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ABSTRACT Extensive research has been paid for event detection in the past decades. However, the
timeliness requirement of real-world applications cannot be satisfied by these approaches. Early event
detector is thus proposed recently to deal with this issue. Early detection aims to recognize the target
as early as possible, i.e., it can detect partial events and create a monotonous function to rank them.
Although important and practical, few studies have been given for early detection due to its complexity.
Max-margin Early Event Detector (MMED) is a well-known approach, which achieves satisfied performance
in identifying partial events. However, the MMED works in an offline manner and may fail in this era
of streaming sequence. In addition, the large memory consumption and high retraining time cost of the
MMED are hard to be satisfied in general platform conditions. In this paper, we introduce an online learning
technique with max-margin to early event detection. The proposed model could be adapted to the changing
data distribution of the streaming sequences. No historical data need to be stored. Therefore, both thememory
requirement and retraining time cost are decreased significantly. We evaluate the proposed approach on three
benchmark datasets with various complexities. The extensive results demonstrate both the effectiveness and
efficiency of the proposed framework.

INDEX TERMS Online learning, early event detection, streaming sequence.

I. INTRODUCTION
Extensive attention has been paid for sequence-based tasks
at various fields, such as action recognition [1], [2], gesture
classification [3], [4], facial expression recognition [5], and
so on [6]. Numerous approaches have been proposed [7], [8]
and large numbers of outstanding achievements have been
obtained [9]. However, early event detection is still a rela-
tively new problem, which receives few attentions. In prac-
tice, each temporal sequence has a duration as illustrated
in Figure 1. For example, a complete facial expression video
contains the onset, the peak, and the offset; a dynamic
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hand gesture usually has three overlapping phases: prepa-
ration, nucleus, and retraction. Conventional sequence-
based approaches make detection or classification after the
sequence ends. This is not desirable in real-world applications
since the timeliness is ignored [10]–[13]. In contrast, early
event detection aims to identify the objective event after it
starts and before it ends. The timeliness is thus guaranteed
to make decision as early as possible. Early event detection
has extensive potential applications. For example, human-
computer interaction is becoming more prevalent in recent
years, the timeliness is especially critical to improve the com-
fort and communication efficiency. Therefore, early event
detection is an important technique which has proved useful
in many applications.
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FIGURE 1. Examples of events which include the duration. The goal of early event detection is to detect the event as soon as possible after it starts and
before it ends. (a) Expression ‘‘Disgust’’ of CK+ dataset from the onset to the peak frame; (b) Event ‘‘bend’’ of Weizmann dataset from the onset, peak
and offset frame.

Different with conventional sequence-based approa-
ches [14], [15], which only give a recognition result for the
whole event, early event detection has threemajor challenges:
1) several partial events are contained in each sequence,
and the specific number of partial events is determined by
the length of the training sample. Therefore, each sequence
corresponds to a different number of partial events, and the
detector needs to detect all the partial segments. Meanwhile,
the size of training set is thus augmented. 2) the information
available in segments are different from each other. For the
partial events from one sequence, the longer the segment,
the more information it contains. An effective detector must
describe the monotonicity of this relationship to give a reli-
able detection. 3) the location of the detected event, i.e., the
start and the end, is required to report.

There are several works trying to solve this challenging
problem. A probabilistic reliable-inference framework is pro-
posed in [16] to give the probability ration test. Although
the early recognition result is given, HMM adopted is still
trained on the whole sequence, which leads to an unconvinc-
ing result. Similarly, the situation and the strategy utilized
in [17] suffer the same problems. In 2013, a RankBoost-
based approach [18] is proposed to make an early expression
detection. The major limitation of this method is that the
length of sequence needs to be known before testing, which
is unpractical. In 2014, hiddenMarkov [19] is adopted to deal
with this issue. Similarly, the unpractical part of this method
is that it assumes each sequence starts with a neutral frame.
Max-margin Early Event Detector (MMED) is then proposed
and can be applied in real-world applications.

Subsequently, various deep learning methods have been
put forward. [20] develops an autoregressive convolutional
neural network to predict the semantic information for
unseen frames. [21] combines VAEs and GANs to exploit
human pose with the utilization of unlabeled data in
unconstrained settings. Encoder-decoder neural network is
adopted by [22] to predict and learn from dog behavior.
Reference [23] employs a self-consistency model to localize
the manipulations by detecting the anomalous cues. Refer-
ence [24] proposes to predict multiple human trajectories

with no supervision. Shou et al. [25] make attempts for
online detection of action start by addressing several specific
challenges in realistic videos. Shyamal et al. [26] design a
deep architecture (Single-StreamTemporal Action Proposals,
SST) to generate temporal action proposals for long and
untrimmed videos. Achal et al. [27] propose a recurrent
predictive-corrective network to update per-frame predictions
and intermediate activations by exploitingmotion cues within
videos. Xu et al. [28] present an end-to-end temporal proposal
classification network, i.e., region convolutional 3D network
for activity detection. Gao et al. [29] deal with the problem
of temporal action proposal generation by designing a novel
temporal unit regression network model.

Although variousmethods have been designed for different
tasks, MMED [30] is still a representative and general model
for early event detection. The structured output SVM is uti-
lized to deal with the augmented training set, and the ranking
relationship of the constraints is used to build the monotonic-
ity of the function. The incoming problem of MMED is that
the memory consumption is large, and the retraining cost
is expensive when a new training sequence comes. There-
fore, MMED may fail in situation with streaming sequences
and large-scale applications. The general computation plat-
form cannot meet these high requirements. To deal with
these problems, we introduce online learning to MMED to
make further improvements. An online framework with max-
margin for early event detector is proposed in this paper,
and we term it as OMED. OMED is updated by the sequen-
tial sample one by one. No historic data need to be stored,
which greatly decrease the memory consumption. In addi-
tion, efficient algorithm is designed to optimize the proposed
model. The effectiveness and efficiency are validated on
three benchmark datasets with various complexities. In brief,
we summarize the main contributions of our work in the
following:
• An online framework with max-margin for early event
detectors, which is termedOMED, is proposed. Not only
the retraining time cost and memory consumption are
reduced greatly, the changing data distribution is also
modeled.
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• Theoretical analysis of the proposed algorithm is
offered. The computational complexity of OMED is
much lower than that of MMED.

• Extensive experiments on various datasets are conducted
to demonstrate both the effectiveness and efficiency of
the proposed method.

We organize this paper as follows. The related work of
online learning is reviewed in Section II. Some preliminary
knowledge and the well-known MMED model are presented
in Section III. In addition, the details of the proposed online
framework are also given in this section. Section IV provides
theoretical analysis of the proposed framework. The experi-
mental results are shown in Section V. Finally, we conclude
this paper in Section VI.

II. RELATED WORK
Most of the previous approaches [18], [19], [30] for early
event detection operate in an offlinemanner. Themodels need
to retrain on the entire training set whenever a new sam-
ple comes. Subsequently, the computation cost is expensive.
Moreover, the memory demand is large since the training set
is augmented for building the ranking relationships. These
high requirements are hard to be satisfied for conventional
computers. Therefore, we introduce online learning tech-
nique to early event detection.

Different with batch learning techniques [31]–[34],
the model with online learning is updated by the data
one-by-one, i.e., the data come sequentially. It is a common
solution where the computation is infeasible on the entire
training data set. Except for the significantly reduced time
cost, the dynamic change of new data distribution is well
modeled by online learning. Therefore, it is particularly well
suited to early event detection, where both the training data
set and memory consumption are intolerable.

Over the past decades, numerous works for online learning
have been created, a large set of which perform with linear
functions. Some popular linear online algorithms include:
Perceptron algorithm [35], the family of passive-Aggressive
(PA) learning algorithms [36], the Online Gradient Descent
(OGD) algorithms [37], the Soft Confidence Weighted algo-
rithms (SCW) algorithms [38], etc. There are also some
‘‘online kernel learning’’ approaches [39], including Ran-
domized Budget Perceptron (RBP) [40], Budgeted Passive
Aggressive Nearest Neighbor (BPA-NN) [41], and Budget
Stochastic Gradient Descent (BSGD-M) algorithm in [42].

There are also numerous methods proposed for online
SVM, such as HULLER [43], Relaxed Online SVM
(ROSVM) [44], Markov sampling based online SVM [45],
online structured output SVM [46], et al. However, these
models cannot be utilized directly to the application of early
event detection due to its complex characteristics as we
described in Introduction.

III. PRELIMINARY
A. PROBLEM SETUP
Some Notations for Early Event Detection: Suppose we
are given a set of training sequences and their associated

ground truth annotations for the events of interest
(X1, y1), (X2, y2), . . . , (Xn, yn). Here, two elements are con-
tained in yi = [si, ei] to denote starting and ending of the
event in training sequence X i. n is the total number of training
sequences. We adopt l i to indicate the length of training
sequence X i. For each time t = 1, . . . , l i, let yit be the partial
event of yi which has occurred already, i.e., yit = yi ∩ [1, t],
which is possibly empty. We denote Y(t) be the set of all
possible time intervals from the 1st to the t th frame: Y(t) =
{y ∈ N2

|y ⊂ [1, t]}∪{∅}. The empty segment y = ∅, indicates
no event occurrence. For a sequence X of length l, Y(l) is the
set of all possible locations of an event. For an arbitrary time
interval y = [s, e] ∈ Y(l), let Xy indicate the segment of X
from the s-th to e-th frames.

For a sequence segment Xy, its detection score is
denoted as:

f (Xy,w, b) =

{
wTϕ(Xy)+ b if Y 6= ∅,
0 otherwise,

where f is a linear function, and ϕ(Xy) denotes the feature
descriptor of segment Xy. In the following, we use f (Xy) to
represent f (Xy,w, b) for the sake of brevity.

B. MAX-MARGIN EARLY EVENT DETECTOR
Max-margin Early Event Detectors: MMED [30] is a repre-
sentative approach in the field of early event detection and
satisfactory performance has been achieved. The comparative
information of two different segments is learnt by extending
SOSVM inMMED. The basic idea of MMED is to guarantee
that: the output score of the partial event, which has been seen
at time t , is larger than that of any other occurred segment by
a margin, i.e., f (X i

yit
) ≥ f (X iy)+margin. The detailed learning

formulation of MMED is as follows:

min
{w,b,ξ i≥0}

1
2
‖w‖2F +

C
n

n∑
i=1

ξ i,

s.t. f (X i
yit
) ≥ f (X iy)+1(yit , y)−

ξ i

µ( |y
i
t |

|yi| )
,

∀i, ∀t = 1, . . . , l i, ∀y ∈ Y(t). (1)

Here, | · | represents length function, and µ(·) is a rescaling
factor of slack variable, which denotes the importance of a
correct detection. In this paper, we adopt the piece-wise linear
function followed [30]:

µ(x) =

{
2x 0 < x ≤ 0.5,
1 0.5 < x ≤ 1 and x = 0.

µ(0) = µ(1) = 1 emphasizes the importance of true rejection
and true detection of a complete event.

a
(·) is the margin of

the pairwise segments. Here,
a
(yit , y) = 1− overlap(yit , y).

Some important notations utilized in this article are
summarized in Table 1.
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TABLE 1. Important notations used in this article.

IV. OMED: ONLINE FRAMEWORK WITH MAX-MARGIN
FOR EARLY EVENT DETECTION
A. FORMULATION
Although MMED [30] achieves early detection effectively
sometimes, the expensive computation and large memory
requirement are usually hard to satisfy. Moreover, the high
retraining cost for a batch learning method is intolerable in
real-world applications. To deal with these problems, we pro-
pose an online learning framework with max-margin for early
event detection, which is termed OMED. Each time, OMED
deals with only one training sample. We use (X i, yi) to denote
the sequence received at time i, the updating model can be
written as follows:

min
{w,b,ξ i≥0}

1
2
‖w− wi−1‖2F + Cξ

i,

s.t. f (X i
yit
) ≥ f (X iy)+1(yit , y)−

ξ i

µ( |y
i
t |

|yi| )
,

∀i, ∀t = 1, . . . , l i, ∀y ∈ Y(t). (2)

Whenever receiving a new training sequence, the weight
vector w in function f is updated with only this new sample
without any historic data. Hence, only the constraints con-
tained in this new data are needed for updating. The retraining
process and memory consumption are thus decreased greatly
with online learning.

When testing, the score of the sequence is computed for
each frame and stored in memory. The beginning and ending
of an event are determined by the pre-defined thresholds.
We can adjust these thresholds to trade off the high TPR
for low FPR and vice versa. The detailed definitions of
TPR and FPR can be found in the following. In this paper,
the experimental results are obtained with FPR as 0.1. When
the ending of the event is detected, the previous memory of
this sequence is cleared. For the current frame, all segments
of the occurred part of the sequence are used for computation,
and the maximum score is returned as the output. Therefore,
the iterative computation can be adopted to avoid double

computing. The score of the frame at time t can be written
as follows:

max
y∈Y(t0,t)

f (Xy) = max{ max
y∈Y(t0,t−1)

f (Xy), f (X̂yt )}, (3)

where t0 is the starting frame of the video sequence in con-
sideration, Y(t0, t − 1) denotes the set of available segments
from time t0 to time t , ŷt is the incremental segments which
terminate at t .
• TPR: the true positive rate, it measures the proportion
of the actual positive samples that recognized as positive
ones.

• FPR: the false positive rate, it measures the proportion
of the negative samples that recognized as positive ones.

B. OPTIMIZATION
We adopt Lagrange multiplier method to optimize the pro-
posed model (2). During the optimization, the bias b is
absorbed into the weight vector w by adding one dimension
‘‘1’’ of the feature vector. The function can thus be written
as f (x) = wTϕ + b = [wT b][ϕ; 1]. We use M to define
the number of constraints contained in each video sequence.
Therefore, the model needs to be updated M times for each
coming training data. The problem (2) with one constraint can
thus be rewritten as follows:

min
{w,ξ i≥0}

1
2
‖w− wi−1‖2F + Cξ

i,

s.t. f (X imt ) ≥ f (X
i
m)+1(mt ,m)−

ξ i

µ( |mt |
|m| )

. (4)

To simplify the formulation, we use (X imt ,X
i
m) to denote

(X i
yit
,X iy), i.e., the m-th constraint of sample (X i, yi), and

(mt ,m) denotes (yit , y) respectively. Then the Lagrangian is
defined as:

L(w, ξ i, λim, γ
i
m)

=
1
2
‖w− wi−1‖2F + Cξ

i
− γ imξ

i

+ λim{µ(
|mt |
|m|

)[f (X im)−f (X
i
mt )+1(mt ,m)]−ξ i}, (5)
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where λim ≥ 0, γ im ≥ 0,∀m are Lagrangian multipliers. Then
we set the partial derivative of (5) with respect to w to zero,
and obtain the following formulation:

w− wi−1 + λimµ(
|mt |
|m|

)[ϕ(X im)− ϕ(X
i
mt )] = 0. (6)

After denoting Pim = µ(
|mt |
|m| )[ϕ(X

i
mt )− ϕ(X

i
m)], we obtain:

w = wi−1 + λimP
i
m. (7)

Then we set the partial derivative of (5) with respect to ξ i to
zero, the following formulation is achieved:

∂L(w, ξ i, λim, γ
i
m)

∂ξ i
= C − γ im − λ

i
m = 0. (8)

Since γ im ≥ 0, we obtain 0 ≤ λim ≤ C . The Lagrangian of (5)
with respect to λim can be written as:

L(λim) =
1
2
‖λimP

i
m‖

2
F + λ

i
mµ(
|mt |
|m|

)[(wi−1 + λimP
i
m)

Tϕ(X im)

− (wi−1 + λimP
i
m)

Tϕ(X imt )+1(mt ,m)]. (9)

Further, by setting ∂L(λ
i
m)

∂λim
= 0,we obtain:

∂L(λim)
∂λim

= µ(
|mt |
|m|

)[fi−1(X im)− fi−1(X
i
mt )+1(mt ,m)]

− λim‖P
i
m‖

2
F = 0. (10)

We leave the detailed formula derivation of (9) and (10) to
Appendix. Thus, we have:

λim =
µ( |mt |
|m| )[fi−1(X

i
m)− fi−1(X

i
mt )+1(mt ,m)]

‖Pim‖
2
F

. (11)

Combining the fact that 0 ≤ λim ≤ C , we obtain:

λim = min{C,
li−1(f ,X imt ,X

i
m)

‖Pim‖
2
F

}. (12)

The loss l(f ,X imt ,X
i
m) = max(0, µ( |mt |

|m| )[fi−1(X
i
m) −

fi−1(X imt ) + 1(mt ,m)]). To sum up, when the new training
sample with the number of constraints M comes, the model
OMED is updated as follows:

wi = wi−1 +
M∑
m=1

λimP
i
m, (13)

where λim is given by Eq.(12), and Pim = µ( |mt |
|m| )[ϕ(X

i
mt ) −

ϕ(X im)]. Therefore, the parameter λim can be computed
directly, which leads to an efficient optimization. The
detailed procedure of the proposed OMED can been seen
in Algorithm 1.

Algorithm 1 Online Framework With Max-Margin for Early
Event Detection
Input: Training set (X i, yi), i = 1, . . . , n and its subsets for

constraints; the corresponding parameters:M ,C ,µ( |mt |
|m| ),

1(mt ,m), ϕ(X imt ), ϕ(X
i
m);

M : the number of constraints for each sequence;
C > 0: the regularization parameter;
µ( |mt |
|m| ): the function to compute the proportion of the

occurred event;
1(mt ,m): the margin denoted by X imt and X

i
m;

ϕ(X imt ),ϕ(X
i
m): the feature representation of X

i
mt , X

i
m with

additional dimension;
Output: a set of weight vectors: w = (w1,w2, . . . ,wn).
1: Initialize w0 = 0.
2: For i = 1, . . . n
3: For m = 1, . . .M
4: Compute Pim = µ(

|mt |
|m| )[ϕ(X

i
mt )− ϕ(X

i
m)];

5: Compute fi−1(X imt ) = wTi−1ϕ(X
i
mt );

6: Compute fi−1(X im) = wTi−1ϕ(X
i
m);

7: Compute li−1(f ,X imt ,X
i
m) = µ( |mt |

|m| )[fi−1(X
i
m) −

fi−1(X imt )+1(mt ,m)];

8: Compute λim = min{C,
li−1(f ,X imt ,X

i
m)

‖Pim‖
2
F
};

9: End for
10: Compute wi = wi−1 +

∑M
m=1 λ

i
mP

i
m;

11: i = i+ 1.
12: End for

C. COMPUTATIONAL COMPLEXITY ANALYSIS
1) MMED
The standard QP (quadratic programming) is adopted for the
optimization of MMED [30]. According to the conclusion
described in [47], the computational complexity of MMED
with QP algorithm requires O(Mnd2), where n denotes the
number of training sequences,M is the number of augmented
constraints extracted from each sample, and d represents the
feature dimensionality. Therefore, the complexity of MMED
is linear with respect to the number of training sample
and constraints, but quadratic with respect to the feature
dimension.

2) OMED
As it can be seen in Algorithm 1, the computational complex-
ity of OMED mainly includes three parts: the computation of
Pim,fi−1(X

i
mt ),and fi−1(X

i
m), i.e., the steps 4, 5, and 6, which

share the same complexity O(d). Since the iterations of inter-
nal and external loops areM and n respectively, Algorithm 1
requires O(Mnd). Obviously, it is linear with respect to all
parameters (n,M , s), which achieves much lower complexity
compared with that of MMED.

V. EXPERIMENTS
In this section, we validate the effectiveness and effi-
ciency of the proposed OMED on three benchmark
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video datasets with various complexities: Weizmann dataset
[48], [49], CK+ dataset [50], and UvA-NEMO dataset [51].
Weizmann dataset contains 10 actions, CK+ dataset has six
prototypic expressions, and UvA-NEMO dataset contains
two smiles: spontaneous and deliberate smiles. In our experi-
ments, we aim to detect action ‘‘Bend’’ onWeizmann dataset;
‘‘negative facial expressions’’ (Anger, Disgust, Fear and
Sadness) on CK+ dataset; and ‘‘spontaneous smile’’ onUvA-
NEMO dataset, respectively. Prior to the analysis of exper-
imental results, we present the datasets, experiment setup,
as well as evaluation criteria first.

A. DATASETS
In our experiments, three widely utilized video datasets with
various complexities are adopted for evaluation.

1) WEIZMANN DATASET
90 video sequences from 9 persons are contained in this
dataset. Each person performs 10 actions: Bend, Jack, Jump,
Pjump, Run, Side, Skip, Walk, Wave1 and Wave2 [48], [49].
One video sequence consists of one single action. The length
of the sequences varies from 28 to 146. Similar with [30],
we concatenate 10 actions of each person to create a longer
video. The event of interest video ‘‘Bend’’ is put at the end
of the longer sequence. In this paper, we adopt AlexNet
architecture [52] to extract the frame-level features with the
dimensionality as 4096. Then PCA is employed to obtain
the low-dimensional features, and we set it as 1000 in the
experiments. Due to the limitation of samples, leave-one-out
cross validation is adopted during the experiments. 8 videos
are used for training, and the remaining as a testing sample.

2) CK+ DATASET
CK+ is the extended Cohn-Kanade dataset proposed in [50].
There are 210 adults, aging from 18 to 50 years old, contained
in this dataset. Some statistics are summarized to illustrate
the variety as follows: 69% of the sequences are female, 81%
are Euro-American, 13% are Afro-American, and 6% are
other groups. Each adult performs 23 different expressions,
in which six prototypic emotions are involved. In this paper,
the prototypic emotions from 327 sequences are utilized.
Each sequence varies from the onset to the peak of some
expression. We randomly choose 200 sequences for training,
in which the number of optimistic and negative samples are
equal. The canonical normalized appearance feature (CAPP)
provided in [50] is adopted to describe the frame-level fea-
tures, and the dimensionality of CAPP is 1656.

3) UVA-NEMO DATASET
This dataset [51] is created by the Science Center NEMO.
It is built for analyzing the dynamic difference of spon-
taneous/deliberate smiles. There are 1240 smile video
sequences contained, where 597 are spontaneous smiles and
remaining are deliberate ones. These sequences are from
400 adults, where 185 are female. All the video sequences are
normalized to the same resolution of 1920×1080 pixels under

controlled illumination conditions. The deliberate smiles are
obtained by asking the subjects to pose as realistically as
possible. In contrast, the spontaneous smiles are gained by
showing funny video segments. There is a rule that all the
video sequences start and end with neutral or near-neutral
expressions. In this paper, we extract the Local Binary Pat-
terns (LBP) [53] for each frame. 4 × 4 blocks are adopted
with the neighboring points as 23. The feature dimension of
LBP is 4× 4× 59 = 944.
Some examples of the sequences from three datasets can be

seen in Figure 2, and the statistics of these datasets are sum-
marized in Table 2. During the experiments, five-fold cross-
validation strategy is adopted for CK+ and UvA-NEMO
datasets to tune the parameters. All the reported results are
repeated five times, and the average values are reported.

TABLE 2. Statistics of three benchmark datasets.

B. EXPERIMENT SETUP
1) COMPARISON METHODS
The experimental results are compared with two baseline
methods (FrmPeak, FrmAll) and the state-of-art approach:
(MMED [30]). The baseline methods are frame-based SVMs,
which make a detection by classifying each frame. The dura-
tion information is ignored in this way. The detailed setup of
each approach can be seen in the following:

• FrmPeak: peak-frame-based SVM. Only the peak
frame in each sequence is used to train SVM;

• FrmAll: all-frames-based SVM. All the frames con-
tained in each sequence are adopted equally to train
SVM;

• MMED: the max-margin early event detector proposed
by [30];

• OMED: the presented online framework with max-
margin for early event detection;

2) EXPERIMENT SETTING
During the experiments, all the trade-off parameters are tuned
from the set {10i|i = −5,−4, . . . , 3, 4, 5}. The SVMs used in
FrmPeak and FrmAll approaches are linear. For comparison,
we use the same strategies of the constraints generation in
MMED and OMED by considering the overlap among differ-
ent segments. We set the number of constraints ‘‘M’’ for each
video as 15, and the overlap is required lower than 0.7. All the
experiments are conducted on a computer with the follow-
ing specifications: Intel(R) Xeon(R) Core-20, CPU E5-2650
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FIGURE 2. Examples from three benchmark datasets. Note that the number of frames in each video sequence is set as the same for presentation except
for the expression on CK+ dataset since the length of this original sequence is ‘‘8’’. (a) Bend/Jump on Weizmann dataset; (b) Happiness/Disgust on
CK+ dataset; (c) Spontaneous/Deliberate smile on UvA-NEMO dataset.

v3-2.3 GHz, Memory 48 GB, LINUX operating system with
Matlab 2015a.

C. EVALUATION CRITERIA
In this section, we introduce several evaluation criteria used
in our experiments: F-score [52], the area under the Receiver
Operating Characteristic (ROC) curve (AUC) [54], the Activ-
ity Monitoring Operating Curve (AMOC) [55]) and the
training time curve.

1) F-SCORE CURVE:
F-score [52] is utilized for evaluating the detection quality.
It is a measurement considering both the precision p and
the recall r of the testing samples. The harmonic average
of the precision and recall is the F-score value: F = p∗r

p+r .
In our experiments, we define p and r as follows: the event of
interest that the detector output at time t is y, and the ground
truth (truncated event) is y∗. Then p = |y∩y

∗
|

|y| . We output the

F-score sequentially as the event of interest starting from 0%
to 100%. F-score reaches best at 1 and worst at 0.

2) AUC CURVE:
AUC curve [54] demonstrates the results of accuracy com-
parison. AUC is the area under ROC curve, and ROC curve is
created by plotting True Positive Rate (TPR) against False
Positive Rate (FPR) by changing the threshold settings.
In early event detection, we define TPR as the situation that
the model makes a detection during the event of interest,
and FPR is that the model fires before the event starts, or
after it ends. The value in AUC curve is the higher the
better.

3) AMOC CURVE:
AMOC [55] is applied to describe the timeliness of event
detection. It is a function of timeliness and FPR by adjusting
the threshold settings. In early event detection described of
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FIGURE 3. Experimental results on Weizmann dataset. (a) F-score curve; (b) The training time curve. Note that ‘‘Accl’’ refers to accumulative
time cost.

FIGURE 4. Experimental results on CK+ dataset. (a) AUC curve; Note that the ‘‘Sequence Number’’ only holds for OMED, and the results of offline
approaches (FrmPeak, FrmAll, MMED) are achieved with 200 training sequences. (b) AMOC curve; (c) The training time curve. Note that ‘‘Accl’’ refers
to accumulative time cost.

FIGURE 5. Experimental results on UvA-NEMO dataset. (a) AUC curve; Note that the ‘‘Sequence Number’’ only holds for OMED, and the results of
offline approaches (FrmPeak, FrmAll, MMED) are achieved with 800 training sequences. (b) AMOC curve; (c) The training time curve. Note that
‘‘Accl’’ refers to accumulative time cost.

this paper, we adopt Normalized Time to Detection (NTtoD)
to reflect the timeliness of detection. Suppose that the event
of interest for a testing sequence is from the s-th to the
e-th frame, and the model fires at time t (i.e., the t-th frame).

If s ≤ t ≤ e, it is a successful detection, and NTtoD= t−s+1
e−s+1 .

If t < s or t > e, it is a false detection, and NTtoD= 0 or
NTtoD= ∞ respectively. The value in AMOC curve is the
lower the better.
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FIGURE 6. NTtoD of some examples from two benchmark datasets. (a) Fear/Fear/Anger/Anger on CK+

dataset; (b) Spontaneous/Spontaneous smile on UvA-NEMO dataset; The four frames in each row from left to
right are: the onset, the ones MMED and OMED make a detection and the peak one. The number on each
frame denotes the value of NTtoD. For a testing sequence, the length from the onset to the peak frame is
normalized as ‘‘1’’.

4) THE TRAINING TIME CURVE:
The training time curve gives efficiency comparison.
It demonstrates the tendency of training time cost for various
number of training samples. In our experiments, the time of
online method (OMED) refers the accumulative time cost,
which is different with the instantaneous one. Since OMED is
updated with only one sample when a new sequence arrives,
the update time cost at various time is the same. Therefore,
the value in the curve is the accumulative one. The value in
training time curve is the lower the better.

D. RESULTS ON WEIZMANN DATASET
The performance of the compared approaches on Weizmann
dataset are shown in Figure 3 and Table 3. Note that F-score is
utilized instead of AUC and AMOC curves because there is
no negative sample in Weizmann dataset. From the results,
we observe that the F-score of OMED is comparable to
that of MMED, especially when the fraction of the observed
event is large as seen in Figure 3(a). This demonstrates the
effectiveness of the online setting of MMED. Meanwhile,
the retraining cost of OMED decreases significantly.
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TABLE 3. F-score (mean and deviation) comparison on Weizmann dataset. The results are given at the best Fraction of the event seen. The training
times (s) are given with the sample number as 450. Note that ‘‘Ins’’ refers to instantaneous time cost for online method, and ‘‘Accl’’ refers to accumulative
time cost.

TABLE 4. AUC (mean and standard deviation) and training time comparisons on two expression datasets. AUC of online method (OMED) is given at the
best value corresponding to the number of training sequences. The training time(s) on CK+ and UvA-NEMO datasets are given with the sample number as
150 and 200 respectively. Note that ‘‘Ins’’ refers to instantaneous time cost for online method, and ‘‘Accl’’ refers to accumulative time cost.

Note that the curve of MMED in Figure 3(b) stops early
because the value is too large. In addition, the time cost
of OMED is the accumulative value. The comparison of
instantaneous cost when the 450-th training sample comes is
illustrated in Table 3. The huge gap between the instantaneous
value of MMED and OMED further validates the rapidity of
training process of OMED.

E. RESULTS ON CK+ DATASET
The experimental results on CK+ dataset are shown
in Figure 4, Figure 6 and Table 4. It can be seen from the
results that: 1) segment-based approaches (MMED, OMED)
outperform frame-based approaches in both accuracy and
timeliness. This demonstrates that the temporal information
is well utilized in segment-based methods. 2) the AUC curve
of OMED rises rapidly first, and then stays steady with small
oscillations, which is comparable to that of MMED. This
demonstrates the effectiveness of online setting. 3) the accu-
mulative retaining cost of OMED is almost comparative to
that of FrmAll and FrmPeak SVMs. In contrast, the retraining
cost of MMED increases rapidly with respect to the number
of samples. This demonstrates the efficiency of the proposed
online method. Note that MMED curve has some oscillations
because the number of iterations needed for convergence
varies each time. The comparison of instantaneous time cost
in Table 4 indicates that online method is even more efficient
than frame-based methods.

F. RESULTS ON UVA-NEMO DATASET
The performance of the compared approaches on
UvA-NEMO dataset are shown in Figure 5, Figure 6 and
Table 4. From the results, we observe that: 1) the performance
of FrmAll is not always better than that of FrmPeak because
more information is contained. 2) all the segment-based
methods outperform frame-based approaches. 3) the training
cost of OMED is reduced significantly compared to MMED.
Both the accuracy and timeliness are guaranteed. Note that
the training time curve of FrmAll stops when the training

number is 200. This is due to the intolerable value when the
training number increases.

VI. CONCLUSIONS
Extensive attention has been paid on event detection in the
past decades, but few works have been proposed to deal with
early event detection. In this paper, an early event detector
is designed to detect the partial events as early as possible.
Compared with MMED, the proposed approach OMED has
the following advantages: 1) OMED works in an online
manner, i.e., it is updated by the sequential data one by
one. Therefore, the changing data distribution contained in
the streaming data is exploited. 2) the retraining time cost
and memory consumption are thus decreased significantly to
make the model available in large-scale applications. Exten-
sive experiments on three benchmark datasets with various
complexities have demonstrated both the effectiveness and
efficiency of the proposed method.

APPENDIX
Formula Derivation of (9):
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Formula Derivation of (10):
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