
Received May 14, 2019, accepted June 17, 2019, date of publication July 1, 2019, date of current version July 17, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2926097

A Correctness Enforcement Approach for
Collaborative Business Processes
QI MO 1,2, LIRUI BAI1,4, FEI DAI2,3, JIANGLONG QIN1,2, ZHONGWEN XIE1,2, AND TONG LI1,2
1School of Software, Yunnan University, Kunming 650091 China
2Key Laboratory of Software Engineering of Yunnan Province, Kunming 650091, China
3School of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming 650091, China
4Department of Computer Science and Technology, Tianjin University Renai College, Tianjin 301636, China

Corresponding authors: Lirui Bai (bai_lirui@126.com), Fei Dai (59671019@qq.com), and Jianglong Qin (83803036@qq.com)

This work was supported in part by the Project of National Natural Science Foundation of China under Grant 61862065, Grant 61702442,
and Grant 61662085, in part by the Application Basic Research Project in Yunnan Province under Grant 2018FB105, in part by the Open
Foundation of Key Laboratory for Software Engineering of Yunnan Province under Grant 2017SE201 and Grant 2016SE202, and in part
by the Yunnan Province Young Academic and Technical Leaders Funds for Training under Grant C6143002.

ABSTRACT Collaborative business processes are indeed complex and difficult to be correctly designed
as business processes involved in them are typically developed by different participating organizations
and there is no way to foresee all potential interactions at design time. To this end, we propose a novel
correctness enforcement approach for collaborative business processes. In this approach, given an original
process, we first propose an algorithm for automatically detecting its correctness. Then, in case the
original process is partially correct, we prune it to generate its core. The core captures all legal traces in
the original process. Finally, an enforced process is yielded from the core through coordination mapping
(i.e., inserting additional coordination activities into original processes). Our approach is implemented as a
prototype tool called cet (a correctness enforcement tool for collaborative business processes), and a series
of experiments is conducted to validate the applicability and effectiveness of the proposed approach.

INDEX TERMS Collaborative business process, correctness, core, minimization, coordination mapping.

I. INTRODUCTION
Business processes are the main asset of enterprises as they
describe their value chain and fundamentally define the ‘‘way,
businesses are done’’ [1]–[3]. Unlike traditional business
processes that are limited to a single organization, collabo-
rative business processes cross boundaries of organizations,
and have the capability of gathering a set of business pro-
cesses with complementary competencies and knowledge
to cooperate to achieve more business successes [4]–[5].
Currently, they have been applied in multiple industries.
Some prominent examples are enterprise information systems
based on PAIS (Process-Aware In-formation Systems) [6],
e-commerce business processes [7], [8], andmedical business
processes [9].

Yet, business processes gathered in the collaborative busi-
ness process are developed independently by different orga-
nizations. Due to autonomy reasons, i.e., each participating
organization acts independently and is not obliged to reveal
its own private information (or process) to other parties, there

The associate editor coordinating the review of this manuscript and
approving it for publication was Aakash Ahmad.

is no way to foresee all potential interactions between them.
As a consequence, some undesirable outcomes such as dead-
locks and livelocksmay occur during their actual cooperation.

To avoid these undesirable outcomes, existing approaches
mainly focus on correctness checking. Given a correct-
ness criterion such as soundness or weak termination [4],
correctness checking approaches automatically detect the
correctness of a collaborative business process using formal
verification techniques. If the result of the detection is incor-
rect, then diagnosis information can be used to repair the
collaborative business process. As presented in Figure 1(a),
correctness can be eventually reached through iterative detec-
tion and adjustment for the collaborative business process.

A more promising approach is correctness enforcement.
As presented in Figure 1(b), the approach focuses on the
early design phase and uses a collaborative business process
(called an original process) and a correctness criterion
(e.g., soundness) as input. If the original process is fully
incorrect or correct, then there is no need to enforce
it [10]–[13]. However, if the original process is partially
correct, the approach can automatically generate a collab-
orative business process that is correct, i.e., an enforced

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ 87069

https://orcid.org/0000-0002-3438-5303

Q. Mo et al.: Correctness Enforcement Approach for Collaborative Business Processes

FIGURE 1. Approaches to achieve correctness. (a) Correctness checking,
and (b) correctness enforcement.

process. Compared with the approach for correctness check-
ing, the approach presents two advantages. First, iterative
detection and adjustment are not required, which will greatly
improve the modeling efficiency of collaborative business
processes. Second, correctness is not only detected, but actu-
ally enforced.

In this paper, we investigate the later approach. Yet, exist-
ing correctness enforcement approaches (e.g., [10]–[13])
need to put additional restrictions on original processes when
achieving correctness enforcement. Additionally, theymainly
focus on asynchronous communication (i.e., message-based
asynchronous interactions between business processes), but
fail to consider synchronous communication. Like asyn-
chronous communication, synchronous communication is an
important interactive way as well, which forces multiple
business processes to perform a specific activity at the same
time [4]. In practical applications, these approaches suffer
from the applicability problem as the two problems are not
well addressed. The applicability means that given any orig-
inal process that is partially correct, an enforced process can
be generated eventually.

To this end, we propose a novel approach for enforcing col-
laborative business processes. Our approach aims to solve the
applicability problem in existing approaches (e.g., [10]–[13])
in the case of ensuring the effectiveness. The effectiveness
means that the generated enforced process is correct and
maximally permissive. The term ‘‘maximally permissive’’
means that the generated enforced process preserves all legal
traces in its original process without introducing additional
traces in the case of neglecting coordination factors. Note that
coordination factors in our context correspond to a class of
special activities that are synchronized to achieve coordina-
tion logic.

As presented in Figure 2, our approach consists of three
steps. At first, given an original process, we propose an algo-
rithm for automatically detecting its correctness. Afterwards,
in case of partially correct, we prune the original process to

FIGURE 2. Overview of our approach.

obtain its core. At last, an enforced process can be eventu-
ally generated from the core through coordination mapping.
Note that in our approach, cores can be used to capture all
legal traces in original processes, while coordinationmapping
inserts coordination factors into original processes to ensure
the fact that the generated enforced processes are correct and
maximally permissive (see Definition 12).

It is worth noting that since our approach needs to build
the reachability graph of original processes when achieving
correctness enforcement, it may suffer from the state-space
explosion problem. The problem will be alleviated in our
future work.

Compared with existing approaches for correctness
enforcement, the main contributions of this paper are as
follows:
(1) We propose a general approach to enforce original

processes that may involve both asynchronous and syn-
chronous communication without any restrictions. The
approach can be used to solve the applicability problem
in existing approaches.

(2) We prove that enforced processes generated by our
approach are effective. That is, they are correct and
maximally permissive.

(3) We implement our approach as a prototype tool called
cet. We employ the tool to conduct experiments
with 30 real-world cases. The experimental results
demonstrate the applicability and effectiveness of our
approach.

The remainder of this paper is organized as follows.
Section 2 gives a motivating example used throughout the
paper to illustrate our approach. Section 3 presents some
formal definitions related to our correctness enforcement
approach. Section 4 illustrates our correctness enforcement
approach in detail. Section 5 presents a prototype tool
implementing our approach and evaluates the applicabil-
ity and effectiveness of our approach using actual cases.
Section 6 discusses the related work. Section 7 concludes this
paper.

87070 VOLUME 7, 2019

Q. Mo et al.: Correctness Enforcement Approach for Collaborative Business Processes

FIGURE 3. Ord depicted by BPMN.

II. MOTIVATING EXAMPLE
In this section, we present a simplified ordering process
(Ord) used throughout the paper to illustrate our approach.
Ord involves 2 participants, i.e., a customer (denoted as Cus)
and a vendor (denoted as Ven). Their business processes and
the interaction between them are depicted in Figure 3.

Concretely, the interaction includes the following steps:
(1) Cus can order product A or B from Ven;
(2) The inventory of product A is sufficient in any case, and

therefore Ven directly receives the request for ordering
product A. Yet, since the inventory of product B is
usually insufficient, Ven needs to first check its stock
before receiving the request for ordering product B;

(3) After receiving the request for ordering product A or B,
Cus and Ven sign a contract to complete the ordering
process.

In practice, the smooth interaction between Cus and Ven
is critical to the correctness of Ord. In the scenario shown
in Figure 1, we can see that 1) ordering product A or B is
done through the exchange of asynchronous messages, but
the contract requires Cus and Ven to sign at the same time.
Hence, both synchronous and asynchronous communication
are involved in Ord; and 2) despite the fact that the mes-
sages exchanged inOrd are consistent,Ord’s actual execution
may produce undesirable outcomes such as livelocks and
unspecified receptions. For example, if Cus first orders a
product A. Yet, Ven first checks its inventory, and then
receivesCus’s order. This will cause a livelock and an unspec-
ified reception during the execution of Ord.
To eliminate these undesirable outcomes, we propose a

novel approach for correctness enforcement. Our approach is
suitable for the enforcement of complex cases which involve
both synchronous and asynchronous communication. Addi-
tionally, it does not require adding any additional restric-
tions on the original process when achieving correctness
enforcement.

III. PRELIMINARIES
In this section, we first present several definitions related to
Labeled Transition Systems (LTSs). Then, we model collab-
orative business processes using LTSs. Finally, we define the
correctness of collaborative business processes using weak
termination.

A. LABELED TRANSITION SYSTEMS
Since we use LTSs to specify some notions (e.g., original
processes, enforced processes and cores) involved in our
correctness enforcement approach, several definitions related
to Labeled Transition Systems are presented in the following.
Definition 1 (Labeled Transition System): A labeled tran-

sition system is a tuple LTS = (S, A, T , s0, F), where
(1) S is a set of states;
(2) s0 ∈ S is the initial state;
(3) F ⊆ S is a set of final states;
(4) A is a set of activities;
(5) T ⊆ S × A× S is a transition relation.
For the sake of simplicity, we write r

a
−→ s to denote

(r , a, s) ∈ T .
Definition 2 (Reachability): Let LTS = (S, A, T , s0, F)

be an LTS, and s and s’ be two states in S. s’ is called
reachable from s(denoted as s

∗
−→ s’), iff there exists a

sequence of labels (i.e., a trace) σ = a1 . . . an, such that
s

a1
−→ s1 . . . sn−1

an
−→ s’. Particularly, if s = s0 and s’∈ F ,

then the trace is called a legal trace. Note that the empty trace
is also allowed, i.e., s

∗
−→ s.

Based on the reachability, we can define transition clo-
sures. Formally, a transition closure is defined as follows.
Definition 3 (Transition Closure): Let LTS = (S, A, T ,

s0, F) be an LTS, and s ∈ S be a state, then the transition
closure of s is defined as t-closure(s) = {s’ |s

∗
−→ s’}.

In essence, the transition closure of a state refers to a set
of states reachable from the state. Transition closures will
be used to detect the correctness of the original process and
generate cores in Section 4.

B. COLLABORATIVE BUSINESS PROCESSES
Based on business processes, we can model collaborative
business processes. A business process which consists of
activities and their control flow usually pertains to a specific
organization. In our context, we use LTSs to describe business
processes.

In essence, LTSs are a low-level formal model yet
business processes in practice are typically described by
Business Process Modeling Notation (BPMN). Currently,
several approaches have been presented to convert them
into process models described by Petri nets and process
algebras [24], [29]. Since Petri nets and process algebras have
well-defined execution semantics, these process models can
be transformed into LTSs in an easy way.

To reduce the difficulty of directly describing the business
process using LTSs (this is mainly caused by the parallelism
of activities), in this paper we use Finite State Process (FSP)
[17]. Technically, FSP is a process calculus designed to be

VOLUME 7, 2019 87071

Q. Mo et al.: Correctness Enforcement Approach for Collaborative Business Processes

easily machine and human readable that includes standard
constructs such as action prefix (→), external choice (|),
hiding (\), relabeling (/) and parallel composition (||), which
can be used to specify LTSs in a textual representation [17].
Definition 4 (Business Process): A business process is an

LTS BP = (S, A, T , s0, F), where
(1) S is a set of states;
(2) s0 ∈ S is the initial state;
(3) F ⊆ S is a set of final states;
(4) A = Al ∪ Ai is a set of activities, where Al is a set of

local activities, and Ai is a set of interactive activities;
(5) Ai = Asy ∪ Aay, where Asy is a set of synchronous

interactive activities, and Aay is a set of asynchronous
interactive activities;

(6) Aay = As ∪ Ar , where As is a set of asynchronous
sending activities, and Ar is a set of asynchronous
receiving activities;

(7) T ⊆ S × A × S is a transition relation, which spec-
ifies sequential constraints between activities, i.e., the
control flow.

In our context, for an asynchronous sending activity a, a is
written as !m, where m is the message name and ‘‘!’’ stands
for emission. Analogously, for an asynchronous receiving
activity a, a is written as ?m, wherem is themessage name and
‘‘?’’ stands for reception. For the sake of simplicity, we used
Ms = {m|!m ∈ As} to denote the messages sent by BP, and
Mr = {m|?m ∈ Ar} to denote the messages received by BP.

Recall that in this paper, we consider both synchronous
and asynchronous communication. In the latter case, each
business process in the collaboration is equipped with a
FIFO queue for storing messages received from other busi-
ness processes, and from which the current business process
can consume messages. In particular, in this paper we don’t
limit the length of message queues and assume that they are
unbounded.
Example 1:According to the scenario depicted in Figure 3,

we first describe the business processes of Cus and Ven using
FSP as follows.

/∗∗∗∗∗∗∗∗FSP Coding of Cus∗∗∗∗∗∗∗∗/
Cus = !orderA→C1 | !orderB→C1;
C1 = signContract→END.
/∗∗∗∗∗∗∗∗FSP Coding of Ven∗∗∗∗∗∗∗∗/
Ven = checkStock→V1 | ?orderA→V2;
V1 = checkStock→V1 | ?orderB→V2;
V2 = signContract→END.
Then, we generate their LTSs based on the operational

semantics of FSP [17], as shown in Figure 4.
Business processes can be composed to build collaborative

business processes. Given a set of business processes, their
composition can be formally defined as follows.
Definition 5 (Composition): Let BP1, . . . ,BPn be a set of

business processes. For any i ∈ [1..n] : BPi = (Si, Ai, Ti,
si0, Fi), and Qi is its associated message queue. Then, their
composition can be defined as an LTS BP1|| . . . || BPn = (S,
A, T , s0, F), where
(1) S ⊆ S1 × Q1 × . . .× Sn × Qn is a set of states;

FIGURE 4. Business processes of Cus and Ven. (a) Business process N1
of Cus and (b) business process N2 of Ven.

(2) s0 = 〈s10, ε, . . . , sn0, ε〉 ∈ S is the initial state, and
ε indicates that the message queue is empty;

(3) F ⊆ S are final states, and for each final state sf ∈ F,
sf = 〈sf 1, ε, . . . , sfn, ε〉, where ∀i ∈ [1..n], sfi is a final
state of BPi, and Qi is empty;

(4) A ⊆ A1 ∪ . . . ∪ An is a set of activities;
(5) T ⊆ S×A×S is a transition relation, and for two states

s = (s1,Q1, . . . , sn,Qn) and s’= (s1’,Q′1, . . . , s
′
n,Qn’)

(a) ∃i ∈ [1..n] : a ∈ BPi.Al and s
a
−→ s’∈ T if

si
a
−→ si’∈ BPi.T , ∀k ∈ [1..n] : Qk ’ = Qk , sk ’
= sk (k 6= i), and sk ’ = si’ (k = i);

(b) ∃i ∈ [1..n] : a ∈ BPi.Asy and s
a
−→ s’∈ T if

∀j ∈ [1..n] and a ∈ BPj.Asy: sj
a
−→ sj’, ∀k ∈

[1..n] : Qk ’ = Qk , sk ’ = sk (k 6= j), and sk ’ = sj’
(k = j);

(c) ∃i ∈ [1..n] : a =!m ∈ BPi.As and s
a
−→ s’∈ T if

si
a
−→ si’∈ BPi.T , ∃i, j ∈ [1..n] : m ∈ Mis ∩Mjr ,
∀k ∈ [1..n] : Qk ’ = Qk (k 6= j), Qk ’ = Qkm
(k = j), sk ’ = sk (k 6= i), and sk ’ = si’ (k = i);

(d) ∃i ∈ [1..n] : a =?m ∈ BPi.Ar and s
a
−→ s’∈ T

if si
a
−→ si’∈ BPi.T , Qi = mQi’’, ∀k ∈ [1..n] :

Qk ’ = Qk (k 6= i), Qk ’ = Qk ’’(k = i), sk ’ = sk
(k 6= i), and sk ’ = si’ (k = i).

In Definition 5, (a) defines the execution of a local activity.
(b) defines synchronous communication between business
processes, which force multiple business processes to exe-
cute activity a at the same time. (c) and (d) together define
asynchronous communication between business processes.
Concretely, (c) describes the execution of an asynchronous
sending activity a, it requires that there exists a business
process (i.e., BPj) that can receive m. After m is sent, m is
added to the tail of message queue Qi, while (d) describes
the execution of an asynchronous receiving activity a in BPi,
it requires that the message queue Qi is not empty and the
message stored in the head of Qi is m. After m is received, m
is removed from the head of Qi.
Based on Definition 5, we know that both synchronous

and asynchronous communication are defined during the
composition of business processes, Hence, our approach can
model collaborative business processes that involve both
asynchronous and synchronous communication.

87072 VOLUME 7, 2019

Q. Mo et al.: Correctness Enforcement Approach for Collaborative Business Processes

FIGURE 5. The original process OP.

TABLE 1. The information description of states.

Support that BP1, . . . ,BPn are business processes in the
collaboration, then the collaborative business process built
by composing these business processes can be defined as
BP1|| . . . || BPn.
Example 2: By composing of N1 and N2 depicted

in Figure 4, we can construct the original process OP of Ord,
as shown in Figure 5.

Specifically, the information description of the states in
OP is presented in Table 1, where orderA and orderB are
messages generated during the collaboration, while c0-c2 and
v0-v3 are the states in N1 and N2, respectively.
Given a collaborative business process CBP= (S, A, T , s0,

F), if S is infinite, then CBP is called unbounded, otherwise
CBP is bounded. In our context, we will restrict ourselves to
bounded collaborative business processes.
Example 3: In Figure 5, we can see thatOP has eight states,

and therefore it is bounded.

C. CORRECTNESS
Currently, multiple criteria for defining the correctness of col-
laborative business processes have been presented. Among
them, soundness [4] and its variants (such as weak termina-
tion [11]) are widely used. Typically, soundness is used to
define the correctness of intra-organizational business pro-
cesses, and it is too strict for cross-organizational business
processes [11]. Hence, in this paper we define the correctness
of collaborative business processes using weak termination.
Definition 6 (Correctness): Let CBP = (S, A, T , s0, F) be

a collaborative business process, CBP is correct iff for each
state s with s0

∗
−→ s, there exists a final state sf ∈ F , such

that s
∗
−→ sf .

Definition 6 requires that a final state is always reachable
from every reachable state. This ensures that each business
process can reach one of its final states. Therefore, any

deadlocks and livelocks in the collaborative business pro-
cess are removed. Additionally, since each message queue
in the final state is empty (see Definition 5), ensuring that
all messages generated in actual collaboration are reasonably
received.

In Particular, given a collaborative business process
CBP = (S, A, T , s0, F), if all states in S can not reach final
states, then CBP is called incorrect. If some but not all states
in S can reach final states, thenCBP is called partially correct.

IV. CORRECTNESS ENFORCEMENT APPROACH
In this section, we first give an algorithm to detect the
correctness of original processes. Then, in case original
processes are partially correct, we present an algorithm to
obtain their cores. Finally, we present an approach to gen-
erate enforced processes from cores through coordination
mapping.

A. CORRECTNESS DETECTION
To achieve correctness enforcement, we need first determine
the correctness of original processes.

Based on transition closures, we propose an algorithm to
detect the correctness of original processes.

Algorithm 1 Detect the Correctness of Original Processes
Input: An original process OP = (S, A, T , s0, F);
Output: ‘‘Incorrect’’, ‘‘Partially correct’’, or ‘‘Correct’’;
1. Set validStates = ∅;
2. for each state s in S do
3. generate t-closure(s);
4. if t-closure(s) ∩ F 6= ∅ then
5. add s into validStates;
6. end if
7. end for
8. if | validStates| = |S| then
9. return ‘‘Correct’’;
10. else if | validStates| 6= 0 ∧ | validStates| < |S| then
11. return ‘‘Partially correct’’;
12. else
13. return ‘‘Incorrect’’;
14. end if

For each state s ∈ S, Algorithm 1 first generates its transi-
tion closure (L1∼L7). If all states in S can reach final states,
then Algorithm 1 outputs ‘‘Fully correct’’, meaning that the
original process is correct (L8∼L9). If some but not all states
in S can reach final states, thenAlgorithm 1 outputs ‘‘Partially
correct’’, meaning that the original process is partially correct
(L10∼L11). If all states in S can not reach final states, then
Algorithm 1 outputs ‘‘Incorrect’’, meaning that the original
process is incorrect (L12∼L13).

Recall that we focus in this paper on bounded collaborative
business processes. Therefore, we know that the states in
S are finite, and then derive that Algorithm 1 can be ter-
minated. Assuming that n = |S|, then the time complexity

VOLUME 7, 2019 87073

Q. Mo et al.: Correctness Enforcement Approach for Collaborative Business Processes

of Algorithm 1 is O(n2), where |S| indicates the number of
the states in S.
Example 4: For the original processOP in Figure 5, accord-

ing to Definition 3, we first calculate the transition closure of
each state in OP as follows:
t-closure(O0) = {O0, . . . ,O7};
t-closure(O1) = {O1, O4, O5, O7};
t-closure(O2) = {O2, O4, O6, O7};
t-closure(O3) = {O3, O5};
t-closure(O4) = {O4, O7};
t-closure(O5) = {O5};
t-closure(O6) = {O4, O6, O7};
t-closure(O7) = {O7}.
Then, based on Algorithm 1, we can derive that OP is

partially correct as some but not all states in OP can reach
the final state O7.

B. CORE GENERATION
In case original processes are partially correct, we can prune
them to obtain their cores. In essence, cores capture all legal
traces in original processes. In our context, they are described
using LTSs and can be used to generating enforced processes
in Section 4.3.

Based on transition closures, we propose a novel algorithm
to generate a core from an original process.

Algorithm 2 Generate the Core
Input: An original process OP = (S, A, T , s0, F);
Output: A core C = (Sc, Ac, Tc, sc0, Fc);
1. Set invalidStates = ∅;
2. for each state s in S do
3. generate t-closure(s);
4. if t-closure(s) ∩ F = ∅ then
5. add s to invalidStates;
6. end if
7. end for
8. set Sc = S - invalidStates;
9. for each transition t = (s1, a, s2) in T do
10. if s1 ∈ invalidStates or s2 ∈ invalidStates then
11. continue;
12. end if
13. add t to Tc;
14. end for
15. sc0 = s0; Fc = F ;
16. for each transition t = (s1, a, s2) in Tc do
17. add a to Ac;
18. end for

For each state s ∈ S, Algorithm 2 first generates its
transition closure, and determines its validity (L1∼L7). Then,
for each invalid state, Algorithm 2 removes it from S(L8).
Finally, Algorithm 2 deletes the transitions formed by these
invalid states (L9∼L14). Note that a state s ∈ S is valid
if and only if there exists a trace σ = a1 . . . an, such that
s

a1
−→ s1 . . . sn−1

an
−→ sf , where sf ∈ F . That is, its transition

FIGURE 6. The core C of OP.

closure includes final states. Assuming that n = |S|, then the
time complexity of Algorithm 2 is O(n2), where |S| indicates
the number of the states in S.

According to Algorithm 2, we can derive that Lemma 1
holds.
Lemma 1: Given an original process OP and its corre-

sponding core C , then C preserves all legal traces in OP
without introducing additional traces.

Proof: According to Algorithm 2, we know that all
invalid states and the transitions formed by them are removed
fromOPwhile all valid states and the transitions formed them
are preserved in C . For each valid state, it can always reach
a final state. Yet, for an invalid state, it can’t reach a final
state. Therefore, according to Definition 2, we can derive that
C preserves all legal traces in OP without introducing addi-
tional traces. �
Example 5: For the original processOP in Figure 5, accord-

ing to Algorithm 2, we can generate its core C , as shown
in Figure 6.

InC , we can see that the invalid stateO5 and the transitions
(marked in red) formed by it are removed from OP while
ensuring that all valid states and the transitions formed them
still remain in C .

C. ENFORCED PROCESSES GENERATION
Based on an obtained core, an enforced process can be gen-
erated by the following steps:
(1) Analyze the core and determine its coordination

transitions;
(2) Based on these coordination transitions, generate a set

of hidden cores;
(3) Minimize these hidden cores to obtain a set of interme-

diate business processes;
(4) Using coordination mapping, generate a set of enforced

business processes from these intermediate business
processes;

(5) Through the composition of these enforced business
processes, an enforced process is generated.

At first, we detail the approach for generating coordi-
nation transitions. In essence, coordination transitions refer
to the transitions that may lead to undesirable outcomes
(e.g., deadlocks and livelocks) during the execution of origi-
nal processes.

87074 VOLUME 7, 2019

Q. Mo et al.: Correctness Enforcement Approach for Collaborative Business Processes

Given an original process, in practice, not every transition
in it needs to be coordinated. With the notion of core, coordi-
nation transitions are formally defined as follows.
Definition 7 (Coordination Transition):LetOP be an origi-

nal process, andC = (Sc, Ac, Tc, sc0, Fc) be its corresponding
core. A transition s1

a
−→ s2 in C is called a coordination

transition, iff s1 ∈ Sc and s2 /∈ Sc.
Based on Definition 7, we propose an algorithm to obtain

coordination transitions in an original process.

Algorithm 3 Generate Coordination Transitions
Input: A core C = (Sc, Ac, Tc, sc0, Fc);
Output: Set coodTrans;
1. for each state s1 in Sc do
2. ifs1

a
−→ s2 and s2 /∈ Sc then

3. add s1
a
−→ s2 to coodTrans;

4. end if
5. end for

Assuming that n = |Sc| and m = |Tc|, then the time
complexity of Algorithm 3 is O(m× n).
Example 6: For the core C in Figure 6, we can obtain its

coordination transitions using Algorithm 3, i.e., o1
checkStock
−→

o5, o3
!orderA
−→ o5, and o5

checkStock
−→ o5.

Afterwards, we present an approach to hide cores based
on coordination transitions. Given a business process BP and
a core C , the basic idea of hiding is to reset the transitions
contained in C . That is, for a transition t = s1

a
−→ s2 in C ,

if a is an activity in BP or t is a coordinated transition, then
t remains unchanged, otherwise activity a is set to τ , i.e., the
invisible activity.

Since multiple transitions in a core may be associated with
the same activity, we need to formally define the consistency
between transitions. In essence, a set of consistent transitions
in an original process refer to a transition that may be exe-
cuted by the original process at different times.
Definition 8 (Consistent Transition): Let C = (Sc, Ac, Tc,

sc0, Fc) be a core, and t1 = (c1, a, c2), t2 = (c3, b, c4) be two
transitions in C . t1 and t2 are consistent, iff they satisfy the
following conditions:
(1) a = b;
(2) ζ (c1)− ζ (c1) ∩ ζ (c2) = ζ (c3)− ζ (c3) ∩ ζ (c4);
(3) ζ (c2)− ζ (c1) ∩ ζ (c2) = ζ (c4)− ζ (c3) ∩ ζ (c4);
where let s = (s1, Q1, . . . , sn, Qn) be a state in C , then

ζ (s) = {s1, . . . , sn}.
In definition 8, (1) states that the activities associated with

t1 and t2 are identical, (2) states that the source states of t1
and t2 are identical, and (3) states that the target states of t1
and t2 are identical.
Example 7: For the core C in Figure 6, according to

Definition 8, we can derive that t1 = o0
checkStock
−→ o3 and

t2 = o2
checkStock
−→ o6 are consistent. Despite the fact that the

activities associated with t1 and t3 (i.e., o3
checkStock
−→ o3) are

identical, the two transitions aren’t consistent as their source

FIGURE 7. Hidden cores corresponding to Cus and Ven.
(a) Ch1 and (b)Ch2.

and target states aren’t identified. For example, the source
state of t1 is v0, but the source state of t3 is v1.
Definition 9 (Hiding): Let OP = BP1|| . . . || BPn be an

original process, BP = (S, A, T , s0, F) be a business process
in OP, C = (Sc, Ac, Tc, sc0, Fc) be the core corresponding
to CBP, and CT be coordination transitions in C . Then,
the hidden core obtained by hiding C based on BP and CT
is an LTS Ch = (Sh, Ah, Th, sh0, Fh), where
(1) Sh = Sc;
(2) Ah = {a|∀(r , a, s) ∈ CT ∧ a ∈ A};
(3) For each transition t = (r , a, s), if a ∈ A or ∃ ct ∈ CT,

ct and t are consistent, then t ∈ Th, otherwise (r , τ ,
s) ∈ Th;

(4) sh0 = sc0;
(5) Fh = Fc.
Example 8: For Cus and Ven, we can generate their hidden

cores, as shown in Figure 7.
After generating hidden cores, we propose an approach

to minimize them to obtain intermediate business processes.
Currently, several techniques for minimizing LTSs have been
presented. Among them, weak trace minimization [14] and
branching bisimulation minimization [16] are widely used.
Despite the fact that hidden cores in our context are LTSs,
the two techniques cannot be directly used to minimize them.
Weak trace minimization is too relaxed as existing indetermi-
nate choices in hidden cores cannot be preserved. In contrast,
branching bisimulation minimization is too strict as exist-
ing invisible activities in hidden cores cannot be completely
removed.
To remove all invisible activities while preserving existing

indeterminate choices, we propose a novel algorithm to min-
imize hidden cores.
In Algorithm 4, τ -closure(S) refers to the τ -closure of

set S [13]. Theoretically, Algorithm 4 is closely related to
weak trace minimization. The only difference between them
is that weak trace minimization uses activities to generate
merging states, while Algorithm 5 uses blocks to generate
merging states. According to Algorithm 5, we know that tran-
sitions in each block are consistent, but transitions distributed
in different blocks are inconsistent. Therefore, we can derive

VOLUME 7, 2019 87075

Q. Mo et al.: Correctness Enforcement Approach for Collaborative Business Processes

Algorithm 4 Minimize the Hidden Core
Input: A hidden core Ch = (Sh, Ah, Th, sh0, Fh) and
coordination transitions CT;
Output: An intermediate business process BPi = (Si, Ai,
Ti, si0, Fi);
1. add τ -closure({sh0}) to empty queues Q1 and Q2;
2. while Q1 6= ∅ do
3. dequeue an element e from Q1;
4. for each activity a in Ah do
5. obtain the transitions T based on e and a;
6. if |T | = 0 then
7. continue;
8. end if
9. obtain the blocks B of T using Algorithm 5;
10. for each b in B do
11. obtain the target states St of transitions Tb

in b;
12. obtain τ -closure(St);
13. if τ -closure(St) is not in Q2 then
14. add τ -closure(St) to Q1 and Q2;
15. generate t = (e, a, τ -closure(St));
16. add t to Th;
17. obtain a transition tb ∈ Tb;
18. if tb ∈ CT then
19. set t to a coordination transition in BPi;
20. end if
21. else
22. generate t = (e, a, τ -closure(St));
23. and add t to Th;
24. obtain a transition tb ∈ Tb;
25. if tb ∈ CT then
26. set t to a coordination transition in BPi;
27. end if
28. end if
29. end for
30. end for
31. end while
32. Si = Q2; Ai = Ah; si0 = τ -closure({ch0});
33. for each state s in Si do
34. if s ∩ Fh 6= ∅ then
35. add s to Fi;
36. end if
37. end for

that existing indeterminate choices are preserved. Addi-
tionally, after a merging state (such as St) is generated,
Algorithm 4 automatically calculates its corresponding
τ -closure (such as τ -closure(St)) as a finalmerging state. This
ensures that all invisible activities contained in hidden cores
are removed. Assuming that m = |Si|, n = |Ah|, and k = |B|,
then the time complexity of Algorithm 4 is O(m× n× k).
Algorithm 5 is used to calculate blocks corresponding to

a set of transitions. Assuming that n = |T |, then the time
complexity of Algorithm 5 is O(n2).

Algorithm 5 Obtain Blocks
Input: A set of transitions T ;
Output: A set of blocks B;
1. for each transition t in T do
2. obtain the index i of t in B;
3. if i = ∅ then
4. new a block b and add t to b;
5. add b to B;
6. else
7. obtain the i th block bi and add t to bi;
8. end if
9. end for

FIGURE 8. Intermediate business processes corresponding to Cus and
Ven. (a) BPi1, and (b) BPi2.

Example 9: For the hidden cores Ch1 and Ch2 in Figure 7,
we can generate their intermediate business processes using
Algorithm 4, as shown in Figure 8.

At last, we present an approach to generate enforced
business processes from intermediate business processes
using coordination mapping. In essence, coordination map-
ping inserts coordination factors into intermediate business
processes to ensure the fact that the generated enforced
processes are correct and maximally permissive. In our
context, coordination factors correspond to a class of spe-
cial activities that are used to model coordination interac-
tions to achieve coordination logic. It is worth noting that
the communication between coordination factors is always
synchronous.
Definition 10 (Coordination Mapping): Let OP =

BP1|| . . . || BPn be an original process, C be the core corre-
sponding to OP, BP = (S, A, T , s0, F) be a business process
in OP, BPi = (Si, Ai, Ti, si0, Fi) be the intermediate business
process corresponding to BP, and CT be the coordination
transitions inC . Then, the enforced business process obtained
by the coordination mapping of BPi is an LTS BPe = (Se, Ae,
Te, se0, Fe), where

(1) Se = Si∪{sc|∀t = (r , a, s) ∈ Ti ∧ a /∈ A ∧ t ∈ CT }∪
{sc1, sc2|∀t = (r , a, s) ∈ Ti ∧ a ∈ A ∧ t ∈ CT };

(2) se0 = si0;
(3) Fe = Fi;

87076 VOLUME 7, 2019

Q. Mo et al.: Correctness Enforcement Approach for Collaborative Business Processes

(4) Ae = {a|∀t = (r , a, s) ∈ Ti ∧ a ∈ A ∧ t /∈ CT}∪
{SYNC_1 _a, SYNC_2 _a|
∀t = (r , a, s) ∈ Ti ∧ a ∈ A ∧ t ∈ CT }∪
{SYNC_1 _a, SYNC_2 _a|
∀t = (r , a, s) ∈ Ti ∧ a /∈ A ∧ t ∈ CT };

(5) Te = {(r , SYNC _1 _a, sc), (sc, SYNC _2 _a, s)|
∀t = (r , a, s) ∈ Ti ∧ a /∈ A ∧ t ∈ CT }∪
{(r , SYNC _1 _a, sc1), (sc1, a, sc2),
(sc2, SYNC _2 _a, s)|
∀t = (r , a, s) ∈ Ti ∧ a ∈ A ∧ t ∈ CT }∪
{(r , a, s)|∀t = (r , a, s) ∈ Ti ∧ a ∈ A ∧ t /∈ CT}.

Based on Definition 10, we know that for a transition
t = (r , a, s) ∈ Ti: 1) if a /∈ A and t ∈ CT , then
two coordination factors SYNC_1_a and SYNC_2_a and a
coordination state sc are introduced, they are used to split the
transition t into two new transitions (r , SYNC_1 _a, sc) and
(sc, SYNC_2 _a, s), indicating that t is coordinated in state
r through SYNC_1 _a, and the coordination is completed
in state s through SYNC_2 _a; 2) if a ∈ A and t ∈ CT ,
then two coordination factors SYNC_1_a and SYNC_2_a
and two coordination states sc1 and sc2 are introduced, they
are used to split the transition t into three new transitions
(r , SYNC _1 _a, sc1), (sc1, a, sc2) and (sc2, SYNC _2 _a, s),
indicating that t is coordinated in state r through SYNC_1
_a, and the coordination is completed in state s through
SYNC_2 _a; and 3) if a ∈ A and t /∈ CT, then t remains
unchanged.
Example 10: Based on coordination mapping, we can gen-

erate two enforced business processes, as shown in Figure 9.
By composing enforced business processes, we can con-

struct enforced processes.
Definition 11 (Enforced Process): Let OP = BP1|| . . . ||

BPn be an original process, and BPe1, . . . ,BPen be enforced
business processes corresponding to BP1, . . . ,BPn. Then,
the enforced process corresponding to OP is EP =
BPe1|| . . . || BPen.
Example 11: By composing BPe1 and BPe2 in Figure 7,

we can construct the enforced process EP = BPe1|| BPe2,
as shown in Figure 10.
By analyzing enforced processes built our approach,

we can prove that they are effective. At first, we prove that
they are correct.
To prove that enforced processes are correct, we present

Lemma 2.
Lemma 2: Let C = (S, A, T , s0, F) be core, then for each

state s ∈ S, there exists a final state sf ∈ F , such that
s
∗
−→ sf .

Proof: Let OP be the original process corresponding
to C . According to Algorithm 2, we know that all invalid
states and the transitions formed by these invalid states are
removed from Po while all valid states and the transitions
formed these valid states are preserved in core. Since for each
valid state s ∈ S, there exists a trace σ = a1 . . . an, such that
s

a1
−→ s1 . . . sn−1

an
−→ sf , where sf ∈ F , we can derive that

Lemma 1 holds. �

FIGURE 9. Enforced business processes corresponding to Cus and Ven.
(a) BPe1, and (b) BPe2.

FIGURE 10. Enforced process EP.

Lemma 2 states that for each state in the core, it can always
reach a final state.

Based on Lemma 2, we prove that enforced processes built
by our approach are correct below.
Theorem 1: Let OP be an original process, and EP be the

enforced process. Then, EP is correct.
Proof: The proof follows from the following observa-

tions. Support that C = (S, A, T , s0, F), EP = (Se, Ae, Te,
se0, Fe), and CT are the coordination transitions in C . For any
state s1 in S, we have

(1) If t = (s1, a, s2) ∈ T and t ∈ CT , then there exist three
corresponding transitions (se1, SYNC _1 _a, sc1), (sc1,
a, sc2), (sc2, SYNC _2 _a, se2) in Te;

(2) If t = (s1, a, s2) ∈ T and t /∈ CT, then there exists a
corresponding transition (se1, a, se2) in Te;

(3) There are no extra transitions generated from se1 expect
for corresponding transitions;

(4) If s1 ∈ F , then se1 ∈ Fe;
(5) If se1 ∈ Fe, then s1 ∈ F .

Based on Lemma 2, we know that for each state s ∈ S, there
exists a final state sf ∈ F , such that s

∗
−→ sf . Therefore, we

VOLUME 7, 2019 87077

Q. Mo et al.: Correctness Enforcement Approach for Collaborative Business Processes

can derive that for each state se ∈ Se, there exists a final state
sef ∈ Fe, such that se

∗
−→ sef .

According to Definition 6, we can conclude that Pe is
correct. �
Example 12: In Figure 10, we can see that all states in

EP can reach the final state e13. Therefore, we can derive that
EP is correct.

Afterwards, we prove that they are maximally permissive.
To prove that enforced processes are maximally permis-

sive, we present Lemma 3.
Lemma 3: Let C be a core, and EP be the enforced process

generated from C , then EP preserves all legal traces in C
without introducing additional traces in the case of neglecting
the coordination factors in EP.

Proof: The proof follows from the following observa-
tions. Support that C = (S, A, T , s0, F), EP = (Se, Ae, Te,
se0, Fe), and CT are the coordination transitions in C . For any
state s1 in S, we have

(1) If t = (s1, a, s2) ∈ T and t ∈ CT , then there exist three
corresponding transitions (se1, SYNC _1 _a, sc1), (sc1,
a, sc2), (sc2, SYNC _2 _a, se2) in Te;

(2) If t = (s1, a, s2) ∈ T and t /∈ CT, then there exists a
corresponding transition (se1, a, se2) in Te;

(3) There are no extra transitions generated from se1 expect
for corresponding transitions;

(4) If s1 ∈ F , then se1 ∈ Fe;
(5) If se1 ∈ Fe, then s1 ∈ F .

Based on (1) - (5), we can derive that for each legal trace σ
inC , there exists a unique corresponding legal trace σ ’ in EP,
such that σ = σ ’↑ CF, where CF refers to coordination
factors in EF, and σ ↑ CF refers to a new trace generated by
removing the coordination factors in CF from σ . Therefore,
in case coordination factors are neglected, we can conclude
that Lemma 3 holds. �
Based on Lemma 3, we can prove that enforced processes

preserve all legal traces in original processes without intro-
ducing additional traces in the case of neglecting coordination
factors.
Theorem 2: Let OP be an original process, and EP be the

enforced process. Then, EP is maximally permissive. That
is, it preserves all legal traces in OP without introducing
additional traces in the case of neglecting the coordination
factors in EP.

Proof: Support that CF are the coordination factors
in EP. According to Lemma 1, we know that C pre-
serves all legal traces in OP without introducing additional
traces. Therefore, we can derive that Theorem 2 holds based
on Lemma 3. �
Example 13: From C depicted in Figure 6 and EP shown

in Figure 10, we can derive that there exists a mapping
relationship between C and EP, as presented in Figure 11.
That is, for each transition t = (s1, a, s2) inC , two cases hold:

(1) If t is a coordination transition (marked in red), then
1) there exist three corresponding transitions (se1,
SYNC _1 _a, sc1), (sc1, a, sc2), (sc2, SYNC _2 _a, se2)

FIGURE 11. The mapping relationship between C and EP. (a) C ,
and (b) EP.

FIGURE 12. The architecture of cet.

in EP; 2) if s1 ∈ {o7}, then se1 ∈ {e13}; 3) if s2 ∈ {o7},
then se2 ∈ {e13}; 4) if se1 ∈ {e13}, then s1 ∈ {o7}; and
5) if se2 ∈ {e13}, then s2 ∈ {o7};

(2) If t is not a coordination transition, then 1) there exist a
corresponding transitions (se1, a, se2) in EP; 2) if s1 ∈
{o7}, then se1 ∈ {e13}; 3) if s2 ∈ {o7}, then se2 ∈ {e13};
4) if se1 ∈ {e13}, then s1 ∈ {o7}; and 5) if se2 ∈ {e13},
then s2 ∈ {o7}.

Based on Definition 2, we can conclude that EP is maxi-
mally permissive.

V. IMPLEMENTATION AND EXPERIMENTS
In this section, we first briefly describe the implementation of
our approach. Then, we choose a set of real-world cases and
conduct a series of experiments to validate our approach.

A. IMPLEMENTATION
Our approach is implemented as a prototype tool called cet.
Figure 12 shows the architecture of cet. Based on separation
of concerns, it involves three layers.

87078 VOLUME 7, 2019

Q. Mo et al.: Correctness Enforcement Approach for Collaborative Business Processes

FIGURE 13. The relation between the model size and the time to enforce
each case.

(1) At the data layer, original processes are organized in
FSP files, and enforced processes are specified in DOT
language scripts.

(2) The analysis layer involves four components: 1) the
Correctness Analyzer can be used to analyzes the cor-
rectness of original processes based on weak termi-
nation; 2) the Core Generator prunes the reachability
graph of original processes to obtain their cores;
3) the Coordination Activity Generator generates a set
of coordination activities form cores; and 4) the Coordi-
nation Mapping Tool can be used to generate enforced
processes.

(3) The presentation layer involves two components: 1) the
FSP Modeler can be used to model original processes
using FSP processes; and 2) the Presentation Tool can
be used to display enforced processes using GraphViz
(http://www.graphviz.org/).

In practice, business designers first specify an original
process using FSP and input it into the FSP Translator. The
FSP Translator then automatically converts the FSP specifi-
cation of the original process into an LTS model. The Cor-
rectness Analyzer accepts the LTS model and then analyzes
its correctness based on weak termination. In case the orig-
inal process is partially correct, the Core Generator prunes
the LTS model and generates its core. Based the generated
core, the Coordination Transition Generator generates a set
of coordination transitions. Using these coordination tran-
sitions, the Coordination Mapping Tool products a set of
enforced business processes and an enforced process. The
Presentation Tool leverages open-source graph visualization
software GraphViz to display these enforced business pro-
cesses and the enforced process.

B. EXPERIMENTS
In this section, we conduct a series of experiments to con-
firm the fact that whether our approach can improve the
applicability compared to state-of-the-art approaches (i.e., the
approaches in [10]–[13]) in the case of ensuring the effective-
ness, and the scalability of our approach is not the focus of the
current validation. The applicability and effectiveness of our
approach are validated on real-world cases. All experiments

were carried out on a PC with 1.80GHz Processor and 16GB
of RAM, running Windows 10.

Currently, there are no public collaborative business
processes available for experiments [18]. Yet, in order
to validate the applicability and effectiveness of our
approach, we choose 30 real-world cases from existing
research papers and the BPMN case base (http://www.bpmn.
org/) as well as the process model matching case (https://ai.
wu.ac.at/emisa2015/contest.php) for our experiments. These
cases specify actual scenarios in different areas, which repre-
sent diverse and practical private processes.

Recall that our approach can enforce cases that are partially
correct, and there is no need to enforce ones that are cor-
rect or incorrect [10]–[13]. Therefore, we manually modify
the internal structure of each case to randomly inject errors
(e.g., deadlocks, livelocks and unspecified receptions) before
our experiments. In this way, we ensure that all the cases are
partially correct.

For the thirty cases, we first analyze the applicability,
and Table 2 presents the experimental results of some cases.
In Table 2, |N | and |A| represent the number of participants
and activities in the case, respectively. app, Cenf , andMp are
used to identify the applicability of the approach, the correct-
ness of the enforced case and whether the enforced case is
maximally permissive, respectively. Note that given a case, its
corresponding enforced case can be generated by enforcing it
using cet.

In Table 2, we can see that the approaches in [10]–[13]
cannot be used to enforced these cases, i.e., app is ‘‘−’’
in Table 2. Concretely, since these cases cover behavioral
abnormalities (e.g., deadlocks, livelocks and unspecified
receptions) and these abnormalities in turn result in the fact
that their reachability graph is not well-formed, the approach
in [10] cannot be used to enforce these cases. For example, for
Ca-1(i.e., our motivating exampleOrd), the approach will not
work as Ord’s reachability graph covers a livelock and this
in turn results in it is not well-formed. For the approaches
in [11]–[13], they also cannot be used to enforce these cases
since synchronous communication or other behavioral abnor-
malities (e.g., livelocks and unspecified receptions) are intro-
duced expect for deadlocks. For example, for Ca-1(i.e., our
motivating exampleOrd), sinceOrd covers both synchronous
communication and livelocks, and this in turn results in the
inability of the approaches in [11]–[13] to enforce these cases.
In contrast, for all cases, our approach can complete correct-
ness enforcement by inserting coordination factors into them,
i.e., app is ‘‘+’’ in Table 2. Therefore, we can derive that
the applicability of our approach can be greatly improved
compared to the approaches in [10]–[13].

The effectiveness of our approach has been proved in
Section 4. Here, we show the effectiveness of our approach
through experiments, and Table 2 presents the experimental
results of some cases. As expected, all enforced cases become
correct and maximally permissive (i.e., both Cenf and Mp
are ‘‘+’’) once the additional coordination factors are added
to cases. This confirms that our approach is effective.

VOLUME 7, 2019 87079

Q. Mo et al.: Correctness Enforcement Approach for Collaborative Business Processes

TABLE 2. Experimental results of some cases.

In particular, since the approaches in [10]–[13] cannot be
used to enforce these cases, their experimental results in terms
of the effectiveness are not presented in Table 2, denoted
by ‘‘+/−’’.
Despite the fact that the scalability of our approach is not

the focus of this paper. Yet, in order to identify theweaknesses
of our approach to that it could be solved in future, during
our experiments we record the time for enforcing every case.
The minimum time is 2 ms, the maximum time is 114918 ms,
the average time is 7387 ms, and the standard deviation is
small, which can be ignored. Figure 13 depicts the relation
between the model size and the time to enforce each case.
Note that we identify the model size with the number of
transitions as it is always larger than the number of states in
each case.

In Figure 13, we can see that most cases have a
smaller model size (i.e., the case contains few states, such
as Ca-01), the time to achieve correctness enforcement is
negligible. However, for medium-size cases, then more time
is required yet the overall time for correctness enforcement
is reasonable. For example, for Ca-22 with 8696 transi-
tions, it takes about 1.9 min for cet to complete correctness
enforcement. In practice, even it takes more time for cet to
achieve correctness enforcement, this is not an issue since our
enforcement is achieved at design time.

In theory, our approach needs to build the reachabil-
ity graph of original processes when achieving correctness
enforcement. Thus, it may suffer from the state-space explo-
sion problem. How to solve the problem is not detailed in this
paper, and our future work will alleviate the problem using
various techniques such as stubborn set-based methods [30],
unfolding methods [31], and BDD-based methods [32].

In particular, since the approaches in [10]–[13] cannot be
used to enforce these cases, their experimental results in terms
of the scalability are not presented in Figure 16.

VI. RELATED WORK
Our work is related to two research axes: correctness
checking approaches; and (2) correctness enforcement
approaches.

A. CORRECTNESS CHECKING APPROACHES
The existing work in this area can be divided into three
categories, i.e., automata-based approaches, petri net-based
approaches, and process algebra-based approaches.

1) AUTOMATA-BASED APPROACHES
Zhou et al. [19] proposed an automata-based approach for
verifying mediated service interactions considering expected
behavior. Their approach first employs Labeled Transition
Systems (LTS) to model service protocols (each service pro-
tocol corresponds to a service-based process). Then, accord-
ing to the adaptation mechanisms of a certain adapter,
the approach generates the logic of the adapter that can
be used to reconcile the mismatches between the protocols.
Lastly, the reachability and liveness properties are verified
using SPIN, and the result indicates whether the interaction
is always adaptable. Flavio et al. [20] proposed a formal
approach for modeling and verifying BPMN-based business
process collaborations. Their approach first proposes the
operational semantics for a relevant subset of BPMN ele-
ments that can be used to map BPMN-based collaborative
business processes into Labeled Transition Systems, and then
verifies correctness properties (e.g., the reachability and live-
ness properties) in terms of LTL formulae using the tool
Maude.

2) PETRI NET-BASED APPROACHES
Aalst [4] presented an IOWF (Inter-Organizational Work-
flow) based approach for modeling and analyzing inter-
organizational workflows. In this approach, the authors first
use WF-net (Workflow net) [21] to model the business
process of each party. Particularly, a WF-net is a spe-
cial Petri net with exactly one source place i and exactly
one sink place o. Additionally, if we add a transition e
such that e• = o and •e = i, then the WF-net is
strongly connected. Then, they define two communication
mechanisms, i.e., asynchronous communication and syn-
chronous communication, to model interactions between
business processes and compose the business process of each
party in the collaboration using these two communication

87080 VOLUME 7, 2019

Q. Mo et al.: Correctness Enforcement Approach for Collaborative Business Processes

mechanisms to obtain an inter-organizational workflow rep-
resented by IOWF. Lastly, they employ the unfolding oper-
ator to transform an IOWF into a WF-net, and verify the
correctness of the IOWF in terms of the soundness prop-
erty. Zhang et al. [22] presented an approach that relies on
Petri nets and Pi calculus for modeling collaborative business
processes. Their approach first employs Petri nets and Pi
calculus to model the local processes in the collaboration
and the interaction protocols between these local processes,
respectively. Then, the approach defines the logic correctness
of collaborative business processes based on soundness [4].
Lastly, a method verifying the logic correctness is presented,
i.e., each local process is sound and the pi process modeling
the interaction between local processes can be reduced into
the process 0. Ge et al. [23] presented an approach that relies
on Interaction-Oriented Petri Nets (IOPN) to model collabo-
rative business processes. Their approach first uses IOPN to
describe the workflow coordination between different orga-
nizations, i.e., collaborative business processes. Then, the
approach introduces the notion of weak sound to define
the logic correctness of collaborative business processes.
At last, a decomposition approach with invariant analysis
that can decompose a circuit-free and relaxed sound IOPN
into a set of sequence diagrams is presented. This decom-
position approach can avoid the state-space explosion prob-
lem, thereby improving the efficiency of correctness analysis.
Yu et al. [8] presented a Petri nets-based approach for model-
ing and verifying cross-department processes considering dif-
ferent kinds of coordination patterns. Their approach extends
WF-net by considering resource and message factors, namely
RM_WF_Net, and additionally proposes several coordina-
tion patterns among different departments. By composing the
business process of each party described by RM_WF_Net in
the collaboration using these presented coordination patterns,
a cross-department business process can be obtained and
the soundness of the cross-department business process can
be analyzed based on its reachability graph, i.e., 1) for any
markingM that is reachable from the initial marking, the final
marking can be reachable from M by executing a sequence
of transitions, 2) if the final marking is reached, then there
is exactly one token in the place o, and no tokens in the
other places; and 3) there are no dead transitions in cross-
department business process. To verify the correctness of
complex business processes, Kheldoun et al. [24] proposed
a formal verification approach based on high-level Petri
nets. Their approach first uses Business Process Modeling
Notation (BPMN) to model complex collaborative business
processes. Then, the approach presents a formal semantics for
BPMN using recursive ECATNets that can transformBPMN-
based collaborative business processes into Petri nets. Finally,
the correctness properties (e.g., the reachability property)
with respect to collaborative business processes can be veri-
fied using the Maude LTLmodel checker. To verify the timed
compatibility for mediation-aided web service composition,
Du et al. [25] presented a three stages approach. First, stage 1
treats each service represented by the timed open workflow

net (ToN) in the composition as a fragment. Second, stage 2
transforms fragments into a time automata net (TAN) based
on structure transformation and interactive message transfor-
mation. Finally, stage 3 checks all types of temporal con-
straints (i.e., related correctness properties) using UPPAAL.
To avoid the verification of composite correctness.

3) PROCESS ALGEBRA-BASED APPROACHES
Wong and Gibbons [26] proposed an approach for modeling
and verification of BPMN processes. Their approach intro-
duces a semantic model for BPMN in the process algebra
CSP (Communicating Sequential Process), and then spec-
ifies behavioral properties of BPMN diagrams and veri-
fies the properties via automatic model checking tool FDR.
To guarantee the success of Business Process Modelling
(BPM), Mendoza et al. [27] proposed a conceptual frame-
work for business processes compositional verification. Their
approach transforms collaborative business processes speci-
fied by BPMN into Communicating Sequential Processes +
Time (CSP+ T) processes, and then specifies the desired
temporal properties in terms of Clocked Computation Tree
Logic (CCTL) formulae and verifies the properties through
Failure Divergence Refinement (FDR2). To improve the reli-
ability for web service-based business process collaboration,
Zhu et al. [28] presented an approach to model and verify
web service-based business process collaboration based on
model transformation. Their approach first establishes amod-
eling and verifying framework based on model transforma-
tion. Then, the approach presents a set of rules to transform
BPE based private processes into CSP processes. Finally,
the correctness of the composition of private processes are
verified using the model checking tool Failure Divergence
Refinement (FDR).

However, the above approaches focus on correctness
checking and their main disadvantage is that if there are mul-
tiple errors in collaborative business processes, then multiple
detections and adjustments are required. Since the diagnosis
information after each detection is difficult to understand for
non-experts and does not provide recipes on how to repair
collaborative business processes, the repair process for them
may be complicated. This will have a direct impact on the
design of collaborative business processes.

B. CORRECTNESS ENFORCEMENT APPROACHES
Compared with correctness checking approaches, less atten-
tion is paid to the approach for correctness enforcement.

As the need for interservice compatibility analysis and
indirect composition has gone beyond what the existing
service composition/verification technologies can handle,
Tan et al. [10] proposed an approach for compatibility
enforcement based on Petri nets. Their approach first trans-
forms a BPEL description (i.e., a web service-based business
process) into a service workflow net, which is a kind of
colored Petri net (CPN). Then, the approach analyzes the
compatibility of two web service-based business processes,
and then devise an approach to check whether there exists a

VOLUME 7, 2019 87081

Q. Mo et al.: Correctness Enforcement Approach for Collaborative Business Processes

message mediator so that their composition does not violate
the constraints imposed by either side. Finally, in case the
message mediator exists, the approach generates it to assist
the automatic composition of partially compatible business
processes. However, the approach requires that the original
process needs to satisfy a certain property when achieving
correctness enforcement. That is, given two business pro-
cesses N1 and N2, and the data mapping I , there exists a
mediator to glue N1 and N2, if and only if G(N1, N2, I) is
well-formed, i.e., 1) for any marking M that is reachable
from the initial marking, the final marking can be reachable
fromM by executing a sequence of transitions, 2) if the final
marking is reached, then there is exactly one token in the
place o, and no tokens in the other places except for mes-
sage places. Additionally, unlike our approach, the approach
deals with centralized orchestration-based business pro-
cesses rather that fully decentralized choreography-based
ones as mediators are introduced. To achieve correctness
enforcement, Xiong et al. [11] proposed an approach for
web service-based collaborative business processes based
on Petri nets. Their approach first uses the composition net
(i.e., the C-net) to model collaborative business processes.
Then, the problem of behavioral compatibility among web
services is hence transformed into the deadlock structure
problem of a C-net. If there exist incompatibility cases,
a policy based on appending additional information chan-
nels is proposed. Since information channels are introduced,
the approach can deal with fully decentralized business pro-
cesses. However, the approach requires that the original pro-
cess needs to satisfy a certain property when achieving cor-
rectness enforcement. The property is strict, and it leads to
the situation where the approach can only enforce original
processes that has deadlocks. Additionally, the approach can’t
ensure that enforced processes are maximally permissive.
Based on the approach in [11], Bi et al. [12], [13] proposed
a novel compatibility enforcement approach based on Petri
Nets. Their approach first employs service workflow nets to
model service choreography (i.e., collaborative business pro-
cesses). Afterwards, by combining structure and reachability
analyses, the approach generates a controlled reduced graph
for a collaborative business process, and then develops amax-
imally permissive state feedback control policy to prevent
abnormity. Lastly, an optimal controller is constructed for the
administrator of service composition to avoid deadlocks in
service choreography. Like the approach in [11], the approach
introduces information channels as well. Therefore, it can
generate fully decentralized choreography-based enforced
processes. Additionally, it ensures that enforced processes
are maximally permissive. However, the approach requires
that the original process needs to satisfy a certain property
when achieving correctness enforcement. That is, there exists
an optimal controller, if and only if the reduced reachability
graph is well-formed, i.e., 1) for any marking M that is
reachable from the initial marking, the final marking can be
reachable fromM by executing a sequence of transitions, 2) if
the final marking is reached, then there is exactly one token

in the place o, and no tokens in the other places. Like the
approach in [11], the approach can only address the situation
where there are deadlocks in original processes.

C. SUMMARY OF EXISTING WORK
Based on this literature review, we can see that existing
approaches (e.g., [4], [8], [19]–[28]) mainly focus on correct-
ness checking. Since iterative detection and adjustment are
required during achieving correctness, this will greatly affect
the modeling efficiency of collaborative business processes.
Additionally, as diagnosis information after each detection is
difficult to understand for non-experts and does not provide
recipes on how to repair collaborative business processes,
the repair process for themmay be complicated. This will fur-
ther weaken themodeling efficiency of collaborative business
processes. Several approaches (e.g., [10]–[13]) concentrate
on correctness enforcement, but run into the applicability
problem as they fail to consider both synchronous and asyn-
chronous communication and need to put additional restric-
tions on original processes.

In comparison, since our approach considers both syn-
chronous and asynchronous communication and achieves
correctness enforcement by inserting coordination factors
into original processes, it can resolve the applicability prob-
lem in existing approaches (e.g., [10]–[13]) in the case of
ensuring the effectiveness.

VII. CONCLUSION
The correctness analysis of collaborative business processes
is considered to be an important issue in Business Pro-
cess Management (BPM). In this paper, we propose a novel
correctness enforcement approach for collaborative business
processes. Since enforced processes built by our approach
are correct and maximally permissive, repeated detection
and adjustment in existing correctness checking approaches
are avoided. Additionally, as our approach considers both
synchronous and asynchronous communication and does not
need to put any restrictions on original processes, it is more
applicable than existing correctness enforcement approaches.

The future work will be mainly carried out in the fol-
lowing three aspects: 1) Since our approach needs to build
the reachability graph of original processes when achieving
correctness enforcement, it may suffer from the state-space
explosion problem. How to achieve correctness enforcement
more effectively will be discussed in our future work; 2) In
this paper, we employ LTSs to specify collaborative business
processes. Compared with other graphical specifications such
as BPMN, UML and Petri nets, the model described by LTSs
is complicated and difficult to understand for business design-
ers, and this in turn limits the acceptance of our approach
in practice. The future work will improve the readability
of enforced processes; and 3) In essence, weak termination
can be seen as a fundamental correctness criterion yet actual
requirements may be diverse such as temporal constraints
between activities. Our future work will consider diverse
collaborative requirements when achieving correctness
enforcement.

87082 VOLUME 7, 2019

Q. Mo et al.: Correctness Enforcement Approach for Collaborative Business Processes

REFERENCES
[1] T. Jin, J. Wang, Y. Yang, L. Wen, and K. Li, ‘‘Refactor business pro-

cess models with maximized parallelism,’’ IEEE Trans. Services Comput.,
vol. 9, no. 3, pp. 456–468, May/Jun. 2016.

[2] A. Yousfi, A. de Freitas, A. K. Dey, and R. Saidi, ‘‘The use of ubiqui-
tous computing for business process improvement,’’ IEEE Trans. Services
Comput., vol. 9, no. 4, pp. 621–632, Jul./Aug. 2016.

[3] W. Song, F. Chen, H. Jacobsen, X. Xia, C. Ye, and X. Ma, ‘‘Scientific
workflow mining in clouds,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 10, pp. 2979–2992, Oct. 2017.

[4] M. P. Van Der Aalst, ‘‘Modeling and analyzing interorganizational work-
flows,’’ in Proc. Int. Conf. Appl. Concurrency Syst. Design. Los Alamitos,
CA, USA, Mar. 1998, pp. 262–272.

[5] W. Song and H.-A. Jacobsen, ‘‘Static and dynamic process change,’’ IEEE
Trans. Services Comput., vol. 11, no. 1, pp. 215–231, Jan./Feb. 2018.

[6] Y. Li, Z. Luo, J. Yin, L. Xu, Y. Yin, and Z. Wu, ‘‘Enterprise Pattern:
Integrating the business process into a unified enterprise model of modern
service company,’’Enterprise Inf. Syst., vol. 11, no. 1, pp. 37–57, Jan. 2017.

[7] W. Yu, C. G. Yan, Z. Ding, C. Jiang, and M. Zhou, ‘‘Modeling and
verification of online shopping business processes by considering mali-
cious behavior patterns,’’ IEEE Trans. Autom. Sci. Eng., vol. 13, no. 2,
pp. 647–662, 2016.

[8] W. Yu, C. Yan, Z. Ding, C. Jiang, and M. Zhou, ‘‘Analyzing E-commerce
business process nets via incidence matrix and reduction,’’ IEEE Trans.
Syst., Man, Cybern. Syst., vol. 48, no. 1, pp. 130–141, Jan. 2018.

[9] Q. Zeng, F. Lu, C. Liu, H. Duan, and C. Zhou, ‘‘Modeling and verification
for cross-department collaborative business processes using extended Petri
nets,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 45, no. 2, pp. 349–362,
Feb. 2015.

[10] W. Tan, Y. Fan, M. Zhou, and M. Zhou, ‘‘A Petri net-based method
for compatibility analysis and composition of Web services in business
process execution language,’’ IEEE Trans. Autom. Sci. Eng., vol. 6,
no. 1, pp. 94–106, Jan. 2009.

[11] P. Xiong, Y. Fan, and M. Zhou, ‘‘A Petri net approach to analysis and
composition of Web services,’’ IEEE Trans. Syst., Man, Cybern. A, Syst.
Humans, vol. 40, no. 2, pp. 376–387, Mar. 2010.

[12] J. Bi, H. Yuan, andM. Zhou, ‘‘A Petri net method for compatibility enforce-
ment to support service choreography,’’ IEEE Access, vol. 4, pp. 8581–
8592, 2017.

[13] J. Bi, H. Yuan, and W. Tan, ‘‘Deadlock prevention for service orches-
tration via controlled Petri nets,’’ J. Parallel Distrib. Comput., vol. 124,
pp. 92–105, Feb. 2019.

[14] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation. Boston, MA, USA: Addison-Wesley, 1979.

[15] N. Lohmann, ‘‘Compliance by design for artifact-centric business pro-
cesses,’’ Inf. Syst., vol. 38, no. 4, pp. 606–618, Jun. 2013.

[16] S. Blom and S. Orzan, ‘‘Distributed branching bisimulation reduction
of state spaces,’’ Electron. Notes Theor. Comput. Sci., vol. 89, no. 1,
pp. 99–113, Sep. 2003.

[17] D. Ciolek, V. Braberman, and N. Dippolito, ‘‘Interaction models and
automated control under partial observable environments,’’ IEEE Trans.
Softw. Eng., vol. 43, no. 1, pp. 19–33, Jan. 2017.

[18] M. Borkowski, W. Fdhila, M. Nardelli, S. Rinderle-Ma, and S. Schulte,
‘‘Event-based failure prediction in distributed business processes,’’ Inf.
Syst., vol. 81, pp. 220–235, Mar. 2018. doi: 10.1016/j.is.2017.12.005.

[19] Z. Zhou, L. T. Yang, S. Bhiri, L. Shu, N. Xiong, and M. Hauswirth, ‘‘Ver-
ifying mediated service interactions considering expected behaviours,’’
J. Netw. Comput. Appl., vol. 34, no. 4, pp. 1043–1053, Jul. 2011.

[20] F. Corradini, F. Fornari, A. Polini, B. Re, and F. Tiezzi, ‘‘A formal approach
to modeling and verification of business process collaborations,’’ Sci.
Comput. Program., vol. 166, pp. 35–70, Nov. 2018.

[21] M. P. Van der Aalst, ‘‘The application of Petri nets to workflow manage-
ment,’’ J. Circuits Syst. Comput., vol. 8, no. 1, pp. 21–66, Feb. 1998.

[22] L. Zhang, Y. Lu, and F. Xu, ‘‘Unified modelling and analysis of collabo-
ration business process based on Petri nets and Pi calculus,’’ IET Softw.,
vol. 4, no. 5, pp. 303–317, Oct. 2010.

[23] J. Ge and H. Hu, ‘‘A decomposition approach with invariant analysis for
workflow coordination,’’ Chin. J. Comput., vol. 35, no. 10, pp. 2169–2181,
Oct. 2012.

[24] A. Kheldoun, K. Barkaoui, and M. Ioualalen, ‘‘Formal verification of
complex business processes based on high-level Petri nets,’’ Inf. Sci.,
vols. 385–386, pp. 39–54, Apr. 2017.

[25] Y. Du, B. Yang, and H. Hu, ‘‘Model checking of timed compatibility
for mediation-aided Web service composition: A three stage approach,’’
Expert Syst. Appl., vol. 112, no. 1, pp. 190–207, Dec. 2018.

[26] P. Y. H. Wong and J. Gibbons, ‘‘Formalisations and applications of
BPMN,’’ Sci. Comput. Program., vol. 76, no. 8, pp. 633–650, Aug. 2011.

[27] L. E. Mendoza, M. I. Capel, and M. A. Pérez, ‘‘Conceptual framework
for business processes compositional verification,’’ Inf. Softw. Technol.,
vol. 54, no. 2, pp. 149–161, Feb. 2012.

[28] Y. Zhu, Z. Huang, and H. Zhou, ‘‘Modeling and verification of Web ser-
vices composition based on model transformation,’’ Softw., Pract. Exper.,
vol. 47, no. 5, pp. 709–730, May 2017.

[29] K. Ajay, P. Pascal, and S. Gwen, ‘‘Checking business process evolution,’’
Sci. Comput. Program., vol. 170, no. 15, pp. 1–26, Jan. 2019.

[30] F. M. Bønneland, J. Dyhr, P. G. Jensen, M. Johannsen, and J. Srba, ‘‘Stub-
born versus structural reductions for Petri nets,’’ J. Log. Algebr. Methods
Program., vol. 102, pp. 46–63, Jan. 2019.

[31] D. Xiang, G. Liu, and C. Yan, ‘‘Detecting data inconsistency based on the
unfolding technique of Petri nets,’’ IEEE Trans. Ind. Informat., vol. 13,
no. 6, pp. 2995–3005, Dec. 2017.

[32] C. Latsou, S. J. Dunnett, and L. M. Jackson, ‘‘A new methodology for
automated Petri net generation: Method application,’’ Rel. Eng. Syst. Saf.,
vol. 185, pp. 113–123, Dec. 2019.

QI MO received the B.S. degree from Huaibei
Normal University, Huaibei, China, in 2009,
the M.S. degree from Yunnan University,
Kunming, China, in 2012, and the Ph.D. degree
in software engineering from Yunnan University,
Kunming, China, in 2015. He is currently a Lec-
turer with YunnanUniversity, Kunming, China. He
has led or participated in many projects supported
by the National Natural Science Foundation and
key projects at provincial levels. He has authored

over 10 papers in journals and conference proceedings. His research interests
include formal methods and business process management (BPM).

LIRUI BAI received the B.S. degree from the
Tianjin University Renai College, Tianjin, China,
in 2010, and the M.S. degree from Yunnan Uni-
versity, Kunming, China, in 2012. She is cur-
rently a Lecturer with the Tianjin University Renai
College. She has participated in some projects sup-
ported by the National Natural Science Founda-
tion and key projects at provincial levels. She has
authored over five papers in journals and confer-
ence proceedings. Her research interests include

formal methods, software engineering, and big data.

FEI DAI received the B.S. and M.S. degrees and
the Ph.D. degree in software engineering from
Yunnan University, Kunming, China, in 2005,
2008, and 2011, respectively. He is currently a Pro-
fessor with Southwest Forestry University, Kun-
ming. He has led or participated in many projects
supported by the National Natural Science Foun-
dation and key projects at provincial levels. He has
authored over 50 papers in journals and conference
proceedings. His research interests include busi-

ness process management (BPM) and software engineering.

JIANGLONG QIN received the B.S. and M.S.
degrees and the Ph.D. degree in software engi-
neering fromYunnan University, Kunming, China,
in 2006, 2009, and 2018, respectively, where he is
currently a Lecturer. He has participated in many
projects supported by the National Natural Science
Foundation and key projects at provincial levels.
He has authored over eight papers in journals
and conference proceedings. His research inter-
ests include formal methods and business process
management (BPM).

VOLUME 7, 2019 87083

http://dx.doi.org/10.1016/j.is.2017.12.005

Q. Mo et al.: Correctness Enforcement Approach for Collaborative Business Processes

ZHONGWEN XIE received the B.S. degree from
the Harbin Institute of Technology, Harbin, China,
in 2009, and the M.S. degree and the Ph.D. degree
in software engineering from Yunnan Univer-
sity, Kunming, China, in 2009 and 2012, respec-
tively, where he is currently a Lecturer. He has
participated in many projects supported by the
National Natural Science Foundation and key
projects at provincial levels. He has authored
over nine papers in journals and conference pro-

ceedings. His research interests include formal methods and software
engineering.

TONG LI received the B.S. and M.S. degrees from
Yunnan University, Kunming, China, in 1983 and
1988, respectively, and the Ph.D. degree in soft-
ware engineering from De Montfort University,
Leicester, U.K., in 2007. He is currently a Profes-
sor with Yunnan University. He has led or partici-
pated in many projects supported by the National
Natural Science Foundation and key projects at
provincial levels. He has authored over 100 papers
in journals and conference proceedings. His

research interests include software process and software engineering.

87084 VOLUME 7, 2019

	INTRODUCTION
	 MOTIVATING EXAMPLE
	PRELIMINARIES
	LABELED TRANSITION SYSTEMS
	COLLABORATIVE BUSINESS PROCESSES
	CORRECTNESS

	CORRECTNESS ENFORCEMENT APPROACH
	CORRECTNESS DETECTION
	 CORE GENERATION
	ENFORCED PROCESSES GENERATION

	IMPLEMENTATION AND EXPERIMENTS
	IMPLEMENTATION
	EXPERIMENTS

	RELATED WORK
	CORRECTNESS CHECKING APPROACHES
	AUTOMATA-BASED APPROACHES
	PETRI NET-BASED APPROACHES
	PROCESS ALGEBRA-BASED APPROACHES

	CORRECTNESS ENFORCEMENT APPROACHES
	SUMMARY OF EXISTING WORK

	CONCLUSION
	REFERENCES
	Biographies
	QI MO
	LIRUI BAI
	FEI DAI
	JIANGLONG QIN
	ZHONGWEN XIE
	TONG LI

