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ABSTRACT This paper focuses on the stability analysis of generalized neural networks with time-varying
delays. First, a novel augmented Lyapunov-Krasovskii functional (LKF) is constructed by introducing a
couple of integral vectors. Second, by utilizing the novel augmented LKF and a generalized free-weighting-
matrix integral inequality, two further stability criteria are presented in this paper. Third, a less conservative
stability condition by refining the allowable delay set is introduced. Finally, the four well-known numerical
examples are given to demonstrate the effectiveness and improvements of the proposed methods.

INDEX TERMS Generalized neural networks, Lyapunov-Krasovskii functional, stability, time-varying
delays.

I. INTRODUCTION
In past few decades, neural networks (NNs) have attracted
great concerns for their extensive application in sig-
nal processing, image processing and pattern recognition,
etc. [1]–[3]. It is two factors that require extra attention during
the implementations of NNs. For one thing, the dynamic
behavior of equilibrium point of NNs greatly influences on
its applications. Thus, it is a premise and fundamental to
ensure the stability of NNs. For another, time delays fre-
quently occur in many NNs due to the finite switching speed
of amplifiers and the inevitable communication time among
neurons. Aswe all know, time delays can give rise to poor sys-
tem performance, such as oscillations and instability [4], [5].
Therefore, stability analysis of NNs, especially stability anal-
ysis of delayed neural networks (DNNs), has been a research
hotspot in recent decades and a lot of stability results have
been obtained [6]–[12].

The existing stability criteria include delay-independent
criteria and delay-dependent ones. Compared with the
delay-independent criteria, the delay-dependent criteria can
derive less conservativeness. Thus, this paper mainly con-
cerns in delay-dependent stability criteria for DNNs. The
maximum delay bounds, which is an important performance
index to evaluate conservatism, can be used to confirm the
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effectiveness of stability criteria. It is very meaningful to
employ some excellent methods to obtain stability criteria
with larger maximum delay bounds. According to Lyapunov
stability theory, estimating tight the derivative of LKF is the
major way for obtaining stability results with less conser-
vatism. In the past few decades of research, Jensen inequality
has beenwidely applied to the estimation of the single integral
term [13]–[16]. Wirtinger inequality which presents a tighter
estimation of single integral term than Jensen inequality is
proposed in [4] and has been the most popular method in
stability analysis of DNNs [17]–[20]. A free-matrix-based
inequality (FMBI) is proposed in [21] and applied to reduce
conservatism of stability criteria for DNNs [22], [23]. How-
ever, some slack matrices in FMBI have no effect on reduc-
ing conservatism. In [24], a new integral inequality which
is more general than Jensen inequality, Wirtinger inequal-
ity, and FMBI is proposed and less conservative stability
results are derived. Recently, several improved reciprocally
convex inequalities which encompass reciprocally convex
inequality [25] are employed in [26]–[28]. In [30], a general
free-weighting-matrix-based inequality (GFWMBI) is devel-
oped to deal with augmented integral terms. Several new less
conservative stability results for the DNNs are presented by
applying GFWMBI [31].

The construction of suitable LKFs is another impor-
tant way to derive less conservative criteria [32]. Most
LKFs used for stability analysis of DNNs usually contain
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three terms: the nonintegral quadratic term, the activa-
tion function-based term, and the integral quadratic term.
In [33], an augmented nonintegral quadratic term includ-
ing integral of state vectors has been confirmed to achieve
the advantage of the Wirtinger-based inequality. It is
pointed out [15], [31], [34], [35] that augmented single inte-
gral quadratic terms and double integral quadratic terms with
necessary state vectors are very important in stability analysis
of DNNs. In [23], [36], LKFs with triple integral quadratic
terms are constructed and some improved stability/passivity
conditions for DNNs are derived. Additionally, the infor-
mation of activation functions of the NNs plays a crucial
role in reducing the conservativeness for stability analysis
of DNNs [37], [38]. Recently, a novel LKF is constructed in
stability analysis for linear systems by adding state integral
vectors and less conservative results are obtained in [29].
In general, the LKF containing more information usually
achieves a less conservative result. Thus, constructing a more
proper augmented LKF involving more key state information
is a very meaning work. This is the main motivation for this
paper.

In the previous literature, there is less attention on the defi-
nition of the allowable delay sets. Recently, several improved
allowable delay sets are introduced in stability analysis of lin-
ear systems [39], [40]. In [41], the improved allowable delay
sets are first introduced in stability analysis of DNNs, which
obviously enlarge themaximumdelay bounds. Extending this
idea to our paper is another motivation.

In this paper, stability analysis for generalized NNs with
time-varying delays is investigated.

1) A novel augmented LKF is constructed by augmenting
a couple of integral vectors

∫ s
t−h x (u) du,

∫ s
t−h ẋ (u) du. The

novel LKF involves more key information of state vectors and
can obtain less conservative stability criteria.

2) New augmented zero equalities which introduce more
cross terms are proposed to reduce conservativeness of
stability criteria. Combining the novel augmented LKF
with the proposed augmented zero equalities, an improved
delay-dependent stability criterion is given in Theorem 1.

3) Based on Theorem 1, a less conservative delay-
dependent stability criterion is presented in Theorem 2 by
relaxing the positiveness of nonintegral quadratic term.

4) Inspired by the [40], [41], a further improved
delay-dependent stability criterion is derived in Theorem 3 by
refining allowable delay set.

Finally, the superiority and effectiveness of the developed
stability criteria will be shown by comparing with the previ-
ous results.
Notations: Throughout this paper, XT represents the trans-

position of matrixX ;Rn denotes the n dimensional Euclidean
space;Rm×n represents allm×n real matrices;Q > 0 means
thatQ is positive definite; Symbol ∗ represents the symmetric
terms of a symmetric block matrix; diag{· · · } denotes a block
diagonal matrix; X⊥ denotes a right orthogonal complement
of X , Sym(Y ) stands for (Y + Y T ) and Co {r1, r2} represents
a polytope with two vertices r1 and r2.

II. PROBLEM FORMULATION
Consider the following generalized NN with time-varying
delay. (The equilibrium point is converted into the origin.)

ẋ(t) = −Ax(t)+W0f (W2x(t))+W1f (W2x(t − h(t))), (1)

where x(·) = [x1(·), · · · , xn(·)]T ∈ Rn is the neuron state
vector, f (·) = [f1(·), · · · , fn(·)]T ∈ Rn denotes the neuron
activation function, A = diag{a1, · · · , an} is positive defi-
nite, Wi ∈ Rn×n (i = 0, 1, 2) are the interconnection weight
matrices between neurons.

The time-varying delay h(t) satisfying

0 ≤ h(t) ≤ h, ḣ(t) ≤ hD, (2)

where h is a positive scalar and hD is any scalar.
The activation functions fi(·)(i = 1, · · · , n) are continuous

and bounded, which satisfy the following inequalities

k−i ≤
fi(u)− fi(v)
u− v

≤ k+i u 6= v(i = 1, · · · , n), (3)

where k−i and k+i are known constants.
We will utilize the following lemmas to derive the main

results.
Lemma 1 ( [30]): For a symmetric matrix R > 0, a dif-

ferentiable vector function ω: [a, b] → Rn, any vector ξ ∈
Rk , and any appropriate dimensions matrices N1 and N2,
the following inequality

−

∫ b

a
ωT (s)Rω(s)ds

≤ ξT (b− a)
(
N1R−1NT

1 +
1
3
N2R−1NT

2

)
ξ

+ Sym(ξTN1ξ1 + ξ
TN2ξ2), (4)

is satisfied, where

ξ1 =

∫ b

a
ω(s)ds,

ξ2 = −

∫ b

a
ω(s)ds+

2
b− a

∫ b

a

∫ b

s
ω(u)duds.

Lemma 2 ( [42]): Let ξ ∈ Rn, symmetric matrix X ∈
Rn×n and H ∈ Rm×n such that rank(H ) < n. The following
inequalities
(1) ξTXξ < 0,
(2) (H⊥)TXH⊥ < 0.
are equivalent for all Hξ = 0, ξ 6= 0.
Lemma 3 ( [15]): For a symmetric matrix R > 0, a differ-

entiable function ω: [a, b]→ Rn, the following inequalities
hold:∫ b

a
ωT (s)Rω(s)ds

≥
1

b− a

(∫ b

a
ω(s)ds

)T
R
(∫ b

a
ω(s)ds

)
, (5)∫ b

a

∫ b

s
ωT (u)Rω(u)duds
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≥
2

(b− a)2

(∫ b

a

∫ b

s
ω(u)duds

)T
R
(∫ b

a

∫ b

s
ω(u)duds

)
.

(6)

III. STABILITY ANALYSIS
In this research, three improved delay-dependent stabil-
ity criteria for generalized NN (1) are presented. And
block entry matrices are defined as e0 = 014n×n, ei =
[0n×(i−1)n In 0n×(14−i)n]T (i = 1, · · · , 14). The other related
notations are defined as follows:

ξ (t) = col





x (t)
x (t − h (t))
x (t − h)
ẋ (t)

ẋ (t − h)∫ t
t−h(t) x(s)ds∫ t−h(t)
t−h x(s)ds


,



1
h(t)

∫ t
t−h(t)

∫ t
s x (u) duds

1
h−h(t)

∫ t−h(t)
t−h

∫ t−h(t)
s x (u) duds

1
h(t)

∫ t
t−h(t) x(s)ds

1
h−h(t)

∫ t−h(t)
t−h x(s)ds

f (W2x (t))
f (W2x (t − h (t)))
f (W2x (t − h))




,

Kp = diag
{
k+1 , k

+

2 , · · · , k
+
n
}
,

Km = diag
{
k−1 , k

−

2 , · · · , k
−
n
}
,

Qaug1 = Q1

+ Sym



0 0 0
I 0 0
0 I 0
0 0 I

P1
 I 0 0 0
−I 0 0 0
I 0 0 0


 ,

Qaug2 = Q1

+ Sym



0 0 0
I 0 0
0 I 0
0 0 I

P2
 I 0 0 0
−I 0 0 0
I 0 0 0


 ,

etot = [e1, e2, e3, e4, e5, e6, e7,

e8, e9, e10, e11, e12, e13, e14] ,

ϒ = [e1, e2, e6, e7, e10, e11] ,

81[h(t)] = Sym{[e1, e3, e6 + e7,

h (t) e8 + (h− h(t))(e6 + e9)]

×R[e4, e5, e1 − e3, he1 − e6 − e7]T },

82 = [e4, e1, e12]N [e4, e1, e12]T

− [e5, e3, e14]N [e5, e3, e14]T

+ Sym{(e12 − e1W T
2 Km)D1W2eT4

+ (e1W T
2 Kp − e12)D2W2eT4 }

+ Sym{(e14 − e3W T
2 Km)D3W2eT5

+ (e3W T
2 Kp − e14)D4W2eT5 },

83 = [e1, e0, e0, e1 − e3, e6 + e7]

×G1[e1, e0, e0, e1 − e3, e6 + e7]T

− (1− hD) [e2, e1 − e2, e6, e2 − e3, e7]

×G1[e2, e1 − e2, e6, e2 − e3, e7]T

+ [e1, e12]G2[e1, e12]T

− (1− hD) [e2, e13]G2[e2, e13]T ,

831[h(t)] = Sym{[e6, h(t)e1 − e6, h(t)e8, e6 − h(t)e3,

h(t)(e6 + e7 − e8)]G1[e0, e4, e1,−e5,−e3]T },

84 = h [e4, e1, e0, e1 − e3]Q1[e4, e1, e0, e1 − e3]T ,

841[h(t)] = Sym{etotL1[e1 − e2, e6, h(t)e1 − e6,

− h(t)e3 + e6]T

+ etotM1[e1 + e2 − 2e10,−e6 + 2e8,

e6 − 2e8,−e6 + 2e8]T },

842[h(t)] = Sym{etotL2[e2 − e3, e7, (h− h(t)) e1 − e7,

− (h− h(t)) e3 + e7]T

+ etotM2[e2 + e3 − 2e11,−e7 + 2e9,

e7 − 2e9,−e7 + 2e9]T },

843[h(t)] = Sym{[he1 − e6 − e7,

h(t)e8 + (h− h(t)) (e6 + e9) ,

(h2/2)e1 − h(t)e8 − (h− h(t)) (e6 + e9) ,

− (h2/2)e3 + h(t)e8 + (h− h(t)) (e6 + e9)]

×Q1[e0, e0, e4,−e5]T },

844 = [e1, e0, e1 − e3]P1[e1, e0, e1 − e3]T

− [e2, e1−e2, e2 − e3]P1[e2, e1−e2, e2 − e3]T

+ [e2, e1−e2, e2 − e3]P2[e2, e1−e2, e2 − e3]T

− [e3, e1−e3, e0]P2[e3, e1−e3, e0]T ,

21[h(t)] = Sym{(h(t)e10 − e6)91ϒ
T

+ ((h− h(t)) e11 − e7)92ϒ
T
},

22[h(t)] = −Sym{
(
e12 − e1W T

2 Km
)

×

(
H1

h(t)
h
+ H6

h− h(t)
h

)
×

(
e12 − e1W T

2 Kp
)T
}

− Sym{
(
e13 − e2W T

2 Km
)

×

(
H2

h(t)
h
+ H7

h− h(t)
h

)
×

(
e13 − e2W T

2 Kp
)T
}

− Sym{
(
e14 − e3W T

2 Km
)

×

(
H3

h(t)
h
+ H8

h− h(t)
h

)
×

(
e14 − e3W T

2 Kp
)T
}

− Sym
{
(e12 − e13 − (e1 − e2)W T

2 Km
)

×

(
H4

h(t)
h
+ H9

h− h(t)
h

)
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×

(
e12 − e13 − (e1 − e2)W T

2 Kp
)T
}

− Sym{
(
e13 − e14 − (e2 − e3)W T

2 Km
)

×

(
H5

h(t)
h
+ H10

h− h(t)
h

)
×

(
e13 − e14 − (e2 − e3)W T

2 Kp
)T
},

8[h(t)] = 81[h(t)] +82 +83 +831[h(t)] +84

+841[h(t)] +842[h(t)] +843[h(t)] +844

+21[h(t)] +22[h(t)],

8tot[h(t)] = 8[h(t)] + h (t) etot {L1Q
−1
aug1L

T
1

+ (1/3)M1Q
−1
aug1M

T
1 }e

T
tot

+ (h− h (t)) etot {L2Q
−1
aug2L

T
2

+ (1/3)M2Q
−1
aug2M

T
2 }e

T
tot ,

B = [−A, 0, 0,−I , 0, 0, 0, 0, 0, 0, 0,W0,W1, 0] .

(7)

Theorem 1: For given scalars h and hD, the general-
ized NN (1) with h(t) satisfying (2) is asymptotically
stable, if there exist positive diagonal matrices Di =
diag{d1i, · · · , dni}(i = 1, 2, 3, 4), Hi(i = 1, · · · , 10), pos-
itive symmetric matrices G1 ∈ R5n×5n, R,Q1 ∈ R4n×4n,
N ∈ R3n×3n, G2 ∈ R2n×2n, symmetric matrices Pi(i =
1, 2) ∈ R3n×3n, and any matrices 9i(i = 1, 2) ∈ Rn×6n,
Mi, Li ∈ R14n×4n(i = 1, 2) satisfying the following LMIs:(B⊥)T8h(B⊥) (B⊥)T (hetotL1) (B⊥)T (hetotM1)

∗ −hQaug1 0
∗ ∗ −3hQaug1

< 0,

(8)(B⊥)T80(B⊥) (B⊥)T (hetotL2) (B⊥)T (hetotM2)
∗ −hQaug2 0
∗ ∗ −3hQaug2

< 0,

(9)

where 8h = 8[h(t)=h], 80 = 8[h(t)=0], B, etot , Qaug1 and
Qaug2 are given in (7).

Proof:We choose the following LKF

V (t) =
4∑
i=1

Vi(t), (10)

where

V1(t) =


x (t)

x (t − h)∫ t
t−h x (s) ds∫ t

t−h

∫ t
s x (u) duds


T

R


x (t)

x (t − h)∫ t
t−h x (s) ds∫ t

t−h

∫ t
s x (u) duds

 ,

V2(t) =
∫ t

t−h

 ẋ (s)
x (s)

f (W2x (s))

TN
 ẋ (s)

x (s)
f (W2x (s))

 ds
+ 2

n∑
i=1

(
di1

∫ W2ix(t)

0
(fi(s)− k

−

i s)ds

+di2

∫ W2ix(t)

0
(k+i s− fi(s))ds

)
+ 2

n∑
i=1

(
di3

∫ W2ix(t−h)

0
(fi(s)− k

−

i s)ds

+ di4

∫ W2ix(t−h)

0
(k+i s− fi(s))ds

)
,

V3(t) =
∫ t

t−h(t)


x (s)∫ t

s ẋ (u) du∫ t
s x (u) du∫ s
t−h ẋ (u) du∫ s
t−h x (u) du


T

G1


x (s)∫ t

s ẋ (u) du∫ t
s x (u) du∫ s
t−h ẋ (u) du∫ s
t−h x (u) du

 ds

+

∫ t

t−h(t)

[
x (s)

f (W2x (s))

]T
G2

[
x (s)

f (W2x (s))

]
ds,

V4(t)=
∫ t

t−h

∫ t

s


ẋ (u)
x (u)∫ t

u ẋ (v) dv∫ u
t−h ẋ (v) dv


T

Q1


ẋ (u)
x (u)∫ t

u ẋ (v) dv∫ u
t−h ẋ (v) dv

 duds,
where W2i is ith row vector of W2.
The V̇1(t) is given as

V̇1(t) = 2



x (t)
x (t − h)∫ t

t−h(t) x (s) ds+
∫ t−h(t)
t−h x (s) ds

∫ t
t−h(t)

∫ t
s x (u) duds

+ (h− h (t))
∫ t
t−h(t) x (s) ds

+
∫ t−h(t)
t−h

∫ t−h(t)
s x (u) duds





T

×R


ẋ (t)

ẋ (t − h)
x (t)− x (t − h)(

hx (t)−
∫ t
t−h(t) x (s) ds

−
∫ t−h(t)
t−h x (s) ds

)


= ξT (t)81[h(t)]ξ (t) , (11)

where 81[h(t)] can be found in (7). Similarly, we get

V̇2(t) =

 ẋ (t)
x (t)

f (W2x (t))

TN
 ẋ (t)

x (t)
f (W2x (t))


−

 ẋ (t − h)
x (t − h)

f (W2x (t − h))

TN
 ẋ (t − h)

x (t − h)
f (W2x (t − h))


+ 2{f (W2x (t))− KmW2x (t)}TD1W2ẋ (t)

+ 2
{
KpW2x (t)− f (W2x (t))

}TD2W2ẋ (t)

+ 2{f (W2x (t − h))− KmW2x (t − h)}T

×D3W2ẋ (t − h)

+ 2
{
KpW2x (t − h)− f (W2x (t − h))

}T
×D4W2ẋ (t − h)

= ξT (t)82ξ (t) , (12)
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where 82 is defined in (7). V̇3(t) is calculated as

V̇3(t) =


x (t)
0
0

x (t)− x (t-h)∫ t
t−h x (s) ds


T

G1


x (t)
0
0

x (t)− x (t-h)∫ t
t−h x (s) ds



−
(
1− ḣ(t)

)


x (t − h (t))
x (t)− x (t − h (t))∫ t

t−h(t) x (s) ds
x (t − h (t))− x (t − h)∫ t−h(t)

t−h x (s) ds


T

×G1


x (t − h (t))

x (t)− x (t − h (t))∫ t
t−h(t) x (s) ds

x (t − h (t))− x (t − h)∫ t−h(t)
t−h x (s) ds



+ 2



∫ t
t−h(t) x (s) ds

h (t) x (t)−
∫ t
t−h(t) x (s) ds∫ t

t−h(t)

∫ t
s x (u) duds∫ t

t−h(t) x (s) ds− h (t) x (t-h)(
h (t)

∫ t
t−h x (s) ds

−
∫ t
t−h(t)

∫ t
s x (u) duds

)



T

×G1


0

ẋ (t)
x (t)

−ẋ (t − h)
−x (t-h)


+

[
x (t)

f (W2x (s))

]T
G2

[
x (t)

f (W2x (s))

]
−
(
1− ḣ(t)

) [ x (t − h (t))
f (W2x (t − h (t)))

]T
×G2

[
x (t − h (t))

f (W2x (t − h (t)))

]
≤ ξT (t)

(
83 +831[h(t)]

)
ξ (t) , (13)

where 83 and 831[h(t)] are defined in (7). Calculating the
upper bounds of V̇4(t) leads to

V̇4(t) = h


ẋ (t)
x (t)
0

x (t)− x (t − h)


T

Q1


ẋ (t)
x (t)
0

x (t)− x (t − h)



+ 2


hx (t)−

∫ t
t−h x (s) ds∫ t

t−h

∫ t
s x (u) duds

h2
2 x (t)−

∫ t
t−h

∫ t
s x (u) duds

−
h2
2 x (t − h)+

∫ t
t−h

∫ t
s x (u) duds


T

×Q1


0
0

ẋ (t)
−ẋ (t-h)



−

∫ t

t−h


ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du


T

Q1


ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du

 ds
= ξT (t)

(
84 +843[h(t)]

)
ξ (t)

−

∫ t

t−h


ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du


T

Q1


ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du

 ds.
(14)

Based on the work of [31], [43], the following new zero
equalities are introduced for any symmetric matrices
Pi(i = 1, 2).

0 =

 x (t)
0

x (t)− x (t-h)

TP1
 x (t)

0
x (t)− x (t-h)



−

 x (t − h (t))
x (t)− x (t − h (t))
x (t − h (t))− x (t-h)

TP1
×

 x (t − h (t))
x (t)− x (t − h (t))
x (t − h (t))− x (t-h)



− 2
∫ t

t−h(t)


ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du


T 

0 0 0
I 0 0
0 I 0
0 0 I



×P1

 I 0 0 0
−I 0 0 0
I 0 0 0




ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du

 ds, (15)

0 =

 x (t − h (t))
x (t)− x (t − h (t))
x (t − h (t))− x (t-h)

TP2
×

 x (t − h (t))
x (t)− x (t − h (t))
x (t − h (t))− x (t-h)


−

 x (t − h)
x (t)− x (t − h)

0

TP2
 x (t − h)
x (t)− x (t − h)

0



− 2
∫ t−h(t)

t−h


ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du


T 

0 0 0
I 0 0
0 I 0
0 0 I



×P2

 I 0 0 0
−I 0 0 0
I 0 0 0




ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du

 ds. (16)
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Summing up the two zero equalities presented at (15) and (16)
leads to

0 = ξT (t)844ξ (t)

− 2
∫ t

t−h(t)


ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du


T 

0 0 0
I 0 0
0 I 0
0 0 I

P1

×

 I 0 0 0
−I 0 0 0
I 0 0 0




ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du

 ds

− 2
∫ t−h(t)

t−h


ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du


T 

0 0 0
I 0 0
0 I 0
0 0 I

P2

×

 I 0 0 0
−I 0 0 0
I 0 0 0




ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du

 ds. (17)

By adding (17) into (14), we have

V̇4(t) ≤ ξT (t)
(
84 +843[h(t)] +844

)
ξ (t)

−

∫ t

t−h


ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du


T

Q1


ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du

 ds

− 2
∫ t

t−h(t)


ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du


T 

0 0 0
I 0 0
0 I 0
0 0 I



×P1

 I 0 0 0
−I 0 0 0
I 0 0 0




ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du

 ds

− 2
∫ t−h(t)

t−h


ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du


T 

0 0 0
I 0 0
0 I 0
0 0 I



×P2

 I 0 0 0
−I 0 0 0
I 0 0 0




ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du

 ds
= ξT (t)

(
84 +843[h(t)] +844

)
ξ (t)

−

∫ t

t−h(t)


ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du


T

Qaug1


ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du

ds

−

∫ t−h(t)

t−h


ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du


T

Qaug2


ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du

ds,
(18)

where Qaug1 and Qaug2 are given in (7). Then, the integral
terms in (18) are estimated by using Lemma 1.

−

∫ t

t−h(t)


ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du


T

Qaug1


ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du

 ds
≤ Sym

{
ξT (t) etotL1η1 (t)+ ξT (t) etotM1η2 (t)

}
+ h (t) ξT (t) etot

×

{
L1Q

−1
aug1L

T
1 + (1/3)M1Q

−1
aug1M

T
1

}
eTtotξ (t)

= ξT (t) {841[h(t)] + h (t) etot (L1Q
−1
aug1L

T
1

+ (1/3)M1Q
−1
aug1M

T
1 )e

T
tot }ξ (t) , (19)

−

∫ t−h(t)

t−h


ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du


T

Qaug2


ẋ (s)
x (s)∫ t

s ẋ (u) du∫ s
t−h ẋ (u) du

 ds
≤ Sym

{
ξT (t) etotL2η3 (t)+ ξT (t) etotM2η4 (t)

}
+ (h− h (t)) ξT (t) etot

×

{
L2Q

−1
aug2L

T
2 + (1/3)M2Q

−1
aug2M

T
2

}
eTtotξ (t)

= ξT (t) {842[h(t)] + (h− h (t)) etot

×

(
L2Q

−1
aug2L

T
2 + (1/3)M2Q

−1
aug2M

T
2

)
eTtot }ξ (t) , (20)

where

η1 (t) = [e1 − e2, e6, h (t) e1 − e6,−h (t) e3 + e6]T ξ (t) ,

η2 (t)= [e1+e2−2e10,−e6+2e8, e6−2e8,−e6+2e8]T ξ (t) ,

η3 (t) = [e2 − e3, e7, (h− h (t)) e1 − e7,

− (h− h (t)) e3 + e7]T ξ (t) ,

η4 (t)= [e2+e3−2e11,−e7+2e9, e7−2e9,−e7+2e9]T ξ (t) .

From (14) to (20), we give an estimation of V̇4(t) as follows:

V̇4(t) ≤ ξT (t) {84 +841[h(t)] +842[h(t)] +843[h(t)]

+844}ξ (t)+ h (t) ξT (t) etot {L1Q
−1
aug1L

T
1

+ (1/3)M1Q
−1
aug1M

T
1 }e

T
totξ (t)

+ (h− h (t)) ξT (t) etot {L2Q
−1
aug2L

T
2

+ (1/3)M2Q
−1
aug2M

T
2 }e

T
totξ (t) , (21)

where 84, 841[h(t)], 842[h(t)], 843[h(t)], and 844 are given in
(7).

Inspired by the work of [31] and [43], we consider the
following two zero equalities in terms of the relationship
among some vectors of ξ (t).

0 = ξT (t) Sym
{
((h− h (t)) e11 − e7)92ϒ

T
}
ξ (t) , (22)
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0 = ξT (t) Sym
{
(h (t) e10 − e6)91ϒ

T
}
ξ (t) . (23)

Summing up the zero equalities above leads to

0 = ξT (t)21[h(t)]ξ (t) , (24)

where 21[h(t)] is defined in (7).
From (3), for any diagonal matrices Hi > 0(i =

1, · · · , 10), we consider following inequality

ξT (t)22[h(t)]ξ (t) ≥ 0, (25)

where 22[h(t)] is given in (7). From (11) to (25), we give an
estimation of V̇ (t) as follows:

V̇ (t) ≤ ξT (t)8[h(t)]ξ (t)+ h (t) ξT (t) etot {L1Q
−1
aug1L

T
1

+ (1/3)M1Q
−1
aug1M

T
1 }e

T
totξ (t)

+ (h− h (t)) ξT (t) etot {L2Q
−1
aug2L

T
2

+ (1/3)M2Q
−1
aug2M

T
2 }e

T
totξ (t) , (26)

where 8[h(t)] is given in (7). Then, a stability condition for
generalized NN (1) is given as

ξT (t)8[h(t)]ξ (t)

+ h (t) ξT (t) etot {L1Q
−1
aug1L

T
1

+ (1/3)M1Q
−1
aug1M

T
1 }e

T
totξ (t)

+ (h− h (t)) ξT (t) etot {L2Q
−1
aug2L

T
2

+ (1/3)M2Q
−1
aug2M

T
2 }e

T
totξ (t) < 0. (27)

Since 0 = Bξ (t), the inequality (27) is equivalent to following
inequality by using Lemma 2.

(B⊥)T8[h(t)](B⊥)

+ (B⊥)T h (t) etot {L1Q
−1
aug1L

T
1

+ (1/3)M1Q
−1
aug1M

T
1 }e

T
tot (B

⊥)

+ (B⊥)T (hM − h (t)) etot {L2Q
−1
aug2L

T
2

+ (1/3)M2Q
−1
aug2M

T
2 }e

T
tot (B

⊥) < 0. (28)

The inequality above depends on h(t). Therefore, the inequal-
ity above is equivalent to following inequalities,

(B⊥)T8h(B⊥)

+ h (B⊥)T etot {L1Q
−1
aug1L

T
1

+ (1/3)M1Q
−1
aug1M

T
1 }e

T
tot (B

⊥) < 0, (29)

(B⊥)T80(B⊥)

+ h (B⊥)T etot {L2Q
−1
aug2L

T
2

+ (1/3)M2Q
−1
aug2M

T
2 }e

T
tot (B

⊥) < 0. (30)

Based on Schur complement, if inequalities (29) and (30)
hold, then (8) and (9) hold. Therefore, if (8) and (9) hold,
the generalized NN (1) with h(t) satisfying (2) is asymptoti-
cally stable, which allows concluding the proof. �
Remark 1: The novel LKF (10) contains the augmented

nonintegral terms, the activation function-based terms,

the augmented single integral terms and the augmented dou-
ble integral terms. The novelty of LKF (10) in this paper is
a couple of integral vectors

∫ s
t−h x (u) du,

∫ s
t−h ẋ (u) du are

introduced inG1−dependent integral term and integral vector∫ s
t−h ẋ (u) du is introduced in Q1−dependent integral term.
These points are main contributions in this paper. Because
of the novel LKF (10), some new cross terms among state
vectors ẋ(t − h), x(t − h) and other vectors are introduced
in the proposed stability conditions. More state marginal
information is utilized to derive the stability criterion with
less conservatism.
Remark 2: In the previous literature such as [31], [43],

and [35], the proposed LKFs included the form of∫ t
t−h(t)

 x (s)∫ t
s ẋ (u) du∫ t
s x (u) du

TG
 x (s)∫ t

s ẋ (u) du∫ t
s x (u) du

 ds, the couple of

integral vectors
∫ t
s x (u) du and

∫ t
s ẋ (u) du are very effec-

tive in reducing the conservatism. As a result, the time
derivative of the LKFs involves many cross terms about
vector

∫ t
t−h(t) x (s) ds. However, some cross terms about∫ t−h(t)

t−h x (s) ds are ignored, which may bring conservative-
ness. In this paper, some new cross terms among vectors∫ t
t−h(t) x (s) ds,

∫ t−h(t)
t−h x (s) ds, and other vectors are included

in V̇3(t) by introducing the new couple of integral vectors∫ s
t−h x (u) du and

∫ s
t−h ẋ (u) du into V3(t). We will demon-

strate the effectiveness of the new couple of integral vectors
in numerical examples.
Remark 3: The conservation of stability condition is

reduced by using the new augmented zero equalities (15)
and (16) in Theorem 1. Note that the new augmented zero
equalities (15) and (16) encompasses several existing zero
equalities of [43], [44].
Remark 4: In the previous researches about stability

analysis for DNNs, the presented LKFs usually involve∫ t
t−h

∫ t
s

[
ẋ (u)
x (u)

]T
Q1

[
ẋ (u)
x (u)

]
duds or

∫ t
t−h

∫ t
s

 ẋ (u)
x (u)∫ t

u ẋ (v) dv

T

Q1

 ẋ (u)
x (u)∫ t

u ẋ (v) dv

 duds which have effect on reducing the

conservatism of stability conditions. Unlike previous works,
the integral vector

∫ s
t−h ẋ (u) du is introduced in double inte-

gral quadratic term V4(t) . Based on the new zero equality
(17) and Lemma 1, V̇4(t) is estimated as shown in (21), which
contains more cross terms and helps the stability conditions
increase maximum delay bounds.

IV. RELAXATION THE POSITIVENESS OF NONINTEGRAL
QUADRATIC TERM
In Theorem 1, in order to make sure that LKF (10) is positive
definite, conditions Di > 0(i = 1, 2, 3, 4), Gi > 0(i = 1, 2),
R > 0, N > 0, and Q1 > 0 are required. However, by com-
bining the nonintegral term and some integral terms in LKF
(10), the requirement of the condition R > 0 can be relaxed
and less conservative stability criterion will be presented in
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Theorem 2. To simplify computing, block entry matrices are
defined as ẽ0 = 05n×n, ẽi = [0n×(i−1)n In 0n×(5−i)n]T (i =
1, · · · , 5). Assume that Di > 0(i = 1, 2, 3, 4), Gi > 0(i =
1, 2), N > 0, Q1 > 0. Then we obtain

V (t) >


x (t)

x (t − h)∫ t
t−h x (s) ds∫ t

t−h

∫ t
s x (u) duds


T

R


x (t)

x (t − h)∫ t
t−h x (s) ds∫ t

t−h

∫ t
s x (u) duds


+

∫ t

t−h

 ẋ (s)
x (s)

f (W2x (s))

TN
 ẋ (s)

x (s)
f (W2x (s))

 ds

+

∫ t

t−h

∫ t

s


ẋ (u)
x (u)∫ t

u ẋ (v) dv∫ u
t−h ẋ (v) dv


T

Q1


ẋ (u)
x (u)∫ t

u ẋ (v) dv∫ u
t−h ẋ (v) dv

 duds.
(31)

The estimation of the integral terms in (31) can be given by
applying Lemma 3:

∫ t

t−h

 ẋ (s)
x (s)

f (W2x (s))

TN
 ẋ (s)

x (s)
f (W2x (s))

 ds

+

∫ t

t−h

∫ t

s


ẋ (u)
x (u)∫ t

u ẋ (v) dv∫ u
t−h ẋ (v) dv


T

Q1


ẋ (u)
x (u)∫ t

u ẋ (v) dv∫ u
t−h ẋ (v) dv

 duds

≥
1
h

 x (t)− x (t-h)∫ t
t−h x (s) ds∫ t

t−h f (W2x (s)) ds

TN
 x (t)− x (t-h)∫ t

t−h x (s) ds∫ t
t−h f (W2x (s)) ds



+
2
h2


hx (t)−

∫ t
t−h x (s) ds∫ t

t−h

∫ t
s x (u)duds

h2
2 x (t)−

∫ t
t−h

∫ t
s x (u)duds∫ t

t−h

∫ t
s x (u)duds−

h2
2 x (t-h)


T

×Q1


hx (t)−

∫ t
t−h x (s) ds∫ t

t−h

∫ t
s x (u)duds

h2
2 x (t)−

∫ t
t−h

∫ t
s x (u)duds∫ t

t−h

∫ t
s x (u)duds−

h2
2 x (t-h)


= θT (t)51θ (t) , (32)

where

θ (t) =
[
xT (t) , xT (t − h) ,

∫ t

t−h
xT (s) ds,∫ t

t−h

∫ t

s
xT (u) duds,

∫ t

t−h
f T (W2x (s)) ds

]T
,

51 =
1
h

[
ẽ1 − ẽ2, ẽ3, ẽ5

]
N
[
ẽ1 − ẽ2, ẽ3, ẽ5

]T
+

2
h2

[
hẽ1 − ẽ3, ẽ4,

h2

2
ẽ1 − ẽ4, ẽ4 −

h2

2
ẽ2

]

×Q1

[
hẽ1 − ẽ3, ẽ4,

h2

2
ẽ1 − ẽ4, ẽ4 −

h2

2
ẽ2

]T
.

We can easily know that if the following inequality holds[
ẽ1, ẽ2, ẽ3, ẽ4

]
R
[
ẽ1, ẽ2, ẽ3, ẽ4

]T
+51 > 0, (33)

then the V (t) is positive definite. Therefore, by replacing the
condition R > 0 in Theorem 1 with the inequality (33),
we obtain the following theorem.
Theorem 2: For given scalars h and hD, the general-

ized NN (1) with h(t) satisfying (2) is asymptotically
stable, if there exist positive diagonal matrices Di =
diag{d1i, · · · , dni}(i = 1, 2, 3, 4), Hi(i = 1, · · · , 10), pos-
itive symmetric matrices G1 ∈ R5n×5n, Q1 ∈ R4n×4n,
N ∈ R3n×3n,G2 ∈ R2n×2n, symmetric matricesR ∈ R4n×4n,
Pi(i = 1, 2) ∈ R3n×3n, and any matrices 9i(i = 1, 2) ∈
Rn×6n, Mi, Li ∈ R14n×4n(i = 1, 2), such that LMIs (8), (9),
and (33) are satisfied.
Remark 5: The positive definiteness of the LKF (10) is

relaxed by (33), which is different from Theorem 1. There-
fore, the positive definiteness of the LKF (10) does not
require the condition R > 0, which helps to reduce the
conservativeness of stability criterion. We will demonstrate
the improvements of Theorem 2 in numerical examples.

V. REFINEMENT OF ALLOWABLE DELAY SET
In Theorem 1 and 2, the resulting conditions are affinely
on the independent delay parameters ḣ(t) and h(t). Actually,
inspired of [40], [41], the delay parameters ḣ(t) and h(t) are
interrelated in the real world. Thus, it is necessary to introduce
a refinement allowable delay set. In Theorem 1, 2, and other
stability criteria of previous literature, the general formula of
the delay set for (2) is as follows:(

h(t), ḣ(t)
)
∈ H1 := [0, h]× (−∞, hD] , (34)

where H1 is a polytope with four vertices. Let d > 0 be a
scalar, then H1 can be represented as

H1 = lim
d→∞

Co {(0,−d) , (0, hD) , (h,−d) , (h, hD)} . (35)

If hD > 0, it should be pointed out that the vertices (h, hD)
and (0,−d) in H1 are unreasonable because ḣ(t) cannot
be positive when h(t) = h and negative when h(t) = 0.
The details can be found in [40] and [41]. Considering these
cases, the allowable delay setH1 can be revised as

Ĥ1 = lim
d→∞

Co {(0, 0) , (0, hD) , (h,−d) , (h, 0)} . (36)

The delay set Ĥ1 provides a more realistic presentation of
time delay function which can enlarges maximum delay
bounds. Hence, the following theorem for the delay set Ĥ1
is derived.
Theorem 3: For given scalars h and hD, the general-

ized NN (1) with
(
h (t) , ḣ (t)

)
∈ Ĥ1 is asymptotically

stable, if there exist positive diagonal matrices Di =
diag{d1i, · · · , dni}(i = 1, 2, 3, 4), Hi(i = 1, · · · , 10), pos-
itive symmetric matrices G1 ∈ R5n×5n, Q1 ∈ R4n×4n,
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N ∈ R3n×3n,G2 ∈ R2n×2n, symmetric matricesR ∈ R4n×4n,
Pi(i = 1, 2) ∈ R3n×3n, and any matrices 9i(i = 1, 2) ∈
Rn×6n, Mi, Li ∈ R14n×4n(i = 1, 2) satisfying (33) and the
following LMIs: (B⊥)T 8̃h(B⊥) (B⊥)T (hetotL1) (B⊥)T (hetotM1)

∗ −hQaug1 0
∗ ∗ −3hQaug1

< 0,

(37) (B⊥)T80(B⊥) (B⊥)T (hetotL2) (B⊥)T (hetotM2)
∗ −hQaug2 0
∗ ∗ −3hQaug2

< 0,

(38)

where 8̃h = 8[h(t)=h]−hD5̃1,80 = 8[h(t)=0], B, etot ,Qaug1
and Qaug2 are defined in (7).
Proof: Based on (10)-(25), we give an estimation of V̇ (t)

as follows:

V̇ (t) ≤ ξT (t)
{
8tot[h(t)] +

(
ḣ (t)− hD

)
5̃1

}
ξ (t), (39)

where

5̃1 = [e2, e1 − e2, e6, e2 − e3, e7]

×G1[e2, e1 − e2, e6, e2 − e3, e7]T

× + [e2, e13]G2[e2, e13]T ,

and 8tot[h(t)] is defined in (7).
From (39), a stability condition for the generalized NN (1)

with (h(t), ˙h(t)) ∈ Ĥ1 is given as

(B⊥)T
{
8tot[h(t)=0] − hD5̃1

}
(B⊥) < 0, (40)

(B⊥)T8tot[h(t)=0](B⊥) < 0, (41)

lim
d→∞

(B⊥)T
{
8tot[h(t)=h] − (d + hD) hD5̃1

}
(B⊥) < 0,

(42)

(B⊥)T
{
8tot[h(t)=h] − hD5̃1

}
(B⊥) < 0. (43)

If hD > 0 and 5̃1 > 0, we can clearly see that if (41) holds,
so is (40); and if (43) holds, so is (42). Based on Schur com-
plement, the inequality (41) and (43) are equivalent to (37)
and (38), respectively. Therefore, if inequalities (37), (38),
and (33) hold, the generalized NN (1) with

(
h (t) , ḣ (t)

)
∈

Ĥ1 is asymptotically stable, which allows concluding the
proof. �
Remark 6: In most of previous literature, stability condi-

tions of DNNs are affinely on independent delay informations
h(t) and ḣ(t). Actually, the delay parameters h(t) and ḣ(t)
are interrelated in the real world. The allowable of delay
set (36) which provides a more realistic presentation of the
time-varying delay function is more reasonable than (35).
Compared to Theorem 2, Theorem 3 replaces condition (8)
with the condition (37) by refining the allowable delay set.
As a result, Theorem 3 relaxes the stability conditions of
Theorem 1 and 2. The effectiveness of refining the allowable
delay set will be demonstrated in numerical examples.
Remark 7: In the case that ḣ(t) is unknown, the Theo-

rems 1, 2, and 3 are still feasible by setting Gi = 0(i = 1, 2).

TABLE 1. Maximum delay bounds h for different hD (Example 1).

VI. NUMERICAL EXAMPLES
In this part, we give four numerical examples for verifying
the improvements and effectiveness of the proposed stability
criteria.
Example 1: we consider the generalized NN (1), where

A =
[
2 0
0 2

]
, W0 =

[
1 1
−1 −1

]
,

W1 =

[
0.88 1
1 1

]
, W2 =

[
1 0
0 1

]
,

Kp = diag{0.4, 0.8}, Km = diag{0, 0}.

Under different hD, the maximum delay bounds derived
by Theorems 1-3 are shown in Table 1. Also, the results
of [15], [18], [22], [31], [41], [46], and [47] are included
in Table 1. It is clearly confirmed that our methods are sig-
nificantly improved, compared with the methods provided in
previous literature, which shows advantage of the novel LKF
and proposed zero equalities. Furthermore, compared with
Theorem 1, Theorem 2 increases maximum delay bounds of
stability condition by relaxing the positiveness of nonintegral
quadratic term. Lastly, we can clearly see that the maximum
bounds derived by Theorem 3 are obviously larger than those
derived by Theorems 1 and 2. This means that the refined
allowable delay set Ĥ1 is very useful to reduce the conser-
vatism.
Example 2: we consider the generalized NN (1), where

A =
[
1.5 0
0 0.7

]
, W0 =

[
0.0503 0.0454
0.0987 0.2075

]
,

W1 =

[
0.2381 0.9320
0.0388 0.5062

]
, W2 =

[
1 0
0 1

]
,

Km = diag{0, 0}, Kp = diag{0.3, 0.8}.

when hD is 0.4, 0.45, 0.5, and 0.55, the comparison
results on maximum delay bounds are listed in Table 2.
One can see that our results are superior to those obtained
in [17], [18], [30], [31], [35], and [47]. This means that the
proposed methods are efficient in reducing the conservative-
ness of stability criteria.
Example 3: we consider the generalized NN (1), where

A =

 7.3458 0 0
0 6.9987 0
0 0 5.5949

 , W0 = 0, W1 = I ,
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TABLE 2. Maximum delay bounds h for different hD (Example 2).

TABLE 3. Maximum delay bounds h for different hD (Example 3).

W2 =

 13.6014 −2.9616 −0.6936
7.4736 21.6810 3.2100
0.7920 −2.6334 −20.1300

 ,
Km = diag{0, 0, 0}, Kp = diag{0.3680, 0.1795, 0.2867}.

This example is frequently used to confirm effectiveness
of the stability conditions in [19], [22], [30], [31], and [48].
In Table 3, for various hD, we show the corresponding
results obtained by our methods and the results of other
literature. Obviously, our methods are better than those
in [19], [22], [30], [31], and [48]. When the delay set H1
is refined as Ĥ1, the corresponding result outperforms the
results of Theorem 1 and 2. This means that the delay set Ĥ1
is very helpful to reduce the conservativeness.
Example 4: we consider the generalized NN (1), where

A =


1.2769 0 0 0

0 0.6231 0 0
0 0 0.9230 0
0 0 0 0.4480

 ,

W0 =


−0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394 −0.0860 −0.3824 −0.5785
−0.1311 0.3253 −0.9534 −0.5015

 ,

W1 =


0.8674 −1.2405 −0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428
−2.0413 0.5179 1.1734 −0.2775

 ,
W2 = diag{1, 1, 1, 1},

Km = diag{0, 0, 0, 0},

Kp = diag{0.1137, 0.1279, 0.7994, 0.2368}.

when hD is 0.1, 0.5, and 0.9, the comparison results
on maximum delay bounds are listed in Table 4.

TABLE 4. Maximum delay bounds h for different hD (Example 4).

FIGURE 1. State trajectories of the generalized NN (1) in Example 1.

We can see that our results outperform those obtained
in [15], [17], [17], [18], [22], and [30], which indicates the
improvements of the proposed criteria.

Finally, by setting x(0) = [2,−3]T , f (x(t)) =

[0.4tanh(x1(t)), 0.8tanh(x2(t))]T , h(t) = (20.4357/2)(1 +
sin(1.6t/20.4357)), the state responses of the generalized NN
(1) described in Example 1 is shown in Figure 1. We clearly
see that the generalized NN (1) described in Example 1 is
asymptotic stability by the resulting responses.

VII. CONCLUSION
The stability analysis of generalized NNs with time-varying
delays is revisited in this paper. First, we provide an improved
delay-dependent stability criterion of generalized NNs in
Theorem 1 by constructing a novel augmented LKF. Based on
Theorem 1, we present a less conservative delay-dependent
stability criterion in Theorem 2 by relaxing the positiveness
of the nonintegral quadratic term. Then, a further improved
delay-dependent stability criterion is derived in Theorem 3 by
refining allowable delay set. Finally, four numerical examples
are utilized to clearly demonstrate improvements.

In the future, we will further study the state estimation
problems [49], [50], exponential stability analysis, and pas-
sivity analysis [51] for various NNs by using our methods.
Besides, the methods proposed in the paper can be extended
to analyze the control synthesis problem for many indus-
trial control systems, such as offshore platforms [52], linear
motors [53] and other nonlinear systems.
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