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ABSTRACT Underdetermined blind source separation (UBSS) is a hot and challenging problem in signal
processing. In the traditional UBSS algorithm, the number of source signals is often assumed to be known,
which is very inconvenient in practice. In addition, it is more difficult to obtain the accurate estimation
of mixing matrix in the underdetermined case. However, this information has a great influence on the
source separation results, which can easily lead to poor separation performance. In this paper, a novel UBSS
algorithm is presented to carry out a combined source signal number estimation and source signal separation
task. First, in the proposed algorithm, we design a gap-based detection method to detect the number of
source signals by eigenvalue decomposition. Then, the estimation of the mixing matrix is processed using
a higher-order cumulant-based method so that the uniqueness of the estimated mixing matrix is guaranteed.
Furthermore, an improved l1-norm minimization algorithm is proposed to estimate the source signals.
Meanwhile, the pre-conditioned conjugate gradient technology is employed to accelerate the convergence
rate such that the computational load is reduced. Finally, a series of simulation experiments with synthetic
heart sound data and image reconstruction results demonstrate that the proposed algorithm achieves better
separating property than the state-of-the-art algorithms.

INDEX TERMS Underdetermined blind source separation, heart sound signals, higher-order statistics,
sparse representation.

I. INTRODUCTION
Blind source separation (BSS) is to separate the unknown
source signals from the mixture signals with no information
about the mixing matrix, which has been applied in various
fields, such as speech processing, image processing [1], [2].
Most of BSS algorithms have been proposed by exploiting
some assumptions about the source signals. For example,
the number of source signals is known, the source signals
are mutually independent or assumed to be sparse. However,
in practice, these assumptions are difficult to be satisfied.
In particular, for the underdetermined case, i.e., the number
of sensors is less than the number of source signals, which
is a more challenging problem. For this reason, underdeter-
mined BSS faces three challenging issues. The first is how
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to detect the number of source signals, the second is how to
estimate the mixing matrix correctly, and the third is how to
separate the source signals.

To solve the source number estimation problem, the clas-
sical method is based on information theoretic criteria for
model selection [3]. For example, the Parallel Factor Analysis
(PARAFAC) model order selection [4], [5], higher-order ten-
sors method [6]. He et al. [7] proposed a method to detect the
number of clusters in N-way probabilistic clustering, as well
as the automatic order selection [8]. Chen et al. [9] developed
a new source counting algorithm based on sparse modeling of
direction-of-arrival histogram. However, these methods are
prone to underestimate or overestimate the number of source
signals, leading to error source number estimation.

To estimate precisely the mixing matrix, some cluster-
ing algorithms have been developed. For example, K-means
clustering algorithm [10], which is easy to use but sensitive
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to the initialization. Zhen et al. [11] proposed a novel
hierarchical clustering algorithm to estimate the mixture
time-frequency (TF) vectors at signal source points based
on sparse cording and obtain an accurate mixing matrix
estimation. However, it is difficult to estimate the mixing
matrix when the source signals are insufficiently sparse.
Zhou et al. [12] proposed a mixing matrix estimation algo-
rithm from sparse mixtures without knowing the number of
source signals, and it can perform well even if the source
signals are of quite less sparsity. Sun et al. [13] proposed
a novel approach to enhance the estimation accuracy of the
mixingmatrix by using the density-based spatial clustering of
application with noise and the Hough transform. In addition,
the simultaneousmatrix diagonalization-basedmethod is also
an efficient algorithm to estimate the mixing matrix for the
underdetermined case [14], [15]. The PARAFAC algorithms
are combined with a dimensionality reduction step so that
the computational complexity is reduced [16]–[18]. However,
it takes more time consumption.

To separate the source signals, many traditional meth-
ods rely on some hypothesis about the origin sources.
For instance, exploiting the assumption that the source
signals are mutually independent, i.e., independent com-
ponent analysis (ICA) methods [19]. Non-negative matrix
factorization (NMF) is a well-known matrix decomposition
approach [20], [21], which has been employed for signal pro-
cessing [22]–[24]. However, the initialization is an essential
part for the signal separation since NMF is very sensitive
to the initialization. In recent years, the sparsity assump-
tion of the source signals is largely utilized for source sep-
aration problem. Sparse representation has been proved to
be a useful tool in many application, such as deep learn-
ing [25], speech signal processing [26], especially in the
BSS [27], [28]. Xie et al. [29] proposed a new UBSS algo-
rithm with free active sources based on Wigner-Ville dis-
tribution and Khatri-Rao product, which further relax the
sparsity constraint. A novel robust sparse BSS has been
proposed to retrieve spares sources in the presence of out-
liers [30]. In addition, Orthogonal Matching Pursuit (OMP)
is a sparse approximation algorithm to handle the source
signal recovery problem [31], [32]. More and more attentions
have been paid to l1-regularization methods for the sparse
signal reconstruction [33]. However, the objective function
in the l1-regularization least-squares programs is convex
but not differentiable, leading to a computational challenge.
A fast and efficient algorithm has been proposed to learn
an overcomplete dictionary for the sparse representation of
signals [34]. Meanwhile, to obtain better sparse solutions,
Li et al. [35] presents a novel and efficient method for
a manifold optimization-based analysis dictionary learning
with the l1/2 as a regularizer such that the solutions can give
sparse results than the l1-norm method. But how to choose
a suitable sparsity constraint to obtain the sparse solutions,
and how to avoid trivial solutions for the analysis dictio-
nary are two challenge problem in the analysis dictionary
learning.

In this paper, a novel UBSS algorithm is proposed to
separate the mixed heart sound signals by using higher-order
statistics and sparse representation. First of all, to detect
the number of source signals, a Second ORder sTatistic of
the Eigenvalues (SORTE) method is presented to search the
significant gap in the ordered eigenvalues of the covariance
matrix, which is easy to implement and can work well for
the underdetermined case. Then, using the decomposition of
a higher-order symmetric tensor, a higher-order cumulant-
based approach is employed to estimate the mixing matrix
in the underdetermined mixture case. Meanwhile, by deter-
mining the maximum number of terms, the uniqueness of the
estimated mixing matrix is proved. At the signal separation
stage, an l1-norm-like diversity measure is used as a measure
of sparsity for the sparse signal reconstruction. Additionally,
the pre-conditioned conjugate gradient technology is used to
pre-process the estimated mixing matrix. The pre-processing
is based on the eigenvalue decomposition (EVD) of matrix,
which can reduce the computational load of the l1-norm regu-
larized method. Furthermore, the source signals are estimated
using the sparse algorithm.

The main contributions of this paper are summarized as
follows:
• We design a gap-based detection method to detect the
number of source signals by eigenvalue decomposition,
which can work well to detect the source signal number
for the underdetermined case, avoiding any prior knowl-
edge on the source number.

• We employ the higher-order tensor blind identification
of underdetermined mixture approach to estimate the
mixing matrix. Meanwhile, we determine the maximum
number of source signals to ensure that the uniqueness
of the estimated mixing matrix is guaranteed.

• We propose an improved l1-norm regularized algorithm
to estimate the source signals. Meanwhile, the pre-
conditioned conjugate gradient technology is used to
compute the search step such that the convergence rate
is accelerated. Additionally, it is conducive to reduce the
computational cost.

The public heart sound signal data are used in the simulation.
Experimental results show the effectiveness and competitive-
ness of the proposed algorithm.

The structure of the remaining of this paper is organized as
follows. The model description and outline of the proposed
method will be demonstrated in Section II. In Section III,
the proposed UBSS algorithm will be given including the
source number estimation and the mixing matrix estimation.
Experiment results and analysis will be shown in Section IV.
Finally, the conclusion and future work will be drawn in
Section V. In addition, some meaning of notations used in
this paper are demonstrated in Table 1.

II. PROBLEM FORMULATION
A. MODEL DESCRIPTION
we consider the linear instantaneous mixture model:

x = Hs (1)
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TABLE 1. Meaning of notations.

where x = [x1, x2, . . . , xM ]T ∈ RM×N is the observed
mixture signals, s = [s1, s2, . . . , sR]T ∈ RR×N denotes the
source matrix of R sparse sources or hidden sparse com-
ponents, and H ∈ RM×R represents the unknown mixing
matrix. The linear instantaneous mixture model (1) is an
underdetermined case, i.e., M < R. The main goal of this
paper is to separate the sources s from the observed mixture
signals x without prior information on the mixing matrix H.

B. OUTLINE
In this paper, a new UBSS algorithm is proposed using the
higher-order statistics and sparse representation. The block
diagram of the UBSS algorithm is given in Figure 1. First,
the number of source signals is estimated based on the
observed mixture signals. Then, the mixing matrix is esti-
mated using higher-order statistics. In the source separation
stage, the estimatedmixingmatrix is pre-processed by adding
a pre-conditioner. The function of the pre-conditioner is to

FIGURE 1. Block diagram of the proposed UBSS algorithm.

accelerate the convergence rate. Finally, the source signals are
estimated using sparse representation. Detailed descriptions
of the proposed algorithm will be given in the following
section.

III. PROPOSED UNDERDETERMINED BSS ALGORITHM
A. SOURCE NUMBER ESTIMATION BASED ON SORTE
First of all, using the observed data matrix x ∈ RM×N ,
we consider the quadri-covarianceQx

= Cum{x, x∗, x∗, x} ∈
RM×M×M×M . According to the multi-linearity property of
cumulant tensors, we obtain

Qx
ijkl =

R∑
r=1

κrhirh∗jrh
∗
krhlr (2)

where κr is the kurtosis of the r th source, defined as [36]

κr =
E(xr − µ)4

(E(xr − µ)2)2
=
µ4

σ 4 (3)

where xr denotes the r th observed vector,µ is the mean,µ4 is
the fourth moment about the mean, and σ is the standard
deviation.

Then, in term of matrix representation of tensor, (2) can be
expressed as

Q = mat(Qx
ijkl) = (H�H∗)K(H�H∗)H (4)

where Q ∈ RM2
×M2

, and K = diag(κ1, . . . , κI ) ∈ RR×R.
Perform EVD of matrix QQT as follows:

EVD
(

1
M2QQT

)
= U3UT (5)

where 3 = diag(λ1, . . . , λM2 ). Suppose that the M2 eigen-
values are sorted to be λ1 ≥ λ2 ≥ · · · ≥ λM2 . The M2

− R
smallest eigenvalues are all equal to σ 2, i.e.,

λ1 ≥ · · · ≥ λR > λR+1 = . . . = λM2 = σ
2 (6)

where σ 2 is an unknown scalar constant. If λR is significantly
larger than λR+1, there will exist a gap between λR and λR+1.
Thus, we compute the differences of eigenvalues

1λm = λm − λm+1 (7)

where m = 1, 2, . . . ,M2
− 1. Based on (6), we can obtain

1λR+1 = 1λR+2 = · · · = 1λM2−1 (8)

To detect the cluster gap, the variance of the sequence
{1λm}

M2
−1

m=r is computed as follows:

σ 2
r =

1
M2 − r

M2
−1∑

m=r

(
1λm −

1
M2 − r

1λm

)2

(9)

where r = 1, 2, . . . ,M2
− 1. From (8) and (9), we have{

σ 2
r > 0, r = 1, . . . ,R,
σ 2
r = 0, r = R+ 1, . . . ,M2

− 1
(10)
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Then we define a SORTE as follows:

SORTE(r) =


σ 2
r+1

σ 2
r

, σ 2
r > 0,

+∞, σ 2
r = 0

(11)

where r = 1, 2, . . . ,M2
− 2. Then, we obtain

SORTE(r) > 0, r = 1, . . . ,R− 1,
SORTE(r) = 0, r = R.
SORTE(r) = +∞, r = R+ 1, . . . ,M2

− 3,
SORTE(r) = 0, r = M2

− 2.

(12)

Thus, we can perform the source number estimation criterion:

R̂ = arg min
r=1,...,M2−3

SORTE(r). (13)

B. MIXING MATRIX ESTIMATION USING
HIGHER-ORDER STATISTICS
In the following, we estimate the mixing matrix H. The
higher-order statistics is a new attractive blind identification
method to solve the underdetermined mixture problem. The
mixing matrixH can be estimated by exploiting the informa-
tion contained in the higher-order data statistics. The detailed
process is explained as follows:

Denote ur = vec(Ur ), r = 1, . . . ,R, Ū = (u1, . . . , uR) ∈
RM2

×R, and 3̄ = diag(λ1, . . . , λR) ∈ RR×R. Thus, (4) is
equivalent to

(H�H∗)K(H�H∗)H = Ū · 3̄ · ŪH (14)

Then we have

(H�H∗)K
1
2 = Ū · 3̄

1
2 · A (15)

where A is a real orthogonal matrix. Ū and 3̄
1
2 can be

computed based on (5). To compute the matrix A, we define
B = Ū · 3̄

1
2 , and Bs = unvec(bs).

Consider the mapping:8 : (X,Y) ∈ RM×M
×RM×M

7−→

8(X,Y) ∈ RM×M×M×M defined by

8(X,Y)ijkl = xijykl + yijxkl − xilykj − yilxkj (16)

Using the bilinearly of 8, it is found that

R∑
s,t=1

(Wr )st8(Bs,Bt ) = 0 (17)

Thus, given 8[Bs,Bt ], 1 ≤ s, t ≤ R, R linearly independent
real symmetric matricesWr ∈ RR×R can be computed based
on a set of linear equations. The detailed calculation process
of Wr is summarized as follows:
Due to the symmetry of Wr , and 8(Bs,Bt ) =

8(Bt ,Bs), (17) can be rewritten as

R∑
s=1

(Wr )ss8(Bs,Bs)+ 2
R∑

s,t=1
s<t

(Wr )st8(Bs,Bt ) = 0 (18)

Thus, we obtain

C ·
[

(Wr )1,1, . . . , (Wr )R,R
2(Wr )1,2, 2(Wr )1,3, . . . , 2(Wr )R−1,R

]
= 0 (19)

C =
[

vec(8(B1,B1)), . . . , vec(8(BR,BR))
vec(8(B1,B2)), . . . , vec(8(BR−1,BR))

]T
(20)

Then, compute the singular value decomposition (SVD) ofC,
and obtain the R right singular vectors cr , r = 1, . . . ,R.
Stack these vectors in upper triangular matrix Cr ∈ RR×R.
Therefore, the matrix Wr can be computed as follows:

Wr =
1
2
(Cr + CT

r ) (21)

Thus, we find A as a common eigenmatrix that jointly
diagonalizes each of these matricesWr by congruence, i.e.,

W1 = A · D1 · AT

...

WR = A · DR · AT

(22)

where D1, . . . ,DR ∈ RR×R are any diagonal matrices.
So, we can obtain

E = Ū · 3̄
1
2 · A (23)

Thus, the mixing matrix H can be estimated using (15)
and (23), i.e.,

(H�H∗)K
1
2 = E (24)

Then, compute the SVDofE, we can estimate themixing vec-
tor hr as the left singular vector of unvec(er ), r = 1, . . . ,R.
In this case, the estimated mixing matrix Ĥ is obtained.

In addition, the uniqueness of the estimated mixing matrix
is proved in an underdetermined case. For any given sensor
number M , the upper bound of source number R need to
satisfy

R(R− 1)
2

≤
M (M − 1)

4

(
M (M − 1)

2
+ 1

)
−

M !
(M − 4)!4!

1{M≥4} (25)

where

1{M≥4} =

{
0, if M < 4
1, if M ≥ 4

For example, for several different values ofM , the maximum
value of R is shown in Table 2.

TABLE 2. The upper bound of source number.
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C. SOURCE SIGNAL SEPARATION USING
SPARSE REPRESENTATION
Using the estimated mixing matrix Ĥ, we can separate
the source signals using sparse representation. First of all,
the pre-conditioned conjugate gradient (PCG) method is
employed. By computing the EVD on matrix ĤĤT ,

ĤĤT
= F3̃F (26)

Then, multiplying the matrix 3̃−1F−1 on both of the mixture
model (1), we can obtain

x̃ = H̃s (27)

where x̃ = 3̃−1F−1x and H̃ = 3̃−1F−1H.
Then the sparse representation for model (27) can be cast

into the following optimization problem:
min
s

J(s) =
R∑
r=1

|sr |

subject to : H̃s = x̃

(28)

Define the Lagrange function:

L(s, α) = J(s)+ αT (H̃s− x̃) (29)

where α is a Lagrange multiplier. A necessary condition for a
sparse solution s∗ to exist is that (s∗, α∗) be stationary points
of the Lagrange function L(s, α), i.e.,

∂L(s∗, α∗)
∂s∗

=
∂J(s?)
∂s∗

+ H̃Tα∗ = 0

∂L(s∗, α∗)
∂α∗

= H̃s∗ − x̃ = 0
(30)

where

∂J(s?)
∂s∗

=

 ∂|s
∗

1|
...

∂|s∗R|

 = 5(s∗)s∗ (31)

in which 
∂|s∗r | = 1, s∗r > 0
−1 ≤ ∂|s∗r | ≤ 1, s∗r = 0
∂|s∗r | = −1, s∗r < 0

(32)

∂|s∗r | denotes the subderivative of the function f (s∗r ) =
|s∗r |, r = 1, · · · ,R, and

5(s∗) =


|s∗1|
−1 0 · · · 0
0 |s∗2|

−1
· · · 0

...
...

. . .
...

0 0 · · · |s∗R|
−1

 (33)

Then, based on (30) and (31),

5(s∗)s∗ + H̃Tα∗ = 0 (34)

we obtain

s∗ = −5(s∗)−1 · H̃T
· α∗ (35)

Submit (35) to (27),

x̃ = −H̃ ·5(s∗)−1 · H̃T
· α∗ (36)

Thus

α∗ = −(H̃ ·5(s∗)−1 · H̃T )−1 · x̃ (37)

Then, submit (37) to (35), we obtain

s∗ = 5(s∗)−1 · H̃T
· [H̃ ·5(s∗)−1 · H̃T ]−1 · x̃ (38)

Define

vr (s∗)
.
= hTr · [H̃ ·5(s∗)−1 · H̃T ] · x̃ (39)

we have

V(s∗) =

 v1(s∗)
...

vR(s∗)

 = H̃T
· [H̃ ·5(s∗)−1 · H̃T ]−1 · x̃ (40)

According to (38) to (40), we obtain

s∗ = 5(s∗)−1 · V(s∗)

=


|s∗1| · · · 0

...
. . .

...

0 · · · |s∗R|

 ·
 v1(s∗)

...

vR(s∗)



=


|s∗1| · v1(s

∗)

...

|s∗R| · vR(s
∗)

 (41)

Meanwhile, for obtaining the sparse solution of (27), we have
the following iterative formula:

sk+1 =
[
|sk1| · v1(s

k ), · · · , |skR| · vR(s
k )
]T (42)

Therefore, the proposed UBSS algorithm is summarized in
Algorithm 1.

Algorithm 1 Proposed UBSS Algorithm for Mixture Heart
Sound Signals

Input: Mixture heart sound signals x(t) ∈ RM×N .
1: Compute the quadricovariance Qx of the matrix x(t) and
obtain Q = mat(Qx

ijkl),
2: Perform EVD of matrix QQT using (5) and estimate the
source number based on (13),
3: Estimate the mixing vector hr as the left singular vector of
unvec(er ), r = 1, . . . ,R based on (14)−(24),
4: Estimate the source signals s using (41), meanwhile update
s based on (42) until the convergence.
Output: Estimated heart sound source signals ŝ.
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IV. SIMULATIONS
In the following, we test a series of simulation experiments
to evaluate the separation performance of our proposed algo-
rithm. The experiment datasets come from public heart and
lung sounds data sets.1 The first experiment is considered to
separate a set of heart sound mixture signals. In the second
experiment, we test two sets of heart sound mixture signals
in the underdetermined case. Finally, we investigate the effec-
tiveness and feasibility of the proposed algorithm in the task
of image restoration.

A. PERFORMANCE CRITERIA
For evaluating the source signal separation performance,
we select the signal-to-distortion ratio (SDR), signal-to-
interference ratio (SIR), and signal-to-artifact ratio (SAR) as
the evaluation criteria, which are defined in [37]. The larger
they are, the better their performance will be.

For measuring the quality of the estimated mixing matrix,
we consider the mixing error ratio (MER) as the evaluation,
which is defined in [38]. The estimated r-th column vector of
mixing matrix H can be decomposed as

ĥr = hcollr + horthr (43)

where hcollr represents the collinear component of hr , and
horthr represents the orthogonal component of hr . Thus, the
r-th MER is defined as

MERr = 10 log10
‖ hcollr ‖

2
2

‖ horthr ‖
2
2

(44)

In addition, the average mean square error (MSE) is also
used as the performance measure, which is defined as [39]

MSE = min
π∈5

c1,...,cR∈{±1}

1
R

R∑
r=1

∥∥∥∥∥ hr
‖hr‖2

− cr
ĥπr
‖ĥπr ‖2

∥∥∥∥∥
2

2

(45)

where 5 is the set of all permutations of {1, 2, . . . ,R},
hr and ĥr are the ground truth of the kth column of the mix-
ing matrix and the corresponding estimated mixing matrix,
respectively.

B. SEPARATION OF TWO HEART SOUND
MIXTURE SIGNALS
In the first experiment, we test a set of heart sound mixing
signals. The time of heart sound is 10 second, and the sam-
pling frequency is 2000 Hz. The mixing matrix is randomly
selected as follows:

H =
(

0.9085 −0.2391
−2.2207 0.0687

)
(46)

To evaluate the mixing matrix estimation performance,
the PARAFAC algorithm [16] is compared with the pro-
posed algorithm. The MER and MSE of the algorithms is
shown in Table 3. As shown, the average MER improves
31.6630 dB, and the MSE performance of the proposed algo-
rithm is better than the PARAFAC algorithm.

1https://www.welchallyn.com/en.html

FIGURE 2. BSS performance over heart sound signal mixtures, measured
in terms of (a) SDR, (b) SIR, (c) SAR.

TABLE 3. MER and MSE for two heart sound signals.

In the stage of source separation, to better illustrate the
superiority of our proposed algorithm, we compare with
the TF masking algorithm [40], EM NMF algorithms [41],
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TABLE 4. Source separation results for heart sound mixing signals in the underdetermined case (all units are dB).

orthogonal matching pursuit (OMP) algorithm [31], andman-
ifold analysis dictionary learning (MADL) [35]. The separa-
tion results are demonstrated in Figure 2. It can be seen that
the SDR, SIR, and SAR of the proposed algorithm are better
than the compared algorithms, and the average SDR, SIR,
SAR improvements of 29.8604 dB, 20.0844 dB, 237.5788 dB
over the best current results, respectively.

In addition, to better demonstrate the separation results,
we compare the spectrums of the source signals and the
separated signals. The original heart sound signals along with
their spectrograms are shown in Figure 3(a), the waveforms
of mixture heart sound signals are shown in Figure 3(b), and
the reconstructed heart sound signals alongwith their spectro-
grams are shown in Figure 3(c). According to Figure 3(a) and
Figure 3(c), it is shown that the mixture heart sound signals
are separated well.

C. SEPARATION OF HEART SOUND MIXTURE SIGNALS
IN THE UNDERDETERMINED CASE
In the second experiment, we consider a set of heart sound
mixing signals, which is consisted of three sensors and four
heart sound signals. The mixing matrix is randomly selected
as follows:

H =

 0.9085 0.0687 −0.0813 0.7366
−2.2207 −2.0202 −1.9797 0.9553
−0.2391 −0.3641 0.7882 1.9295

 (47)

First of all, the number of source signals is estimated
using the minimum SORTE criterion. The estimated results is
shown in Figure 4. The eigenvalues are sorted in descending
order seen in Figure 4(a). By searching theminimumSORTE-
value, it is seen that the estimated source number is R̂ = 4
in Figure 4(b). Therefore, the minimum SORTE criterion
is effective to detect the number of source signals in the
underdetermined case.

TABLE 5. MER and MSE of the algorithms for four heart sound signals.

In Table 5, theMER andMSE performance of the proposed
algorithm are comparable to the PARAFAR algorithm. The
MESs of proposed algorithm are larger, and the average
MES improves 16.62 dB. Meanwhile, the MSE of proposed
algorithm is around 0.2271 dB lower than the PARAFAC
algorithm. It is shown that the proposed algorithm obtains

FIGURE 3. A typical 10s heart sound signal: (a) Original heart sound
signals along with their spectrograms, (b) mixture heart sound signals
with two channels, and (c) estimated heart sound signals along with their
spectrograms.

better estimation of the mixing matrix than the PARAFAC
algorithm.

Then, the source separation results are tabulated in Table 4.
It is shown that the average SDR, SIR, and SAR of the
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FIGURE 4. Source signal number estimation (a) the eigenvalues are
sorted in descending order and (b) the SORTE cure.

proposed algorithm are improved 2.40 dB, 0.64 dB, and
2.72 dB compared with the best current results, respectively.
Therefore, the proposed algorithm obtains better separation
performance than the compared methods.

In the third experiment, we test a set of underdetermined
mixture signals, which is composed of four sensors and five
heart sound signals. We randomly select the mixing matrix,
which is expressed as follows:

H=


0.9085 − 2.0202 0.7882 − 0.7453 0.6134
−2.2207 − 0.3641 0.7366 − 0.8984 1.0446
−0.2391 − 0.0813 0.9553 − 3.2625 − 0.8073
0.0687 − 1.9797 1.9295 − 0.0300 0.2059


(48)

First, the source number estimation is shown in Figure 5.
The eigenvalues are sorted in descending order seen in
Figure 5(a). By searching the minimum SORTE-value, it is
clear that the estimated source number is R̂ = 5 in
Figure 5(b).
In Table 6, we show the MER and MSE of the algo-

rithms for five heart sound signals. The average MES of

FIGURE 5. Source signal number estimation (a) the ordered eigenvalue
sequence and (b) the SORTE sequence.

proposed algorithm improves 21.4 dB compared with the
PARAFAC algorithm. Meanwhile, the MSE of proposed
algorithm is around 0.3140 dB lower than the PARAFAC alg-
orithm. Thus, our proposed algorithm shows better perfor-
mance for the estimation of the mixing matrix than the
PARAFAC algorithm.

The source separation results are demonstrated in Figure 6.
It can be shown that the proposed algorithm has superior
separation performance than the compared algorithms.

D. IMAGE RESTORATION
Finally, we consider image restoration as a further evaluation
of the performance of the proposed algorithm. The peak
signal-to-noise radio (PSNR) is used as the quality measures,
which is defined as

PSNR(s) = 10 · log10
2552

‖s− s0‖2F
(49)

where s is the recovered signal and s0 is the source signal.
In the experiments, we consider three sets of test images

including ‘‘Lena’’ (256 × 256), ‘‘Peppers’’ (256 × 256),
‘‘House’’ (256 × 256). The mixing matrix H ∈ R190×256

is randomly generated. The PSNR values and runtime of all
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FIGURE 6. BSS performance over heart sound signal mixtures, measured
in terms of (a) SDR, (b) SIR, and (c) SAR.

TABLE 6. MER and MSE of the algorithms for five heart sound signals.

algorithms are shown in Table 7. It is clear that the PSNR
results of the proposed algorithm are improved well. Mean-
while, it is faster than the FOCUSS (focal underdetermined
system solver) algorithm. Additionally, the image restoration

TABLE 7. Peak signal-to-noise radio (dB) and runtime (sec.) for the image
restoration.

FIGURE 7. Restored images by different algorithms. Left-right: original
images, restored images by OMP algorithm, restored images by FOCUSS
algorithm, and restored images by proposed algorithm.

results are shown in Figure 7. It is shown that our proposed
algorithm obtain better image restoration than the typical
algorithms.
Discussion: We carefully consider the computational com-

plexity of the proposed algorithm, one of the most time-
consuming calculations is the matrix-matrix multiplication
H̃ ·5(s∗)−1 ·H̃T , whose computational complexity isO(M3),
which is controlled by the number of sensorsM . For this rea-
son, our proposed preconditioner is an identity matrix so that
the matrix-matrix multiplication H̃ ·5(s∗)−1 · H̃T can be effi-
ciently done by fast Fourier transform. In this case, the com-
putational complexity can be reduced to O(M2 logM ).

V. CONCLUSION AND FUTURE WORK
In this paper, a novel algorithm has been presented based on
higher-order statistics and sparse representation to solve the
UBSS problem. First, to detect the number of source signals,
the minimum SORTE method was presented by searching
the gap in the ordered eigenvalues of the covariance matrix,
which worked well for the underdetermined case. Second,
for the estimation of the mixing matrix, we employed the
higher-order cumulant-based approach to obtain the unique
estimated mixing matrix. Then, using the sparsity of source
signals, an improved l1-norm regularized method was devel-
oped based on sparse representation to obtain the sparse
solutions. In the simulation experiments, we tested the heart
sound mixture signals in the underdetermined case and the
image restoration. Experimental results have demonstrated
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that the separation performance of the proposed algorithm is
better than the state-of-the-art algorithms.

A quote from the French novelist Marcel Proust: ‘‘The
voyage of discovery is not in seeking new landscapes but
in having new eyes.’’ In the future work, we hope that our
proposed algorithm could be used to deal with the convolutive
mixture signals. Especially, the blind separation of moving
sources is a challenging issue. Additionally, it is a meaningful
topic to perform the image processing using deep learning
and sparse representations.

REFERENCES
[1] S. Makino, T.-W. Lee, and H. Sawada, Blind Speech Separation. Berlin,

Germany: Springer, 2007.
[2] A. Cichocki and S.-I. Amari, Adaptive Blind Signal and Image Processing:

Learning Algorithms and Applications. Hoboken, NJ, USA: Wiley, 2002.
[3] M. Wax and T. Kailath, ‘‘Detection of signals by information theoretic

criteria,’’ IEEE Trans. Acoust., Speech, Signal Process., vol. SSP-33, no. 2,
pp. 387–392, Apr. 1985.

[4] K. Liu, J. P. C. L. da Costa, H. C. So, L. Huang, and J. Ye, ‘‘Detection
of number of components in CANDECOMP/PARAFAC models via min-
imum description length,’’ Digit. Signal Process., vol. 51, pp. 110–123,
Apr. 2016.

[5] S. Pouryazdian, S. Beheshti, and S. Krishnan,
‘‘CANDECOMP/PARAFAC model order selection based on
Reconstruction Error in the presence of Kronecker structured colored
noise,’’ Digit. Signal Process., vol. 48, pp. 12–26, Jan. 2016.

[6] Y. Xie, K. Xie, and S. Xie, ‘‘Source number estimation and effective
channel order determination based on higher-order tensors,’’ Circuits Syst.
Signal Process., 2019. doi: 10.1007/s00034-019-01106-0.

[7] Z. He, A. Cichocki, S. Xie, and K. Choi, ‘‘Detecting the number of clusters
in n-way probabilistic clustering,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 32, no. 11, pp. 2006–2021, Nov. 2010.

[8] V. Y. F. Tan and C. Févotte, ‘‘Automatic relevance determinationin non-
negative matrix factorizationwith the β-divergence,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 7, pp. 1592–1605, Jul. 2013.

[9] Y. Chen, W.Wang, Z. Wang, and B. Xia, ‘‘A source counting method using
acoustic vector sensor based on sparsemodeling of DOAhistogram,’’ IEEE
Signal Process. Lett., vol. 26, no. 1, pp. 69–73, Jan. 2019.

[10] Y. Li, S.-I. Amari, A. Cichocki, D. W. C. Ho, and S. Xie, ‘‘Underde-
termined blind source separation based on sparse representation,’’ IEEE
Trans. Signal Process., vol. 54, no. 2, pp. 423–437, Feb. 2006.

[11] L. Zhen, D. Peng, Z. Yi, Y. Xiang, and P. Chen, ‘‘Underdetermined blind
source separation using sparse coding,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 28, no. 12, pp. 3102–3108, Dec. 2017.

[12] G. Zhou, Z. Yang, S. Xie, and J.-M. Yang, ‘‘Mixing matrix estimation from
sparse mixtures with unknown number of sources,’’ IEEE Trans. Neural
Netw., vol. 22, no. 2, pp. 211–221, Feb. 2011.

[13] J. Sun, Y. Li, J. Wen, and S. Yan, ‘‘Novel mixing matrix estimation
approach in underdetermined blind source separation,’’ Neurocomputing,
vol. 173, pp. 623–632, Jan. 2016.

[14] L. De Lathauwer, J. Castaing, and J.-F. Cardoso, ‘‘Fourth-order cumulant-
based blind identification of underdetermined mixtures,’’ IEEE Trans.
Signal Process., vol. 55, no. 6, pp. 2965–2973, Jun. 2007.

[15] L. De Lathauwer and J. Castaing, ‘‘Blind identification of underdetermined
mixtures by simultaneous matrix diagonalization,’’ IEEE Trans. Signal
Process., vol. 56, no. 3, pp. 1096–1105, Mar. 2008.

[16] D. Nion, K. N. Mokios, N. D. Sidiropoulos, and A. Potamianos, ‘‘Batch
and adaptive PARAFAC-based blind separation of convolutive speech
mixtures,’’ IEEE Trans. Audio, Speech, Language Process., vol. 18, no. 6,
pp. 1193–1207, Aug. 2010.

[17] Y. Xie, K. Xie, J. Yang, and S. Xie, ‘‘Underdetermined blind source
separation combining tensor decomposition and nonnegative matrix fac-
torization,’’ Symmetry, vol. 10, no. 10, p. 521, 2018.

[18] Y. Xie, K. Xie, and S. Xie, ‘‘Underdetermined convolutive blind separation
of sources integrating tensor factorization and expectation maximization,’’
Digit. Signal Process., vol. 87, no. 9, pp. 145–154, Apr. 2019.

[19] D. Efimov, Independent Component Analysis, Berlin. Berlin, Germany:
Springer, 2001.

[20] D. D. Lee and H. S. Seung, ‘‘Learning the parts of objects by non-negative
matrix factorization,’’ Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[21] N. Gillis and S. A. Vavasis, ‘‘Fast and robust recursive algorithms for
separable nonnegative matrix factorization,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 36, no. 4, pp. 698–714, Apr. 2014.

[22] Z. Yang, Y. Xiang, K. Xie, and Y. Lai, ‘‘Adaptive method for nonsmooth
nonnegative matrix factorization,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 28, no. 4, pp. 948–960, Apr. 2017.

[23] Z. Yang, Z. Yu, X. Yong, Y. Wei, and S. Xie, ‘‘Non-negative matrix
factorization with dual constraints for image clustering,’’ IEEE Trans.
Syst., Man, Cybern. Syst., to be published.

[24] Y. Xie, K. Xie, J. Yang, Z. Wu, and S. Xie, ‘‘Underdetermined reverber-
ant audio-source separation through improved expectation–maximization
algorithm,’’ Circuits Syst. Signal Process., vol. 38, no. 6, pp. 2877–2889,
2019.

[25] V. Papyan, Y. Romano, J. Sulam, andM. Elad, ‘‘Theoretical foundations of
deep learning via sparse representations: A multilayer sparse model and its
connection to convolutional neural networks,’’ IEEE Signal Process. Mag.,
vol. 35, no. 4, pp. 72–89, Jul. 2018.

[26] F. Feng andM. Kowalski, ‘‘Underdetermined reverberant blind source sep-
aration: Sparse approaches for multiplicative and convolutive narrowband
approximation,’’ IEEE/ACMTrans. Audio, Speech, Lang. Process., vol. 27,
no. 2, pp. 442–456, Feb. 2019.

[27] Z. He, S. Xie, S. Ding, and A. Cichocki, ‘‘Convolutive blind source separa-
tion in the frequency domain based on sparse representation,’’ IEEE Trans.
Audio, Speech, Lang. Process., vol. 15, no. 5, pp. 1551–1563, Jul. 2007.

[28] Z. Yang, Y. Zhang, W. Yan, Y. Xiang, and S. Xie, ‘‘A fast non-smooth
nonnegative matrix factorization for learning sparse representation,’’ IEEE
Access, vol. 4, pp. 5161–5168, 2016.

[29] S. Xie, L. Yang, J.-M. Yang, G. Zhou, and Y. Xiang, ‘‘Time-frequency
approach to underdetermined blind source separation,’’ IEEE Trans. Neu-
ral Netw. Learn. Syst., vol. 23, no. 2, pp. 306–316, Feb. 2012.

[30] C. Chenot, J. Bobin, and J. Rapin, ‘‘Robust sparse blind source separation,’’
IEEE Signal Process. Lett., vol. 22, no. 11, pp. 2172–2176, Nov. 2015.

[31] J. Tropp and A. Gilbert, ‘‘Signal recovery from random measurements via
orthogonal matching pursuit,’’ IEEE Trans. Inf. Theory, vol. 52, no. 12,
pp. 4655–4666, Dec. 2007.

[32] S. K. Sahoo and A. Makur, ‘‘Signal recovery from random measurements
via extended orthogonal matching pursuit,’’ IEEE Trans. Signal Process.,
vol. 63, no. 10, pp. 2572–2581, May 2015.

[33] S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, ‘‘An interior-
point method for large-scale `1-regularized least squares,’’ IEEE J. Sel.
Topics Signal Process., vol. 1, no. 4, pp. 606–617, Dec. 2008.

[34] Z. Li, S. Ding, and Y. Li, ‘‘A fast algorithm for learning overcomplete
dictionary for sparse representation based on proximal operators,’’ Neural
Comput., vol. 27, no. 9, pp. 1951–1982, 2015.

[35] Z. Li, S. Ding, Y. Li, Z. Yang, S. Xie, and W. Chen, ‘‘Manifold
optimization-based analysis dictionary learning with an `1/2-norm regu-
larizer,’’ Neural Netw., vol. 98, pp. 212–222, Feb. 2018.

[36] L. Decarlo, ‘‘On the meaning and use of kurtosis,’’ Phil. Invest., vol. 5,
no. 3, pp. 190–204, 1997.

[37] E. Vincent, R. Gribonval, and C. Fevotte, ‘‘Performance measurement in
blind audio source separation,’’ IEEE Trans. Audio, Speech, Language
Process., vol. 14, no. 4, pp. 1462–1469, Jul. 2006.

[38] E. Vincent, S. Araki, and P. Bofill, ‘‘The 2008 signal separation eval-
uation campaign: A community-based approach to large-scale evalua-
tion,’’ in Proc. Int. Conf. Independ. Compon. Anal. Signal Separat., 2009,
pp. 734–741.

[39] X. Fu, W.-K. Ma, K. Huang, and N. D. Sidiropoulos, ‘‘Blind separation
of quasi-stationary sources: Exploiting convex geometry in covariance
domain,’’ IEEE Trans. Signal Process., vol. 63, no. 9, pp. 2306–2320,
May 2015.

[40] Ö. Yılmaz and S. Rickard, ‘‘Blind separation of speech mixtures via
time-frequency masking,’’ IEEE Trans. Signal Process., vol. 52, no. 7,
pp. 1830–1847, Jul. 2004.

[41] A. Ozerov and C. Févotte, ‘‘Multichannel nonnegative matrix factor-
ization in convolutive mixtures for audio source separation,’’ IEEE
Trans. Audio, Speech, Language Process., vol. 18, no. 3, pp. 550–563,
Mar. 2010.

[42] E. Vincent, ‘‘Complex nonconvex lp norm minimization for underdeter-
mined source separation,’’ in Proc. Int. Conf. Independ. Compon. Anal.
Signal Separat., 2007, pp. 430–437.

VOLUME 7, 2019 87615

http://dx.doi.org/10.1007/s00034-019-01106-0


Y. Xie et al.: UBSS for Heart Sound Using Higher-Order Statistics and Sparse Representation

YUAN XIE received the Ph.D. degree in control
science and engineering from the Guangdong Uni-
versity of Technology, Guangzhou, China, in 2019,
where he currently holds a Postdoctoral position
at the School of Electro-Mechanical Engineer-
ing. His research interests include blind source
separation, statistical processing, tensor analy-
sis, nonnegative matrix decomposition, and spare
representation.

KAN XIE received the Ph.D. degree in control
science and engineering from the Guangdong Uni-
versity of Technology, Guangzhou, China, in 2017,
where he is currently a Postdoctoral Fellow of the
Institute of Intelligent Information Processing. His
current research interests include machine learn-
ing, non-negative signal processing, blind signal
processing, and smart grids.

SHENGLI XIE received the M.S. degree in
mathematics from Central China Normal Uni-
versity, Wuhan, China, in 1992, and the Ph.D.
degree in control theory and applications from
the South China University of Technology,
Guangzhou, China, in 1997. He is currently a Full
Professor and the Head of the Institute of Intelli-
gent Information Processing, Guangdong Univer-
sity of Technology, Guangzhou. He has authored
or coauthored two books and over 150 scientific

papers in journals and conference proceedings. His research interests include
wireless networks, automatic control, and blind signal processing. He was a
recipient of the Second Prize of the China’s State Natural Science Award for
his research on blind source separation and identification, in 2009.

87616 VOLUME 7, 2019


	INTRODUCTION
	PROBLEM FORMULATION
	MODEL DESCRIPTION
	OUTLINE

	PROPOSED UNDERDETERMINED BSS ALGORITHM
	SOURCE NUMBER ESTIMATION BASED ON SORTE
	MIXING MATRIX ESTIMATION USING HIGHER-ORDER STATISTICS
	SOURCE SIGNAL SEPARATION USING SPARSE REPRESENTATION

	SIMULATIONS
	PERFORMANCE CRITERIA
	SEPARATION OF TWO HEART SOUND MIXTURE SIGNALS
	SEPARATION OF HEART SOUND MIXTURE SIGNALS IN THE UNDERDETERMINED CASE
	IMAGE RESTORATION

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	YUAN XIE
	KAN XIE
	SHENGLI XIE


