IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 4, 2019, accepted June 20, 2019, date of publication July 1, 2019, date of current version July 19, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2926199

Noise Detection in Electrocardiogram Signals
for Intensive Care Unit Patients

SYED KHAIRUL BASHAR!, (Graduate Student Member, IEEE), ERIC DING2, ALLAN J. WALKEY3,
DAVID D. MCMANUS?, AND KI H. CHON"'!, (Senior Member, IEEE)

! Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
2Division of Cardiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
3Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA

Corresponding author: Ki H. Chon (ki.chon@uconn.edu)

This work was supported by the NIH under Grant RO1 HL136660.

ABSTRACT Long-term electrocardiogram (ECG) signals recorded in an intensive care unit (ICU) are often
corrupted by severe motion and noise artifacts (MNA), which may lead to many false alarms, including
inaccurate detection of atrial fibrillation (AF). We developed an automated method to detect MNA from
ECG recordings in the medical information mart for intensive care (MIMIC) III database. Since AF detection
is often based on identification of irregular RR intervals derived from the QRS complexes, the main design
focus of our MNA detection algorithm was to identify the corrupted QRS complexes of the ECG signals. The
MNA in the MIMIC III database contains not only motion-induced noise but also a plethora of non-ECG
waveforms, which must also be automatically identified. Our algorithm is designed to first discriminate
between the ECG and non-ECG waveforms using both time and spectral-domain properties. For the segments
of data containing ECG waveforms, a time—frequency spectrum and its subband decomposition approach
were used to identify MNA and high-frequency noise ECG segments, respectively. The algorithm was tested
on data from 35 subjects in normal sinus thythm and 25 AF subjects. The proposed method is shown to
accurately discriminate between segments that contained real ECG waveforms and those that did not, even
though the latter were numerous in some subjects. In addition, we found a significant reduction (>94%)
in false positive detection of AF in normal subjects when our MNA detection algorithm was used. Without

using it, we inaccurately detected AF due to the MNA.

INDEX TERMS Atrial fibrillation, artifacts, electrocardiogram, false alarm, ICU, noise, peak, variance.

I. INTRODUCTION

An intensive care unit (ICU) uses Food and Drug
Administration-approved devices for monitoring various
physiological signals of patients in critical condition [1].
Among the physiological signals recorded in the ICU, elec-
trocardiogram (ECG) is one of the most important vital
sign alerts, but it is also widely used for the diagnosis of
cardiovascular diseases and associated arrhythmias [2]. In an
ICU, the ECG is often severely corrupted by noise and motion
artifacts (MNA) and may drop data due to poor electrode
contact with the skin. Both can reduce the diagnosis accuracy.
As a result, automated identification of poor-quality ECG
signals is of paramount importance, especially when signal
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processing algorithms are used to screen or monitor cardiac
conditions [3].

The dynamics of MNA in ECG signals can occur within
the frequency band of the cardiac electrical activity, which
makes the separation of true ECG signal from the undesired
dynamics even more challenging [4]. Some common sources
of ECG noise include, among other things, a bad electrode
contact, motion artifacts, electromyography (EMG) noise,
and baseline wander [5], [6].

Different approaches have been developed to detect and
remove MNA from ECG signals. Some of the popular MNA
removal algorithms include linear filtering [7], adaptive filter-
ing [8], and Bayesian filtering [9]. In [10], a signal quality
index (SQI) based on R-peak detection and template match-
ing to assess reliable heart rate (HR) is presented for wearable
devices. A study has used statistical moments, QRS peak
detection-based parameters and a support vector machine to
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develop SQI [3]. An automatic ECG quality scoring method
based on QRS detection and quantifying powerline noise,
baseline wander, and muscular noise is described in [11].
In [12], ECG quality is estimated by exploiting the structure
of the cross-covariance matrix among different leads and
machine learning classifiers. In [13], PQRST complexes
are segmented and averaged to form an estimate of the true
PQRST complex, which is subsequently used to calculate
noise power in an analysis window so that ECG signal quality
can be evaluated. A threshold-based detection system using
six parallel filters for some of the most common noise types is
proposed in [14]. In [15], an ECG signal quality assessment
method based on QRS detection, RR interval features, and
a thresholding rule is used. A fusion algorithm consisting of
ECG, photoplethysmogram (PPG), and arterial blood pres-
sure (ABP)-based features to obtain SQI is described in [16].
Automatic MNA detection for Holter ECG recordings using
the empirical mode decomposition (EMD) and statistical
features is presented in [17]. Most recently, a complete
ensemble EMD-based short-term temporal feature extraction
and decision-rule algorithm is presented in [18] to detect and
classify ECG noises.

Most methods are based on QRS complex detectors from
which reliable and accurate R-peak detection can be obtained.
However, this approach has its own limitations when there
are changes in QRS morphology, tall T waves, and irregular
RR intervals [18]. Machine learning-based quality assess-
ment algorithms require a large collection of ECG data with
various beat patterns [3]. Some other methods need other
physiological signals, such as a photoplethysmogram (PPG)
or arterial blood pressure (ABP), along with ECG. Moreover,
most algorithms have been tested only on short-term data
for telemedicine applications or to minimize false alarms in
the ICU (Computing in Cardiology Challenges in 2011 and
2015, respectively). However, MNA detection from continu-
ous long-term ICU ECG recordings has not been extensively
evaluated.

In this study, a novel automated MNA detection method
is described from long term ECG recordings taken from
the Medical Information Mart for Intensive Care (MIMIC)
IIT database. To the best of our knowledge, this is one of
the first studies to develop an algorithm for automated noise
detection using the MIMIC III database, which contains
longitudinal ECG waveform data recorded from patients
hospitalized in an ICU setting. One major application of
our MNA detection algorithm is to improve atrial fibrilla-
tion (AF) detection accuracy in the MIMIC III database.
Hence, the proposed algorithm was designed to detect non-
ECG waveforms and any QRS complexes of the ECG that had
been obscured by contamination with MNA. Our two-phase
approach includes the detection of ECG waveforms in a
given segment followed by the detection of MNA in those
ECG-containing data segments. The first phase, identifying
ECG waveforms, was necessary because many data segments
of the MIMIC III database contain non-ECG waveforms.
Finally, the algorithm’s performance for detection of both
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the non-ECG shaped signal and MNA was analyzed for both
normal sinus rhythm (NSR) and AF subjects.

Il. DATASET DESCRIPTION

The Medical Information Mart for Intensive Care (MIMIC)
IIT dataset, collected from PhysioNet [19], was used in this
study. This is a large and publicly available database com-
prising de-identified health-related data from approximately
sixty thousand patients who stayed in critical care units of
the Beth Israel Deaconess Medical Center between 2001 and
2012 [20]. The MIMIC III database includes a variety of
information such as patient demographics, vital sign mea-
surements, laboratory test results, medications, nurse and
physician notes, imaging reports, and out-of-hospital mortal-
ity, which are some of the notable parameters among many
others. MIMIC 1II links continuous ECG and PPG wave-
forms to a wealth of time-varying clinical and hemodynamic
data. For our MNA detection study, ECG waveforms from
N = 60 subjects (35 NSR and 25 AF subjects) were used
for the evaluation of our algorithm. ECG signals from AF
subjects were annotated by cardiologists from the University
of Massachusetts Medical School. The duration of the ECG
recordings varied from 6 hours to 70 hours. The sampling
frequency of the ECG signals was 125 Hz and the measuring
units were millivolts (mV).

lll. METHODS

The proposed ECG MNA detection method consists of two
phases: (a) discrimination between segments that contain
ECG waveforms and those that do not (b) motion and noise
artifact detection from those data segments containing ECG
waveforms.

A. DETECTION OF SEGMENTS THAT CONTAIN

ECG SIGNALS

Prior to MNA detection, the algorithm checks whether or not
the data contain ECG waveforms. The MIMIC III data were
recorded over long time periods; there were many practical
problems in collecting and handling the data including miss-
ing values, stopped recordings, bad electrode contact, and
other issues. As a result, there are many cases where no ECG
signal exists for prolonged time periods. Hence, before we
proceed with data processing, those sections without valid
ECG waveforms must be identified. For our analysis, each
recording is divided into a two minute segment. To detect
whether a given recording segment contains ECG waveforms
or not, the following steps are performed:

Step 1: As the first step, we look for the missing values
(denoted by NaN). If missing values are found, that segment
is discarded. Moreover, if the data segment contains zero val-
ues for more than 400 ms consecutively, that segment is also
discarded, as an ECG segment should not have continuous
zero value for more than a limited time [14].

Step 2: Next, we detect the segments in which ECG
waveforms either suddenly disappear (e.g. due to an elec-
trode losing contact) or in which low amplitude non-ECG
waveform data are present for the entire segment. These
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FIGURE 1. Sample recordings showing (a) abrupt signal change and
(b) low amplitude noise.
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FIGURE 2. A sample 1 minute recording exhibiting a non-ECG shaped
signal.

types of non-ECG waveforms typically have a low variance
for the two minute segment. In addition, we also look for
short term abrupt changes in the signal amplitude by cal-
culating variance for each one second of data for the entire
two minute segment. We chose one second duration for the
piecewise variance calculation of the data so that short-term
abrupt low amplitude non-ECG data can be detected; the
threshold for this piecewise variance was chosen to be 1074,
Fig. 1 shows sample recording segments containing abrupt
amplitude changes (top panel) and low amplitude non-ECG
waveforms (bottom panel). These types of segments have
been successfully identified and discarded using these two
procedural steps.

Step 3: While there exist many recordings where the signal
satisfies the previously defined two criteria, we were not able
to remove all non-ECG waveforms. Fig. 2 shows a sample
one minute segment which was not filtered out by the first
two steps yet does not exhibit ECG waveforms. To detect this
type of non-ECG waveform, the power spectral density (PSD)
of the signal is computed.

The PSD is widely used in bio-signal processing and it
indicates how power is distributed across different frequency
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FIGURE 3. (a) 1 minute ECG segment; (b) PSD of the ECG segment shown
in (a); (c) 1 minute non-ECG waveforms and (d) PSD of the signal segment
shown in 3 (c).

bands [21], [22]. The underlying assumption for using the
PSD is that ECG-shaped signals will likely show different
spectral characteristics than non-ECG shaped signal seg-
ments. Specifically, we look for 4 dominant frequency peaks
in the 0-5.0 Hz band in the PSD. For the ECG signal, the peaks
in the upper band (2.5-5.0 Hz) represent the harmonics of the
periodic QRS complexes. For the non-ECG shaped signals,
harmonic frequency components in the 2.5-5.0 Hz band are
not as prominent. Fig. 3 (a) shows a one minute sample ECG
segment and Fig. 3 (b) shows its PSD in the 0-5 Hz frequency
range where it can be seen that there are several significant
harmonic frequency peaks in the 2.5-5 Hz range. Similarly,
Fig. 3 (c) shows a sample one minute non-ECG shaped signal
segment while Fig. 3 (d) shows its PSD. For the PSD of the
non-ECG shaped signal, there are no significant harmonic
components in the 2.5-5 Hz band because most of the spectral
power is in the lower band (0-1 Hz).

If there are any spectral peaks in the 2.5-5.0 Hz range,
the segment contains the ECG signal. However, when there
are no spectral peaks in that range, we calculate the total
power of the dominant peaks in the 0-2.5 Hz range. If this
spectral power is greater than 10°, the segment is considered
to contain non-ECG signals; otherwise it represents ECG.
This threshold value was fixed for all subjects.

Fig. 4 shows a comprehensive flow diagram of the pro-
posed method to discard segments that do not contain ECG
waveforms. Once a segment is detected to contain ECG, it is
analyzed to examine if the ECG waveforms are inverted or
not. If the ECG waveforms are found to be inverted, they
are reversed. The two minute ECG segment is then subject
to the standard normalization, which consists of subtracting
the mean and making the signal of unit variance.

B. NOISE ARTIFACT DETECTION IN THE ECG SIGNAL
To detect motion and noise artifacts in the ECG signal, a time-
frequency method has been applied. In particular, we used the
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FIGURE 4. Flow chart of the ECG-containing segment detection process.

variable frequency complex demodulation (VFCDM) based
time-frequency spectral (TFS) method [22], [23].

VFCDM has been used for a variety of physiological sig-
nals [23], [24]. It not only provides one of the highest time and
frequency resolutions, but also retains the accurate amplitude
distribution of the signal.

The first step of VFCDM includes the use of the complex
demodulation (CDM) to obtain an estimate of the TFS. Let
x (t) be a narrow band sinusoidal signal with a center fre-
quency fo, instantaneous amplitude A (¢), phase @ (¢), and the
direct current component dc (t).

For a given center frequency, the instantaneous amplitude
A (t) and phase ¢ (¢) can be extracted by multiplying (1)
by e—jZJTfot .

If the modulating frequency is not fixed but varies with
time, then the signal x () can be written as:

t
x(t) =dc(t) +A(t)cos </ 2rf (r)dt + @ (t)) . )
0

Multiplying (2) by e~/ Jo 27f (D)d yields both instantaneous
amplitude, A(t), and, @ (¢):

2(6) = x (1) e—ij’ 2f (DT _ g (t) e—j/g 27f (v)dt
A (1)
2
If z(¢) is filtered with an ideal low-pass filter (LPF) with
a cut-off frequency f.< f, then the filtered signal will be
obtained with the same instantaneous amplitude A(¢) and
phase @(z).
The instantaneous frequency is given by [25]:
1 do()
f(t)—fo+2n 7 3)
In the case of variable frequency, the center frequency, fy,
is replaced with a variable frequency. By changing the center
frequency followed by using the variable frequency approach
and the low pass filtering, the signal, x(¢), can be decomposed
into the sinusoid modulations by the complex demodulation
technique, as follows:

x(t) =) di=dc(t)

At
AW oy | ; ) s dnf@de+0w) (o)

t
+ ZA,- (t) cos </ 2rfi(r)dt + 0; (l)) @)
; 0
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FIGURE 5. (a) Sample 15 second ECG segment and (b) Time-frequency
spectra of the Fig. 5 (a) signal obtained by VFCDM (log scale).

The instantaneous frequency and amplitude of d; can be
calculated using the Hilbert transform. As a result, with the
combination of the CDM and Hilbert transform, a TFS with
high resolution and accurate amplitude information can be
obtained [26].

Fig. 5 shows a TFS representation obtained by VFCDM of
a representative 15 second ECG segment. The ECG segment
contains both clean and corrupted data; the latter can be
seen after 5 seconds. From the figure it can be seen that
the TFS obtained from the clean portion of the segment
(for example: the first dashed line at ~2 seconds) contains
frequency components with low amplitudes (green color)
while the corrupted part (for example: the second dashed
line at ~6 seconds) exhibits frequency components with high
amplitudes (yellow color). In addition, the clean portion con-
tains well-defined harmonic frequency components whereas
the motion and noise artifact-contaminated portion exhibits
more disorganized harmonics with greater amplitudes than
the former. To use these characteristics of the TFS, the fre-
quency component with the maximum amplitude at each time
instance has been considered as a key motion and artifact
detection parameter and is defined as the dominant peak
amplitude (DPA) [24]. The DPA was calculated for every
time instance of the entire ECG segment. We have shown
that for the iPhone PPG signal the DPA varies often if there
are sudden spikes in the data due to motion artifacts in the
corresponding PPG signal [24]. This also holds true for the
ECG data, as DPA attains large values when there are artifacts
present.

In Fig. 6 we show the DPA at two time instances of the
TFS shown in Fig. 5 (b). These time instances are marked as
dashed lines (~2 and 6 seconds) in Fig. 5, corresponding to
clean and noisy ECG portions, respectively. Fig. 6 (a) shows
the DPA corresponding to the first dashed line (clean TFS)
while Fig. 6 (b) shows the DPA corresponding to the second
dashed line (noisy TFS). The peak amplitude is denoted by
a circle which clearly indicates that for the noisy signal,
the DPA is much higher than for the clean one. This property
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FIGURE 7. (a) DPA of the ECG segment shown in Fig. 5 (a). (b -c) VAR and
INT values obtained from the DPA.

has been used henceforth to discriminate between clean and
motion and noise-corrupted data.

Fig. 7 (a) shows the DPA obtained from each time point
of the 15-second ECG segment shown in Fig. 5. The first
feature calculated from the DPA is the variance of the DPA
(defined as VAR here) from each 2-second segment (i.e.,
piece-wise DPA variance). The underlying assumption is that,
with MNA, there will be a high variance in DPA for the
corrupted part and a low variance for the clean portion of the
data segment.

We also observed that the area under the DPA curve (e.g.
Fig. 7 (a)) becomes much larger with motion artifact than it is
during the clean portion of the data. To quantify this feature
characteristic, the trapezoidal integral of the DPA (denoted
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as INT) for each 2-second segment was calculated. Before
computing the integral, a low-level threshold for the DPA
value (1.50) was set to ignore the insignificant small peaks.
Fig. 7 (b-c) shows the VAR and INT obtained from the DPA of
the sample ECG segment shown in Fig. 5 (a). From the figure,
it can be seen that both the VAR and INT increase when there
are MNA present in the ECG signal whereas these values are
considerably lower in the clean portion.

Once the VAR and INT are calculated, these parameters are
combined to determine which two-second segments contain
MNA and which are clean by applying the following set of
conditions:

if VAR > THyag & INT > TH T
Decision: 2-second segment is corrupted.
if VAR < THyar & INT < TH T
Decision: 2-second segment is clean.
otherwise :

Decision: 2-second segment is moderately corrupted.

&)

For the conditions of Eq. (5), THyag = 4 and THnt =
500 were fixed for all subjects. These thresholds were
obtained by comparing VAR and INT values calculated from
both the clean and MNA-corrupted ECG segments.

For a two-second segment determined as clean, a ‘0’ value
is assigned to that segment while this value is ‘0.5’ and ‘1’
for moderately corrupted and corrupted segments, respec-
tively. Fig. 8 (a) shows a sample 1 minute ECG segment and
Fig. 8 (b) shows the piece-wise MNA detection result using
the proposed method. From the figure, it can be seen that
the proposed MNA detection method is able to accurately
discriminate the corrupted ECG from the un-corrupted seg-
ments.

Until this point, we detailed how to determine whether a
2 second window (inside of the entire 2 minute ECG segment)
is clean or corrupted. However, this a piecewise noise detec-
tion method; a decision for the entire 2 minute ECG segment
still needs to be determined. To make the MNA detection
decision for the entire 2 minute ECG segment, we count
how many of the 2 second windows were determined to be
corrupted in the piece-wise approach. Based on the count
number, a decision is made for the entire 2 minutes of data.
The details of this decision criterion will be described in the
Results section.

Another type of MNA encountered in the long-term ICU
ECG recordings of the MIMIC III database is high fre-
quency (HF) muscle noise, which has amplitude similar to
the QRS complexes, thus making QRS detection even more
difficult. Fig. 9 shows two representative samples of 30 sec-
ond ECG segments corrupted with high frequency muscle
artifacts.

We have found that this type of noise shows similar spectral
characteristics when compared to ECG segments with AF.
To overcome the spectral overlap of the HF muscle artifacts
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FIGURE 9. (a), (b) Sample 30 second ECG segments corrupted with HF
muscle artifacts.

and AF segments, we decompose the ECG signal into several
sub-bands using the VFCDM TFS approach. As previously
described, the VFCDM can decompose a signal into differ-
ent time domain signal components having different spectral
bands (3 d; in (4)). Using such an approach, we have pre-
viously shown that the second VFCDM component contains
primarily the dominant R-peaks, hence, it is suitable for QRS
peak detection [27]. Fig. 10 (a) shows a sample 10 second
clean ECG segment and its second VFCDM component is
shown in Fig. 10 (b). Fig. 10 (c)-(d) show the same for
a segment corrupted with HF muscle artifacts. From the
figure, it can be seen that Fig. 10 (b) has detectable R-
speaks while Fig. 10 (d) does not, as the segment is severely
corrupted. From the second component, we then compute
the corresponding TFS and calculate the sum of the DPA
only in the frequency range above 10 Hz. In this frequency
range, the clean ECG should have a low DPA value while
the HF muscle artifact component is expected to have larger
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DPA values due to higher harmonics corresponding to severe
artifacts. Thus, the resultant value of the sum of the DPA
(defined as Sppa) in the frequency range greater than 10 Hz
is an indicator of the noise power, which is expected to be
higher for the corrupted ECG segments and much lower for
the clean segments. Moreover, since the second VFCDM
component shown in Fig. 10 (d) has less amplitude than does
that in Fig. 10 (b), the variance of the second component
is also used as a second feature parameter. Thus, imposing
thresholds on both the Spps and variance, an ECG segment
with HF muscle artifacts can be distinguished from the clean
data segments. To determine the thresholds for Spps and the
variance, the values derived from both clean and HF noise-
corrupted ECG segments were compared and the optimal
thresholds were found to be 240 and 0.08, respectively. These
values were fixed for all subjects.

C. STATISTICAL APPROACH FOR ATRIAL FIBRILLATION
DETECTION

Many AF detection methods are available in the literature
including time varying coherence functions [28], combina-
tions of time, frequency and nonlinear features [29], tree-
based classifiers built on time-frequency features [30], and
others. In this study, for AF detection, we use two statis-
tical parameters which have been previously shown to be
accurate for both ECG and PPG signals and easy to calcu-
late [31], [32].

The first parameter is the root mean-square of successive
difference (RMSSD). The RMSSD is used to quantify beat-
to-beat variability. Since AF exhibits higher variability than
NSR, its RMSSD is expected to be higher than that of NSR
RR time series. As subjects have different mean heart rates,
we normalize by dividing the RMSSD by the mean value of
the RR time series [31].
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The second parameter for AF detection is the Sample
entropy (SampEn). The SampEn is the negative natural log-
arithm of an estimate of the conditional probability that sub-
series that match pointwise within a certain tolerance, also
match at the next point, where self-matches are not included
in calculating the probability. A high value of SampEn indi-
cates low similarity in the time series while a low value of
Sample entropy indicates high similarity. Thus, the SampEn
is a useful tool to assess randomness of RR time series [32],
[33].

The threshold values of THrmssd and THsampen to detect
AF were derived from comparing RMSSD and SampEn val-
ues obtained from 25 AF and 25 NSR subjects found in the
MIMIC III subset database and they were set to 0.12 and 1.0,
respectively. These values were fixed for all subjects.

IV. RESULTS

In this section, we present the experimental analysis of the
proposed algorithm in several steps. First, we show the per-
formance of the proposed non-ECG waveform data segment
detection method. Next, the MNA detection performance is
shown for those segments which are determined to have
ECG waveforms. Finally, the impact of the motion and noise
artifact detection algorithm on reducing false AF character-
ization is presented. It is to be noted here that to general-
ize the algorithm, all the thresholds for non-ECG waveform
and MNA detection are kept unchanged across the entire
database.

A. NON-ECG WAVEFORM SEGMENT DETECTION
PERFORMANCE

To analyze the non-ECG waveform segment detection perfor-
mance, a subset of data from the MIMIC III database contain-
ing 1,000 two minute segments of ICU recordings was first
manually analyzed. Among 1,000 two minute recordings,
248 segments contained non-ECG waveform characteristics
(including missing values, suddenly stopped recordings, flat
line, zero line, non-ECG shaped signals, and the like) and
752 two minute segments were identified to exhibit ECG
waveforms. These segments were adjudicated by two of the
authors (SB and KHC). The task of the MNA detection algo-
rithm is to discriminate among three possible classifications:
non-ECG waveforms, ECG with artifact contamination, and
clean ECG. For our analysis, the first task was to discriminate
between non-ECG and ECG segments, the latter either clean
or containing MNA.

Table 1 shows the confusion matrix for the non-ECG seg-
ment detection results which were derived from comparing
the results of the algorithm with the annotations from two of
the authors. Our method is able to discriminate between ECG
and non-ECG waveform containing segments with 100%
accuracy.

Next, we examined how many two minute segments con-
tained ECG waveforms (either clean or with motion arti-
facts) in our MIMIC III subset of 50 subjects (25 with NSR
and 25 with AF). For this purpose, we examined the entire
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FIGURE 11. (a) Sample one minute NSR ECG segment and (b) Noise
artifact detection output for this segment.

TABLE 1. Confusion matrix for non-ECG segment detection.

True Label Detected Label
Non-ECG ECG
Non-ECG 248 0
ECG 0 752

duration of the data for each of those 50 subjects. It is to
be noted here that previously mentioned 1,000 segments
in Table 1 are from this subset of 50 subjects. In Table 2,
we show the number of segments detected as not containing
ECG waveforms for 25 NSR subjects. Table 3 shows the same
for 25 AF subjects. The adjudication of the NSR and AF
subjects was performed by the two physicians (DM and AW).
In both Tables 2 and III, the “‘subject ID”* and ““waveform file
name” indicate the IDs and recordings, respectively, of the
subjects analyzed. The columns of these tables also show
features we used to discriminate between ECG and non-ECG
containing waveforms. From these tables, it can be seen that
the percentages of ECG-containing segments vary consider-
ably, ranging from 100% to 28.94% across different subjects.
For the NSR subjects, we found on average 90.88% segments
contained ECG while for AF subjects, it was 86.24%.

B. PERFORMANCE OF THE NOISE ARTIFACT DETECTION
ALGORITHM

The next phase of the algorithm is to discriminate between
motion and noise corrupted ECG and clean ECG segments
from both NSR and AF subjects’ data. Two representative
ECG segments collected from both NSR and AF subjects,
respectively, along with the corresponding MNA detection
results are shown in Figs. 11-12. Fig. 11 (a) shows a sample
one minute NSR ECG segment while Fig. 11 (b) shows
the results of our motion and noise detection method. Sim-
ilarly, Fig. 12 (a) shows a representative AF ECG segment
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TABLE 2. Detected number of segments at different stages of non-ECG detection process (NSR subjects).

Segments Detected in Each Step

Subject No. of Missing ECG
D Waveform File Name Segments Value Variance PSD Zero Containing ECG Segments
Segments Portion (%)
608 p000608-2167-03-23-08-12 934 11 0 0 2 921 98.61
776 p000776-2184-04-30-15-16 1414 41 0 0 1 1372 97.03
4829 p004829-2103-08-30-21-52 625 26 16 1 0 582 93.12
7136 p007136-2143-08-15-16-41 684 502 0 148 1 33 4.82
8167 p008167-2130-10-03-05-31 984 31 22 0 0 931 94.61
8674 p008674-2131-05-04-16-32 715 44 0 0 0 671 93.85
10391 p010391-2183-12-25-10-15 700 8 0 0 41 651 93
13072 p013072-2194-01-22-16-13 1544 2 2 0 0 1540 99.74
13136 p013136-2133-11-09-16-58 591 1 0 0 0 590 99.83
15852 p015852-2148-05-03-18-39 2099 22 14 0 0 2063 98.28
16684 p016684-2188-01-29-00-06 1150 26 2 0 0 1122 97.57
17344 p017344-2169-07-17-17-32 417 28 0 0 0 389 93.29
19608 p019608-2125-02-05-04-57 986 22 3 0 0 961 97.46
23824 p023824-2182-11-27-14-22 547 33 12 0 0 502 91.77
26964 p026964-2147-01-11-18-03 1358 19 8 0 0 1331 98.01
29512 p029512-2188-02-27-18-10 599 42 0 0 0 557 92.99
50384 p050384-2195-01-30-02-21 366 1 2 0 0 363 99.18
55204 p055204-2132-06-30-09-34 1095 4 4 0 0 1087 99.27
58932 p058932-2120-10-13-23-15 1182 365 0 0 0 817 69.12
62160 p062160-2153-10-03-14-49 501 356 0 0 0 145 28.94
63628 p063628-2176-07-02-20-38 1081 1 5 1 0 1074 99.35
87675 p087675-2104-12-05-03-53 1120 11 5 1 0 1103 98.48
89964 p089964-2154-05-22-07-45 398 33 0 0 0 365 91.71
92289 p092289-2183-03-17-23-12 789 111 0 0 0 678 85.93
97547 p097547-2125-10-21-23-43 518 2 10 0 0 506 97.68
Total 22397 1742 105 151 45 20354 90.88

and Fig. 12 (b) represents results from our MNA detection
method. In these figures, when the output curve has a value of
one it represents the presence of MNA, and when it is zero this
indicates clean data. As shown in these figures, the proposed
algorithm does a good job in detecting artifacts when they
occur. Certainly, the portion of the artifact segment from
15-24 sec in Fig. 12 (a) does contain ECG and can be identi-
fied using a low pass filter. However, this will require much
more computational time since we will need to use small
segment-by-segment low pass filtering. However, as seen
in this figure, which is typical, even with a low-pass filter,
in most cases the ECG cannot be retrieved since artifacts have
overwhelmed the ECG signal. This is why we excluded these
episodes as they can lead to false R-peak detection, which in
turn can cause inaccurate AF detection.
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C. DETERMINATION OF THE MOTION AND NOISE
ARTIFACT TOLERANCE

While we have shown that our method is able to provide good
detection of MNA when they occur, the crux of the matter
is to maximize the yield of usable data, so that as many AF
episodes as possible can be captured, accurately, yet minimize
false positive detections. In other words, our main goal for
the MNA detection algorithm is to accurately detect AF. This
suggests that the algorithm should be able to detect precisely
when MNA occur as we have shown in Figs. 11-12. However,
it should be noted that our AF detection algorithm, as well
as others, is able to tolerate a certain amount of MNA [17],
[27], [31]. Hence, we want to determine how much of the
two minute data segment can be corrupted by motion and
noise artifacts before we obtain false positive detection of
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TABLE 3. Detected number of segments at different stages of non-ECG detection process (AF subjects).

Segments Detected In Each Step

Subject No. of Missing ECG
D Waveform File Name Segments Value Variance PSD Zero Containing ECG Segments
Segments Portion (%)
946 p000946-2120-05-14-08-08 186 0 0 0 0 186 100
4490 p004490-2151-01-07-12-36 759 2 0 8 140 609 80.24
75796 p075796-2198-07-25-23-40 1406 198 0 0 0 1208 85.92
9526 p009526-2113-11-17-02-12 325 27 0 0 0 298 91.69
85163 p085163-2199-03-03-04-09 259 16 0 0 0 243 93.82
22954 p022954-2136-02-29-17-52 687 0 3 0 0 684 99.56
25117 p025117-2202-03-15-20-28 1099 14 2 1 0 1082 98.45
26377 p026377-2111-11-17-16-46 1288 334 13 0 0 941 73.06
43613 p043613-2185-01-18-23-52 912 194 0 0 0 718 78.73
50089 p050089-2157-08-23-16-37 1320 848 1 0 0 471 35.68
57964 p057964-2100-12-30-09-33 1161 176 8 0 0 977 84.15
63039 p063039-2157-03-29-13-35 910 1 66 0 0 843 92.64
68956 p068956-2107-04-21-16-05 728 28 13 28 0 659 90.52
69339 p069339-2133-12-09-21-14 717 18 135 1 0 563 78.52
70854 p070854-2151-12-02-11-28 381 1 0 1 0 379 99.48
75371 p075371-2119-08-22-00-53 423 15 2 0 0 406 95.98
77729 p077729-2120-08-31-01-03 460 1 11 15 0 433 94.13
87275 p087275-2108-08-29-12-53 367 1 2 0 0 364 99.18
79998 p079998-2101-10-21-21-31 608 7 3 0 0 598 98.36
81349 p081349-2120-02-11-06-35 151 5 0 0 0 146 96.69
85866 p085866-2178-03-20-17-11 714 7 0 0 0 707 99.02
89565 p089565-2174-05-12-00-07 1039 42 0 0 0 997 95.96
92846 p092846-2129-12-21-13-12 368 1 0 0 0 367 99.73
94847 p094847-2112-02-12-19-56 686 1 14 1 0 670 97.67
63773 p063773-2151-04-02-18-49 754 19 12 1 0 722 95.76
Total 17708 1956 285 56 140 15271 86.24

AF. This approach will lead to a better yield of usable data
for AF detection and can also be applied to wearable ECG
devices as they are more prone to MNA. Thus, this is the
strategy we employed in detecting MNA segments. Towards
this strategy, the QRS complexes are first detected from the
2 minute ECG segments using our newly developed R-peak
detection algorithm [27], albeit any of the well-documented
ECG peak detection algorithms can be used for this step.
Next, the R-R intervals are calculated, which are then used
to calculate SampEn and RMSSD.

Table 4 shows the number of discarded segments due
to various durations of MNA (detected from the piecewise
detection as shown in Figs. 11 and 12) that are tolerated,
called the MNA duration threshold because durations of data
that are noisy for less than the threshold are tolerated and kept
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in the data. The false positive AF detections generated from
using either the RMSSD or SampEn (with previously derived
thresholds) are also shown in the table. The threshold values
of the RMSSD and SampEn for AF detection were derived
from the 25 AF subjects found in the MIMIC III subset
database. As expected, the number of discarded segments
decreases with increasing MNA duration threshold in a given
data segment. Conversely, the number of false positive AF
detections increases, due to the greater presence of motion
and noise corrupted segments. When the duration of MNA
being tolerated is more than 12 seconds, the false positive
detections of AF for SampEn increase from 6 to 7 and for
RMSSD, they increase from 79 to 85. Moreover, only 1.69%
of the ECG data is discarded with a 12 second MNA duration
threshold, far less than with either the 6 or 9 second thresholds
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FIGURE 12. (a) Sample AF ECG segment and (b) Noise artifact detection
output for this segment.

TABLE 4. Variation of false positives with different noise duration
thresholds.

False False

MNA Discarded Discarded  Positives  Positives
Duration Segments Portion Due to Dueto
Threshold (%) SampEn  RMSSD
6 sec 590 7.85 6 53

9 sec 296 3.93 6 65

12 sec 127 1.69 6 79

15 sec 53 0.71 7 85

18 sec 22 0.29 7 89

(7.85% and 3.93%, respectively). As a result, the 12 second
threshold is selected to determine if a data segment contains
MNA. In other words, within a 2 minute ECG segment,
if more than 12 seconds of data are detected as corrupted,
we discard that segment; otherwise, we retain the data for AF
analysis.

D. IMPACT OF HIGH FREQUENCY NOISE DETECTION

We have also observed that several subjects in the MIMIC III
database had data contaminated with what appears to be high
frequency noise. To demonstrate the impact of the proposed
high-frequency noise detection approach on reducing false
positive detection of AF, we analyzed 10 additional NSR
subjects from the MIMIC III database. These subjects are
distinct from the 50 subjects we used for the data analysis
results presented in the preceding sections. Note that we have
chosen only the NSR subjects since significant presence of
high frequency noise along with motion artifacts can lead to
false positive detection of AF.

Each of the 10 subjects’ ECG recordings is divided
into two minute non-overlapping segments and for these
data, the recording time varied from 20 hours to 43 hours.
Table 5 shows the comparison of false positive detections
of AF for different noise detection approaches: without any
noise detection, with only the MNA detection as detailed
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TABLE 5. Comparison of false positives with different noise detection
approaches.

No. of False Positives in AF Detection

Number

Subject of Without Only MNA and
ID Segments Noise MNA HF Noise
Detection Detection  Detection

1 595 4 4 4

2 1269 241 23 23

3 840 5 3

4 1080 4 0 0

5 975 37 18 1

6 937 0

7 1016 0

8 1185 0

9 1291 0

10 711 322 100 4

Total 9899 613 150 35

in the prior section, and with the combined MNA and HF
noise detection approaches. The false positive AF detection
occurrences were calculated based on the same SampEn
threshold used to generate Table 4. As shown in Table 4,
when MNA detection is coupled with HF noise detection,
the total number of false positives for AF for all subjects
(35) is much less than with only the MNA detection (150),
especially when HF noise is present (strongly contributed to
by subjects 5 and 10). For example, subjects 5 and 10 have
a high amount of HF noise present in their ECG recordings,
which was not accounted for using only the MNA detection
method. Consequently, 118 segments were falsely detected
to exhibit AF in those two subjects. However, for subjects
5 and 10, we reduced the false positive detection of AF
to only 5 when both MNA and HF detection methods are
used, which is a significant reduction (reduced by 113) when
compared to using only the MNA detection method. Thus,
we observe the benefit of combining the general MNA and
the high frequency noise approaches in reducing false positive
detection of AF.

V. DISCUSSION

We illustrated the performance of our MNA detection algo-
rithm, which accounted for various types of contamination
including high frequency noise sources, using the long-term
continuous ECG recordings obtained from the MIMIC III
database. The MIMIC III ICU database contains actual clini-
cal ECG data, which means not only good fidelity signals but
also a plethora of MNA-contaminated data. We found various
sources of artifact led to low fidelity signals and portions
that didn’t even contain ECG waveforms like bad contact
with electrodes, movement artifacts, sudden disappearance
of the ECG tracing, high frequency noise, and poor device
calibration. Due to these various types of MNA, in our first
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phase we had to develop an approach to discriminate between
segments with and without ECG waveforms. For the subset
of MIMIC III waveforms which was analyzed, we found that
~86-90% of the data had analyzable ECG recordings. We
found that the major symptoms for a segment lacking an ECG
waveform were missing data and zero-valued ECG signals.

The goal of the second phase of the motion and noise arti-
fact detection algorithm is to determine corrupted segments
among those signals that have been identified to contain ECG
waveforms. We used the VFCDM time-frequency approach
to analyze the changes in the dominant frequency peaks to
discriminate between MNA from the QRS complexes. The
primary goal of the development of our MNA detection algo-
rithm was to reduce false positive detection of AF, which is
why we were mainly interested in retaining only the dynamics
of the QRS complexes. Moreover, our secondary aim was to
retain as much of the corrupted data as possible, without com-
promising the accuracy of AF detection. Hence, we examined
how much of a two minute data segment can be corrupted and
yet we maintain accuracy of AF detection. The AF detection
was based on the calculation of SampEn and RMSSD, as they
have been shown to be accurate discriminators of AF [31].
As expected, the greater the time duration of corrupted data
that was allowed in the two minute segment, the more false
positive detection of AF occurred. However, it was found that
for AF detection, SampEn and RMSSD were tolerant for up
to 12 seconds of corrupted data in a two minute segment.

The final step of our motion and noise algorithm devel-
opment was to distinguish high frequency artifacts from true
ECG signals. We also used the VFCDM time-frequency
method to separate the dynamics of the ECG into differ-
ent frequency bands to identify those data with high fre-
quency noise that did not resemble any characteristics of
ECG waveforms. By eliminating presumed ECG data with
high frequency characteristics, we were able to significantly
reduce the number of false positive detections of AF in NSR
subject data, when the data contained such high frequency
noise.

Limitations: Given the large number of subjects and
long-duration recordings available in the entire MIMIC III
database, we limited the testing of our algorithm to only
60 subjects. Hence, it is possible that we may have not
accounted for other types of noise sources, which our algo-
rithm may not be able to detect. It is our hope that other
researchers can continue to use the publicly-available MIMIC
IIT recordings to further test, enhance, and develop MNA
detection algorithms in the future. Certainly, this strategy has
worked well with the MIT-BIH database for developing AF
algorithms [34], [35], so it is hoped that similar success with
MNA detection will occur in the future.

VI. CONCLUSION

We developed an algorithm to automatically detect MNA
in the long-term ICU ECG recordings from the MIMIC III
database. The goal of our MNA detection algorithm was
to identify those data with unidentifiable QRS complexes
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in the ECG. This is primarily driven by the fact that we
were mainly interested in the automatic identification of AF.
Hence, the development of our MNA detection algorithm
is different than the CinC 2015 challenge since the latter
was mainly interested in reducing ICU false alarms by using
ECG and other vital sign data. Our algorithm showed good
accuracy in identifying various types of noises, albeit this
study was performed on a limited number of subjects. Further
validation of the algorithm will need to be done using more
subjects in the future, but the results presented showed the
promise of our approach in accounting for most of the MNA
that are encountered in the ICU setting. It was found that
when our MNA detection algorithm was combined with AF
detection parameters, we accurately detected the presence
of AF with only 5.7% false positives; the false positives
decreased by 94.3% when MNA and HF detection were
used.
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