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ABSTRACT In the data backup system, to reduce the bandwidth and processing time overhead caused by
full backup technology during data synchronization between backups and source data, incremental backup
technology is emerging as the focus of academic and industrial research. It is key but poorly-solved to find
the incremental data between backups and source data for incremental backup technology. To find out the
incremental data during the backup process, here, in this paper, we propose a novel content-defined chunking
algorithm. The source data and backup data are chunked into some small chunks in the same way with the
variable length. Then, by comparing whether a chunk of source data is different from any of the chunks
in backup data, we can evaluate whether the chunk of source data is incremental data. By experiments,
the chunking algorithm in this paper is compared to other ones which are the classical or state-of-the-art
algorithms. The experimental results show that the incremental data found by this algorithm can be reduced
by 13%-34% compared to the others with the same chunk throughput.

INDEX TERMS Data synchronization, chunking algorithm, data backup, increment.

I. INTRODUCTION

Chunking algorithm can avoid dealing with a whole large
file by chunking the large file into several small chunks and
dealing with a small chunk each time, so as to achieve the
desired purpose [1], [2].

A. CHUNKING ALGORITHMS CLASSIFICATION

According to whether the length of the chunks is fixed,
the chunking algorithm can be classified into fixed-length
chunking algorithm and content-defined chunking algo-
rithm(CDC) [3]. Fixed-length chunking, as the name implies,
is to divide the file into chunks with fixed length. The advan-
tage of fixed-length chunking algorithm is that the process
is simple and easy to understand. The speed of chunking is
very fast. It has higher chunk throughput. Its disadvantage
is quite obvious. Because the length of all chunks is fixed
in the process of chunking, if a byte in the file is shifted,
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it will cause all the subsequent chunks to be different from
the original chunks, which means the ability to resist byte
shifting is poor [4]. For content-defined chunking, the length
of the chunks is not fixed, but based on the content of the file.
While reading files sequentially in the form of binary stream,
a cut point is formed only when a data interval read meets
the preset conditions here. The resistance to byte shifting of
content-defined chunking algorithms is improved greatly [5],
but it also makes the process difficult to understand and
the chunk throughput will decrease accordingly. Meanwhile,
the big chunk variance will become a disadvantage in specific
applications.

B. APPLICATION OF CHUNKING ALGORITHMS

Chunking algorithms have been widely used in many fields.
In the field of network transmission, data needs to be

divided into several chunks by Chunking algorithms to avoid

the situation that one single file is too big to transmit, and then

deliver the chunks one by one [6]-[10].

VOLUME 7, 2019


https://orcid.org/0000-0003-4515-2537

C. Zhang et al.: MIl: A Novel Content Defined Chunking Algorithm for Finding Incremental Data in Data Synchronization

IEEE Access

In the data storage system, because of the large amount
of duplicate data, the utilization of storage space is sig-
nificantly reduced. Data deduplication technology, using
chunking algorithms, reduces the storage of duplicate data
and improves the utilization of storage space by dividing
data into small chunks and storing the same chunks only
once [11]-[14].

In the data synchronization system, the key and difficulty
of incremental synchronization are how to find the incre-
mental data between two files. With the help of chunking
algorithms, two files are chunked into small chunks with
the same method. Comparing the hash values of the chunks
between the two files, the unequal chunks(i.e. incremental
data) are found [15]-[17].

In the cache system, in order to get the highest cache hit
rate, it is always necessary to save as much data as possible
in the cache. Because only a small part of the big files is
often used in most cases, it is also necessary to use chunking
algorithms to chunk the files, and extract the chunks with high
access rate and put them into the cache [18]-[22].

In the field of text recognition, when parsing natural
language texts, a sentence needs to be chunked to extract
the subject, predicate, object and other key phrases in it,
and then get the true meaning of the sentence by grammar
analysis [23]-[27].

C. INCREMENTAL SYNCHRONIZATION

Data synchronization is the vital part in backup systems
and multi-server platforms [28]. Incremental synchronization
reduces a lot of bandwidth overhead by finding incremental
data and only synchronizing these data, which has attracted
much attention in academia and industry. The application
of incremental synchronization mainly includes relational
database system and cloud disk system.

1) RELATIONAL DATABASE SYSTEM

When synchronizing incremental data are stored in database,
the methods of discovering incremental data include database
triggers [29], log-based document parsing [30], program-
ming control and so on.

In database triggers mode, the use of triggers will greatly
increase the complexity of database structure. In the case of
huge amount of data tables, in order to ensure the discovery
of all the incremental data, many triggers have to be added,
which makes the structure of the database extremely complex
and poses a great challenge to database maintenance. Once
some triggers are omitted in maintenance, the whole incre-
mental synchronization system will not work.

The method of log-based document parsing finds the
incremental data by parsing the log document with the
instructions given by the database company. Since some
databases(e.g.,oracle), do not publish the format of log docu-
ments, this method is not universal.

For programming control, the incremental synchronization
is realized by completely recording all the operations on the
database in the code, and then applying all the operations to

VOLUME 7, 2019

the target server that needs to be synchronized. This approach
is very laborious and time-consuming for programmers, and a
small programming error can make the whole system broken.

2) CLOUD DISK SYSTEM

In the Cloud Disk System, the incremental synchronization
of files is always used in distributed systems [28], [31]-[33].
By monitoring the changed directories and files, only the
changed files and directories are dealt with when synchro-
nizing. Suppose the source file is named as fileSrc and the
target file is named as fileDes. First of all, fileDes is divided
into chunks according to the fixed length; secondly, both
the strength and weakness hash values are calculated for
every chunk; thirdly the checksum, which is composed of the
hash values, is transmitted to the source file server; then the
source file server calculates both the strength and weakness
hash values of the data in a sliding window with the same
fixed length; then compare the hash values with the ones
in the checksum, find out the changed chunks, transfer the
changed chunks to the target file server, save the changed
chunks in the target file server and finally realize incremental
synchronization [16].

Il. BACKGROUND AND MOTIVATION
This section discusses the background of CDC algorithms,
their limitations, and motivations of our work.

A. BACKGROUND

The research of data chunking algorithms is mainly focused
on content-defined chunking algorithm in academia, but any-
way there are some researches on improving the performance
of fixed length chunking algorithm such as DSFSC [34],
which implements the chunking process from dual side of
data at the same time.

As to CDC, the most classical algorithm is based on Rabin
fingerprint chunking algorithm, which was proposed by MO
Rabin [35]. Since the match rate of Rabin fingerprint is prob-
ably low, which may affect the stability of chunk size, Raju
et al. proposed a algorithm to reduce Rabin’s chunk-size
variance with two divisors instead of one [36]. To speed the
chunking process up, Won et al. developed a multithreaded
variable size chunking method, which exploits the multicore
architecture of the modern microprocessors [37]. Another
multithread content based file chunking system is given by
Tang et al. in CPU-GPUPU heterogeneous architecture [38].
To improve the parallel performance, a two-stage paral-
lel CDC is proposed by Ni et al. to spit up the parallel
chunking process into two stages [39]. To locate the changed
data precisely, Romanski et al. proposed a algorithm which
de-duplicates with big chunks as well as with their sub-
chunks using a de-duplication context containing subchunk-
to-container-chunk mappings [40].

Currently, the latest data chunking algorithms in academic
research mainly include LMC(Local Maximum Chunking),
AE(Asymmetric Extremum) and RAM(Rapid Asymmetric
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Maximum) algorithms. The following contents give a brief
description of these four algorithms respectively.

1) RABIN CHUNKING ALGORITHM

The Rabin Chunking algorithm reads the data as a byte
stream and calculates the Rabin fingerprint value of the data
falling into a fixed-length sliding window. By comparing the
fingerprint value to the preset fingerprint value, we can form
a cut point here if these two values are the same. Otherwise,
the sliding window is moved one byte forward to continue the
calculation and comparison until a cut point is found.

2) LMC CHUNKING ALGORITHM

LMC also reads the data as a byte stream. The difference is
that LMC algorithm sets up two fixed-length windows and
there is a one-byte-length interval between the two windows.
Two windows together with the byte of this interval form a
large sliding window. By comparing the byte value of this
interval to all byte values in the two fixed-length windows,
a cut point is formed here if the byte value is bigger than
or equal to all byte values in the two windows. Otherwise,
the large sliding window will be moved one byte forward and
continue the previous process until a cut point is found [41].

3) AE CHUNKING ALGORITHM

AE algorithm also reads the data as a byte stream. This
algorithm consists of a larger sliding window formed of
a fixed-length window and the byte next to the window.
By comparing the byte value of the last byte in the sliding
window to the byte values of all bytes in the fixed-length
window, a cut point is formed here if the byte value is bigger
than or equal to the others. Otherwise, the sliding window
is moved one byte forward to continue the previous process
until a cut point is found [42].

4) RAM CHUNKING ALGORITHM

RAM(Rapid Asymmetric Maximum) algorithm reads the
data as a byte stream as well, but it does not set the sliding
window at the end of the chunk. It sets a fixed window instead
at the front of the chunk, and then sets a sliding window with
only one byte, which is next to the fixed window. By com-
paring the byte value in the sliding window to all the byte
values in the fixed window, a cut point is formed here if the
byte value is bigger than or equal to the others. Otherwise,
the sliding window is moved one byte forward to continue
the previous process until a cut point is found [43].

B. CHALLENGES AND MOTIVATION
CDC offers more benefits than fixed-length chunking. There

are five challenges, which are also the performance indexes,
of the CDC algorithms offered by Zhang et al. [42].

1) Content dependence. The chunking algorithm must be
realized to decide the cut point based on the con-
tent, which makes it resistant against the byte shifting
problem [44].
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2) Low chunk size variance. Because the output chunks
of the chunking algorithm will be stored in disk in the
process of deduplication, the high size variance will
affect the efficiency of storage and it also affects the
performance of deduplication [5].

3) Ability to eliminate low entropy strings. Low entropy
strings are strings which consist of repetitive bytes or
patterns. This challenge means it is preferable for the
algorithm to be able to eliminate the redundancy within
this kind of string.

4) High throughput [45]. The algorithm is asked to receive
a high throughput of chunks.

5) Performance. When you use a CDC algorithm, you
always have a purpose. This challenge is to make sure
you can accomplish the target of your purpose as well
as possible.

Existing data chunking algorithms are mostly used in data
deduplication. Since the chunks obtained by the chunking
algorithm needs to be stored in the physical disk [46]-[48],
the chunk length needs to be considered to improve the stor-
age utilization of the disk as much as possible [49]. To achieve
the stability of the chunk length, partial ability of resistance
against the byte shifting needs to be sacrificed.

However, the ability of resistance against the byte shifting
is more important than the stability of the chunk length when
chunking algorithms are used to find incremental data. In the
incremental backup system, the chunks obtained by the data
chunking algorithm are only used to find the incremental
data [50], [51] and will not be stored in the physical disk,
so the requirement of the stability of the chunk length is not
particularly necessary.

To improve the performance of finding less incremental
data between two files, chunking algorithms must have a
strong resistance against the byte shifting. Only in this way,
the changed blocks will affect the same blocks minimally
during the chunking.

By sacrificing the stability of the chunk length, we propose
a novel chunking algorithm to improve the resistance against
byte shifting, which will help to find less incremental data in
incremental backup system.

Ill. MINIMAL INCREMENTAL INTERVAL

We propose a novel content-defined chunking algorithm Min-
imal Incremental Interval(MII), which is applied in incremen-
tal synchronization between files.

A. ALGORITHM PROCESS

In MII algorithm, the file, named fileSrc, to be chunked is
read as a byte stream. During the reading process, the byte
value named valueCur of the current read byte is com-
pared with the byte value named valuePre of the previous
read byte. If valueCur is bigger than valuePre, the tuple
< valueCur,valuePre > is recorded as satisfying relation
R. If the tuple < value2, valuel > consisting of any two
adjacent byte values valuel (the previous byte value) and
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Value2 (the latter byte value) in a data interval consisting of
byte values continuously read from fileSrc satisfies the rela-
tion R, the data interval is marked as an incremental interval
named L, and the number of byte values in the data interval
is marked as the length of the incremental interval named
len. If the length len of an incremental interval reaches the
preset threshold, a cut point is formed here. Read the whole
file as a byte stream and find all the cut points that satisfy
the preset condition. The chunking process of the algorithm
is given in Fig. 1. The pseudo code of the MII algorithm is
given in Fig. 2.

. . . Sliding
Unfixed window and its .
. window and
length can be arbitrary

its length Data remaining

numerical value oW
is W

|
Arbitrary numerical value W

Sliding window

FIGURE 1. The algorithm process of Mil.

Algorithm 1: Algorithm for MII chunking
Input: input file,file; length of incremental interval, W,
Output: cut point,l;
function MIIChunking(file,w)
i=1
increment=0
while(byte=readByte(file))
if byte>previous.value then
increment=increment+1
if increment==W then
return i
end if
else
increment=0
end if
previous.value=byte
i=it+1
end while
end function

FIGURE 2. The pseudo code of the MII algorithm.

B. HOW TO PRESET THE THRESHOLD
The only threshold that needs to be preset is the length of the
incremental interval.

When a file is read as a byte stream, it is random whether
the binary group < valuel, value2 > consisting of the byte
values of two adjacent bytes satisfies the relation R mentioned
in the previous section. If the threshold is set to valueLen,
the probability that the length /en of incremental interval is
greater than or equal to valueLen is as follow.

_ walueLen ; pvalueLen
p=Cpse /A6
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In order to find an incremental interval that satisfies the con-
dition, the number of bytes that need to be read continuously
obeys the geometric distribution G(p) approximately.

The difference of the threshold will affect the size of data
chunks, so the threshold can be determined according to the
actual demand for the size of chunks. When the threshold is
big, the average size of the obtained chunks will also be big.
When the threshold is small, the average size of the resulting
chunks will be small as well. After a lot of experiments, for
most documents, the threshold value can be set as 5, which
can make the size of data chunks in an acceptable range and
the average size of data chunks is about 700.

C. CHUNK SIZES VARIANCE
As described above, the length of data chunks obeys the
geometric distribution G(p) approximately, which is to say
that the variance of the size of chunks is kind of large and
the number of small chunks is obviously much bigger than
the number of large ones. Although the variance of chunk
length will directly affect the efficiency of storage when the
chunking algorithm is used in data deduplication, it will not
reduce the applicability of the chunking algorithm when the
chunking algorithm is only used to find incremental data and
the chunks obtained are not stored directly. At the same time,
the algorithm can avoid the generation of overly long chunks
by adding an extra condition on the cut point conditions.
The comparison of the size variance of chunks between
MII algorithm and other algorithms will be listed in the
following experimental section.

D. RESISTANCE TO BYTE SHIFTING

Suppose there is a segment of data in the byte stream as shown
in the Fig. 3, where intervals L1, L2 and L3 are incremental
intervals satisfying the preset conditions of the MII algorithm.
When a byte shifting occurs outside the incremental interval
satisfying the preset conditions, presuming it occurs in the
interval L4, then interval L1 and interval L2 still satisfy the
preset conditions of the algorithm. If the byte shifting causes
anew interval L6 in L4, which satisfies the preset conditions
of the algorithm, as shown in the Fig. 4, number of chunks
will changes from one to two between L1 and L2, and the
chunks before L1 and after L2 will not be affected. If the byte
shifting does not produce a new interval that meets the preset
conditions, then L4 and L2 can still form a chunk, and the
rest of the chunks will not be affected. That is, when a byte
shifting occurs outside a incremental interval, which satisfies
the preset conditions, it will only affect the chunk where the
byte shifting is located, and other chunks will not be affected.
When a byte shifting occurs inside a incremental interval,

L1 L1 L2 L5

[u ]

FIGURE 3. Step1 for the resistance to byte shifting of Mil.
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Chunki_1 Chunkl_2 chunk2

L2 L5 L3

FIGURE 4. Step2 for the resistance to byte shifting of MIl.

L1 L1 L6 L1.2

L1 L1 L2? ’ L5 L3

FIGURE 5. Step3 for the resistance to byte shifting of MII.

chunk

FIGURE 6. Situation of low entropy string.

which satisfies the preset conditions, let us assume that the
byte shifting occurs in L2, as shown in the Fig. 5. Regardless
of whether the changed L2 meets the preset conditions of the
algorithm or not because of the byte shifting, L1 and L3 do
not change and they are still the boundaries of chunks, which
means the chunks before L1 and after L3 are not affected.
That is, when a byte shifting occurs in a incremental interval,
which satisfies the preset conditions, it will only affect the
chunk where the byte shifting is located and the next chunk
adjacent to it, and other chunks will not be affected.

E. ABILITY TO ELIMINATE LOW ENTROPY STRINGS

In MII algorithm, a chunk is found by finding the incremental
interval whose length reaches the preset value, so even if there
is a low entropy string, there will be numerical differences
in it. As long as there are numerical differences, there will
be an incremental interval, which can be used to reach the
conditions of MII algorithm and implement MII algorithm
as normal. In a more extreme case, it is consumed that there
is a string with equal byte values in the low entropy string
as shown in the Fig. 6. L1 and L5 are the chunks satisfying
the preset conditions of the MII algorithm. L4 is the string
with equal byte values and L2, L4 are normal intervals. In this
case, the chunk will never be changed unless one or more
intervals of L1, L2, .3, L4 and LS5 are updated. According to
the steady of the chunk, L3 will always be eliminated with
the total chunk.

IV. TIME AND SPACE COMPLEXITY
In this section, we discuss the time and space complexity
of the MII algorithm and other algorithms mentioned in our

paper.

A. PSEUDO CODE AND CHUNKING PROCESS OF
ALGORITHM

Since the pseudo code and chunking process of MII have
been illustrated in section III, this section shows the pseudo
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Algorithm 5: Algorithm for Rabin chunking
Input: input file,file; default value,Value;length of sliding window,W;
Output: cut point,I;
function RabinChunking(file,Value, W)
i=1
index=0
while(byte=readByte(file))
array[index%W+1]=byte
if array.length>=W then
if hashValue(array,index, W)==Value then
return i
end if
else
continue
end if
=i+l
end while
end function

FIGURE 7. The pseudo code of the Rabin algorithm.

- . . Sliding
Unfixed window and its .
1 | L bi window and
ength can be arbitrary -
¢ : its length Data remaining

numerical value W
is W

Arbitrary numerical value W
Sliding window

FIGURE 8. The algorithm process of Rabin.

Algorithm 4: Algorithm for LMC chunking
Input: input file,file; size of fixed window, W
Output: cut point,I;
function LMCChunking(file,W)
i=1
start=1
while(byte=readByte(file))
if byte<=max.value then
if i==max.position+w and max.position>=start+w then
start=max.position+1
return max.position
end if
else
max.value=byte
max.position=i
end if
i=it+l
end while
end function

FIGURE 9. The pseudo code of the LMC algorithm.

codes and chunking process diagrams of other algorithms.
The approximate processes of these algorithms can be found
in section II.

The pseudo code and chunking process of Rabin algorithm
are shown in the Fig. 7 and the Fig. 8.

The pseudo code and chunking process of LMC algorithm
are shown in the Fig. 9 and the Fig. 10.

The pseudo code and chunking process of AE algorithm
are shown in the Fig. 11 and the Fig. 12.

The pseudo code and chunking process of RAM algorithm
are shown in the Fig. 13 and the Fig. 14.

B. TIME COMPLEXITY
In Rabin algorithm, there is only one loop in the function
as shown in the Fig. 7, so the time complexity of Rabin
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Unfixed window and its Fixed window Fixed window
length can be arbitrary and its and its
length is W

numerical value length is W

Max value

Arbitrary numerical value W 1 W

FIGURE 10. The algorithm process of LMC.

Algorithm 3: Algorithm for AE chunking
Input: input file,file; size of fixed window,W;
Qutput: cut point,l;
function AEChunking(file,W)
i=1
while(byte=readByte(file))
if byte<=max.value then
if i==max.position+w then
return i
end if
else
max.value=byte
max.position=i
end if
=i+l
end while
end function

FIGURE 11. The pseudo code of the AE algorithm.

Unfixed window and its Fixed window
length can be arbitrary and its
numerical value length is W .
Data remaining
Max value | T
Arbitrary numerical value W 1

FIGURE 12. The algorithm process of AE.

algorithm is O(n). Since the operations include two additions,
one modular reduction, two assignments, one comparison,
and one hash in the loop, the time of each loop can be defined
as 1ADD + 2M + 2ASS + 1C + 1H.

In LMC algorithm, there is also only one loop in the
function as we can see in the Fig. 9, so the time complexity
of LMC algorithm is O(n). Since the operations include four
additions, two assignments and three comparisons in the loop
at most, the time of each loop can be defined as 4ADD +
2ASS +3C.

In AE algorithm, there is only one loop as well in the
function as we can see in the Fig. 11, so the time complexity
of AE algorithm is O(n). Since the operations include two
additions, one assignment and two comparisons in the loop
at most, the time of each loop can be defined as 2ADD +
1ASS +2C.
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Algorithm 2: Algorithm for RAM chunking
Input: input file,file; size of fixed window,W;
Output: cut point,;
function RAMChunking(file, W)
i=1
while(byte=readByte(file))
if byte>=max.value then
if i>w then
return i
end if
max.value=byte
max.position=i
end if
i=itl
end while
end function

FIGURE 13. The pseudo code of the RAM algorithm.

Fixed window Unfixed window and its
and its length can be arbitrary

length is W numerical value

Data remaining

Max value

W Arbitrary numerical value 1

FIGURE 14. The algorithm process of RAM.

TABLE 1. Time complexity contrast between algorithms.

Algorithm | Time complexity | each time(operation)

Rabin O(n) 1ADD + 2M + 2ASS +1C +1H
LMC O(n) 4ADD + 2ASS + 3C

AE O(n) 2ADD + 1ASS +2C

RAM O(n) 1ADD + 3ASS +2C

MII O(n) 2ADD + 3ASS +2C

In RAM algorithm, there is only one loop as well in the
function as we can see in the Fig. 13, so the time complexity
of RAM algorithm is O(n). Since the operations include one
addition, three assignments and two comparisons in the loop
at most, the time of each loop can be defined as 1ADD +
3ASS +2C.

In MII algorithm, there is only one loop as well in the func-
tion as we can see in the Fig. 2, so the time complexity of MII
algorithm is O(n). Since the operations include two additions,
three assignments and two comparisons in the loop at most,
the time of each loop can be defined as 2ADD + 3ASS + 2C.

The Contrast between time complexities of algorithms is
shown in Table 1.

C. SPACE COMPLEXITY

In Rabin algorithm shown in the Fig. 7, when Rabin finger-
print matching in the sliding window fails, we need to slide
one byte forward to calculate the Rabin fingerprint of the next
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TABLE 2. Space complexity contrast between algorithms.

TABLE 3. experimental environment construction.

AE o(1) one integer variable
RAM o(1) one integer variable
MII O(1) two integer variables

sliding window, which means it is necessary to record all
the byte values of the sliding window. Therefore, the space
complexity of the algorithm is O(1), specifically an array of
length W (W is the length of the sliding window).

In LMC algorithm shown in the Fig. 9, to reduce the time
overhead, it is necessary to store all byte values in the whole
sliding window with a circular queue because the maximum
value is located in the middle of two fixed windows and
make a calculation of hash every time the latest data is read.
If the maximum value is in the middle of the circular queue,
the cut point is found. Therefore, the space complexity of the
algorithm is O(1), specifically an array of length 2W 4 1 (W
is the length of the fixed window).

In AE algorithm shown in the Fig. 11, an integer variable is
required to store the maximum byte value in the data reading
process when searching for the cut point, and the value in
the sliding window does not need to be recorded during the
process because only the byte value of the latest read byte
is compared with the saved maximum byte value. Therefore,
the space complexity of the algorithm is O(1), specifically
one integer variable.

In RAM algorithm, the space complexity is the same as in
AE algorithm, which is O(1),specifically one integer variable,
because only the maximum value is needed to be stored as we
can tell from the Fig. 13.

In MII algorithm shown in the Fig. 2, an integer variable is
needed to store the current byte value in the data reading pro-
cess for comparison with the next byte value read. Whereas,
another integer variable is needed to store the length of the
current incremental interval. Therefore, the space complexity
of the algorithm is O(1), specifically two integer variables.

The Contrast between space complexities of algorithms is
shown in Table 2.

V. EXPERIMENTS

In this section, we present the experimental evaluations of
our MII algorithm in terms of multiple performance metrics.
To characterize the benefits of MII, we also compare it with
four existing CDC algorithms including Rabin, LMC, AE and
RAM.

A. EXPERIMENTAL ENVIRONMENT CONSTRUCTION

In this section, the experimental environment construction is
given in table 3.

86938

Algorithm | Time complexity | exact space used item detail
Rabin O(1) Array[W],W is the length of the slid- CPU Inter(R) Core(TM) 15-7500, 3.40GHz
ing window MEMORY DDR4, 16GB
LMC o(1) Array[2W +1],W is the length of the (0N Windows 7, x64
fixed window Programming language Java, jdk1.8
disk mechanical hard disk, 1000GB

Algorithm 6: Algorithm for Generating Files
Input: number of files,n;
Output: File,file;
function GenerateFile(n)
fori0 tonby 1 do
file=openFile(i)
for j 0 to 2000000000 by 1 do
byte=Random(0,255)
file.write(byte)
end for
end for
end function

FIGURE 15. The pseudo code of algorithm to generate the datasets.

B. DATASETS

The experimental datasets include 9 files, each of which is
2 % 10° bytes in size. All the bytes of files with byte values
in the interval [0,255] are generated by the Mersenne Twister
Pseudo-Random Number Generator [52], and then bytes with
a number of 2 % 10° are added to the file one by one to form
an experimental dataset. Nine files are generated in the same
way, which are the experimental datasets of this paper. The
pseudo code for algorithm generating experimental datasets
is given in Fig. 15.

Besides, there are six more datasets, which are generated
in the same way, only used to analysis incremental data
discovery rate. The numbers of byte values in three of them
are 1 10° and the other three are 1.5 % 10°.

The reasons why the experimental datasets are randomly
generated instead of the real data are shown as follow:

1) There are so many types of real data, it is not rep-
resentative to select only several of them and almost
impossible to choose all of them.

2) Random data can reflect the randomness and applica-
bility of the experimental datasets.

3) Since the algorithm to generate random data is given
above, it is easy to reappear the experiments.

The total number of datasets is 15. The reason why it is
15 is that several files are enough to test the performance of
chunking algorithms considering of the randomness of the
datasets. Perhaps the more files, the better, but 15 files are
fair enough.

All the datasets are shown in Table 4.
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TABLE 4. the datasets used in this paper.

name size(bytes) generating algorithm

datal 2% 109 Mersenne Twister Pseudo-Random
Number Generator

data2 2% 109 Mersenne Twister Pseudo-Random
Number Generator

data3 2% 10° Mersenne Twister Pseudo-Random
Number Generator

datad 2% 109 Mersenne Twister Pseudo-Random
Number Generator

datas 2% 109 Mersenne Twister Pseudo-Random
Number Generator

data6 2% 109 Mersenne Twister Pseudo-Random
Number Generator

data7 2% 109 Mersenne Twister Pseudo-Random
Number Generator

data8 2% 109 Mersenne Twister Pseudo-Random
Number Generator

data9 2% 10° Mersenne Twister Pseudo-Random
Number Generator

datalQ 1 %109 Mersenne Twister Pseudo-Random
Number Generator

datall 1% 10° Mersenne Twister Pseudo-Random
Number Generator

datal2 1% 109 Mersenne Twister Pseudo-Random
Number Generator

datal3 1.5 % 10° Mersenne Twister Pseudo-Random
Number Generator

datal4 1.5 % 10° Mersenne Twister Pseudo-Random
Number Generator

datal5 1.5 % 10° Mersenne Twister Pseudo-Random
Number Generator

FIGURE 16. The running time of chunking algorithms in different datasets.

C. PARAMETER SETTING

The preset condition of MII algorithm is that the incremental
interval length is 5, the fixed window length of RAM, AE and
LMC is 700, and the sliding window size of Rabin is 7.
The principle of parameter selection is that the total number
of chunks in the results of each algorithm is approximately
equal, which means the bandwidth cost is almost the same
when the chunks converted into fingerprints traverse the
network.

D. CHUNK THROUGHPUT
In this section, the running time of each chunking algorithm
is obtained by implementing every chunking algorithm on

VOLUME 7, 2019

FIGURE 17. The chunk size distributions of chunking algorithms in datal.

FIGURE 18. The chunk size distributions of chunking algorithms in data2.

the same experimental dataset, which is used to compare
the chunk throughput among these chunking algorithms. The
running time of the chunking algorithms corresponding to
each experimental dataset is shown in the Fig. 16.

The experimental results show that RAM algorithm is
the fastest, the chunking time of MII and AE algorithm
are almost at the same level at the second place, and the
chunking time of Rabin and LMC algorithm are relatively
long. That is to say, MII chunking algorithm is only behind
the RAM algorithm in speed and keeps the same level with
AE algorithm. The chunk throughput can be calculated with
a formula number of chunks/chunking time. When the num-
ber of chunks are approximately the same as mentioned in
last section, the less chunking time cost, the better chunk
throughput we got. So the chunk throughput of MII is bigger
than the average value.

E. CHUNK SIZE DISTRIBUTION

In this section, the chunk size distribution is obtained
after each chunking algorithm is implemented on the same
experimental dataset, which is used to compare the chunk
size stability of these chunking algorithms. The chunk size
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FIGURE 19. The chunk size distributions of chunking algorithms in data3.

FIGURE 20. The chunk size distributions of chunking algorithms in data4.

FIGURE 21. The chunk size distributions of chunking algorithms in data5.

distributions of the chunking algorithms corresponding to
each dataset are shown in the following figures.

The results on datal are shown in the Fig. 17. The results on
data2 are shown in the Fig. 18. The results on data3 are shown
in the Fig. 19. The results on data4 are shown in the Fig. 20.
The results on data5 are shown in the Fig. 21. The results on
data6 are shown in the Fig. 22. The results on data7 are shown
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FIGURE 22. The chunk size distributions of chunking algorithms in data6.

FIGURE 23. The chunk size distributions of chunking algorithms in data7.

FIGURE 24. The chunk size distributions of chunking algorithms in data8s.

in the Fig. 23. The results on data8 are shown in the Fig. 24.
The results on data9 are shown in the Fig. 25.

The experimental results show that the chunk size dis-
tributions of LMC, RAM and AE algorithms are relatively
stable, because these three algorithms set the fixed interval,
so the size of chunk cannot be smaller than the length of the
fixed interval. The chunk size stabilities of Rabin and MII
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FIGURE 25. The chunk size distributions of chunking algorithms in data9.

Algorithm 7: Algorithm for Inserting
Input: Input file,fileln;
Output: Output file,fileOut;
function Insert(fileln)
i=0
while(byte=readByte(fileln))
i=it+1
fileOut.write(byte)
if i%10000==0 then
for j 0 to 100 by 1 do
fileOut.write(Random(0,255))
end for
end if
end while
end function

FIGURE 26. The algorithm for random bytes insertion.

algorithms are poor, because the probability of finding a cut
point in a random string by Rabin and MII algorithms can be
roughly calculated, which makes finding the cut point similar
to implementing a Bernoulli experiment and the chunk size
distributions obtained similar to the geometric distribution.

F. INCREMENTAL DATA DISCOVERY RATE

In this section, the experimental data files are modified. For
an original experimental data file named file, three new files
named file_insert, file_delete and file_add are generated by
random bytes insertion, random bytes deletion and bytes
addition. By doing the same operation on the nine original
experimental data files, we get 45 new experimental data
files.

The algorithm for random bytes insertion is shown in the
Fig. 26. The algorithm for random bytes deletion is shown in
the Fig. 27. The algorithm for random bytes addition is shown
in the Fig. 28.

The experimental procedure of implementing each chunk-
ing algorithm to find the incremental data on the datasets is
shown as follow:
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Algorithm 8: Algorithm for Deleting
Input: Input file,fileln;
Output: Output file,fileOut;
function Delete(fileln)
i=0
=0
while(byte=readByte(fileIn))
i=i+1
if j==0 then
fileOut.write(byte)
else
j=-1
end if
if i%10000==0 then
j=100
end if
end while
end function

FIGURE 27. The algorithm for random bytes deletion.

Algorithm 9: Algorithm for Adding
Input: Input file,fileln;
Output: Output file,fileOut;
function Add(fileln)
i=0
j=0
while(byte=readByte(fileln))
fileOut.write(byte)
end while
for j 0 to 20000 by 1 do
fileOut.write(Random(0,255))
end for
end function

FIGURE 28. The algorithm for random bytes addition.

1) STEP 1
Implement the chunking algorithm on the original dataset file
and save all the chunks obtained.

2) STEP 2

Implement the chunking algorithm on the modified file
file_insert and compare each chunk chunk in the results
with the chunks saved in Step 1. If a same chunk cannot
be found, the chunk chunk is an incremental chunk. Col-
lect all the incremental chunks to get the incremental data
increment_insert in random insertion case.
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FIGURE 29. The incremental data discovery of the chunking algorithms in
random bytes insertion case.

3) STEP 3

Implement the chunking algorithm on the modified file
file_delete and compare each chunk chunk in the results
with the chunks saved in Step 1. If a same chunk cannot
be found, the chunk chunk is an incremental chunk. Col-
lect all the incremental chunks to get the incremental data
increment_delete in random deletion case.

4) STEP 4

Implement the chunking algorithm on the modified file
file_add and compare each chunk chunk in the results
with the chunks saved in Step 1. If a same chunk cannot
be found, the chunk chunk is an incremental chunk. Col-
lect all the incremental chunks to get the incremental data
increment_add in random deletion case.

5) STEP 5
Change the original dataset file to another one and repeat the
procedure from Stepl to Step 4 until all the datasets are used.

Perform the same experimental procedure on every chunk-
ing algorithm and get the increment_inserts, increment_
deletes and increment_adds of the chunking algorithms
implemented on all the datasets.

The experimental results are as follows. In random bytes
insertion case, the incremental data discovered by the chunk-
ing algorithms on each dataset is shown in Fig. 29. In random
bytes deletion case, the incremental data discovered by the
chunking algorithms on each dataset are shown in Fig. 30.
In random bytes addition case, the incremental data discov-
ered by the chunking algorithms on each dataset is shown
in Fig. 31.

The experimental results show that the incremental data
found by each algorithm are almost the same when searching
for the incremental data of the modified files formed by
random bytes addition at the end of the files. MII algorithm
and RAM algorithm have obvious advantages over other
algorithms in searching for the incremental data of modified
files formed by random bytes deletion. In searching for the
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FIGURE 30. The incremental data discovery of the chunking algorithms in
random bytes deletion case.

FIGURE 31. The incremental data discovery of the chunking algorithms in
random bytes addition case.

incremental data of modified files formed by random inser-
tion, which is the most frequent operation in reality, MII
algorithm has greater advantages than other algorithms and
reduces the incremental data by 13%~34%, because MII
algorithm has more superior performance in resistance to byte
shifting.

VI. CONCLUSION

In this study, the application fields of data chunking algo-
rithms, the algorithm processes of the classical or state of
art chunking algorithms and the shortcomings of these algo-
rithms in finding incremental data are discussed. We propose
a novel data chunking algorithm called MII, which is specif-
ically implemented to find incremental data in data synchro-
nization system. We compare and analyze the time and space
complexity of the mentioned algorithms. We discuss the
chunk throughput, chunk size variance and incremental data
discovery rate of the mentioned algorithms. The experimental
results show that the chunk throughput of the MII is proved
at the second place among all the chunking algorithms, it has
obvious advantage in the incremental data discovery rate
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although the performance on chunk size variance is a little
bad.

The main advantage of the MII algorithm is that a strong
resistance against the byte shifting problem is obtained by
sacrificing some stability of chunk size, which allows to
locate incremental data more accurately in data synchroniza-
tion system.
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