+ , we have the following
inequality: ∑

ij

(WO)ijW ′2ij
Wij

≥ Tr
(
W ′

T
W ′O

)
Lemma 5 [63]: For Q ∈ Rm×r+ ,W ∈ Rm×r+ ,W ′ ∈ Rm×r+ ,

we have the following inequality:

Tr(W ′TW ′Q) ≥
∑

ijl
BjlWijWil(1+ log

W ′ijW
′
il

WijWil
)

In the following, we will prove each updating rule leads the
objective function to converge to a local minimum. We first
prove Eq. (8) leads Eq. (7) to converge and define the follow-
ing function.

K (U ,U ′) = −
∑

ij
(Y � RV )ijU ′ij(1+ log

Uij
U ′ij

)

+
1
2

∑
ij

(Y � (U ′V T )V )ijU2
ij

U ′ij

−α
∑

ij
(SP)ijU ′ij(1+ log

Uij
U ′ij

)

+
α

2

∑
ij

(U ′PTP)ijU2
ij

U ′ij

+
λU

2

∑
ij

(L+UU
′)ijU2

ij

U ′ij
−
λU

2

∑
ijk

× (L−U )jkU
′
jiU
′
ki(1+ log

UjiUki
U ′jiU

′
ki
)

+
λ

2

∑
ij

(U ′)ijU2
ij

U ′ij
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Then, we prove K (U ,U ′) is an auxiliary function of L(U ),
furthermore, it is a convex function in U and its local mini-

mum is Uij = U ′ij

√
[Y�RV+αSP+λUL

−

UU ]ij
[Y�(UV T )V+αUPTP+λUL

+

UU+λU ]ij
.

It is obvious that K (U ,U ′) = L(U ) when U ′ = U . Thus,
we only need to prove K (U ,U ′) ≥ L(U ). From K (U ,U ′)
, we can find that: (a) due to Lemma 2, the first term in
K (U ,U ′) is always smaller than the first term in L(U ) ; (b)
due to Lemma 3, the second term inK (U ,U ′) is always larger
than the second term in L(U ) ; (c) due to Lemma 2, the third
term in K (U ,U ′) is always smaller than the third term in
L(U ) ; (d) due to Lemma 3, the fourth term in K (U ,U ′)
is always smaller than the fourth term in L(U ) ; (e) due to
Lemma 4, the fifth term in K (U ,U ′) is always larger than
the fifth term in L(U ) ; (f) due to Lemma 5, the sixth term
in K (U ,U ′) is always smaller than the sixth term in L(U ) ;
and (g) the seventh term in K (U ,U ′) is always larger than the
seventh term in L(U ) due to Lemma 4. By summing over all
the bounds, we obtain K (U ,U ′) ≥ L(U ). Thus, K (U ,U ′) is
an auxiliary function of L(U ) according to Definition 1.

Third, we can find a local minimum of minU K (U ,U ′) by
calculating the partial derivative of K (U ,U ′) and setting it to
zero.

0 =
∂K (U ,U ′)
∂Uij

= −(Y � RV )ij
U ′ij
Uij

+
(Y � (U ′V T )V )ijUij

U ′ij
− α(SP)ij

U ′ij
Uij

+α
(U ′PTP)ijUij

U ′ij
+ λU

(L+UU
′)ijUij

U ′ij

− λU (L
−

UU
′)ij
U ′ij
Uij
+ λ

(U ′)ijUij
U ′ij

By solving the above equation for Uij, we obtain the fol-
lowing minimum

Uij = U ′ij

√
[Y � RV + αSP+ λUL

−

UU ]ij
[Y � (UV T )V + αUPTP+ λUL

+

UU + λU ]ij

Set U t+1
= U and U ′ = U t according to Lemma 1; then,

we recover Eq. (8). Thus, L(U ) deceases monotonically and
converges to a local minimum.

To prove K (U ,U ′) is convex with respect to U, we derive
the following Hessian matrix,

∂K 2(U ,U ′)
∂Uij∂Ukl

= σikσjl



(Y � RV )ij
U ′ij
U2
ij

+
[Y � (U ′V T )V ]ij

U ′ij

+α(SP)ij
U ′ij
U2
ij

+
(U ′PTP)ij

U ′ij

+λU
(L+UU

′)ij
U ′ij

+ λU (L
−

UU
′)ij
U ′ij
U2
ij

+ λ
(U ′)ij
U ′ij



where

3ij =
[Y � RV + SP+ λU (L

−

UU
′)]ijU ′ij

U2
ij

+
[Y � (U ′V T )V + U ′PTP+ λUL

+

UU
′
+ λU ′]ij

U ′ij

is a diagonal matrix with positive diagonal elements and σik
is a function such that σik = 1 if i = k; otherwise, σik = 0.
Therefore, K

(
U ,U ′

)
is a convex function with respect to U .

Analogous to Eq. (8), we can prove the updating rules in
Eq. (9), (10) and (11) lead Eq. (7) to converge to a local
minimum.

In summary, we have proven Theorem 1.
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