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ABSTRACT In this paper, an efficient hybrid reliability analysis (HRA) method and a hybrid
reliability-based design optimization (HRBDO) approach are proposed for realistic complex engineering
structures with random and interval uncertainties. First, the HRBDO model for complex engineering
structures is constructed with its objective and performance functions described as the implicit functions
of design variables and random and interval parameters. Then, an efficient HRA method based on adaptive
step size (ASS-HRA) is put forward to calculate the minimum reliability of the structure’s performance
function under the influences of both random and interval uncertainties, the computational efficiency and
accuracy of which are verified by a benchmark test. Subsequently, an efficient HRBDO approach integrating
the proposed ASS-HRA method with the polynomial response surface model (PRSM) is developed for
solving the HRBDO problems of complex engineering structures, the effectiveness of which is demonstrated
by a numerical example. Finally, the HRBDO of a high-speed press slider demonstrates the efficiency,
effectiveness, and versatility of the proposed HRBDO approach based on the ASS-HRA in the design of
realistic complex engineering structures.

INDEX TERMS Hybrid reliability analysis (HRA), adaptive step size (ASS), hybrid reliability-based design
optimization (HRBDO), random and interval uncertainties, complex structure.

I. INTRODUCTION
Uncertain factors in material properties, load conditions,
geometrical dimensions, and so on are unavoidable in prac-
tical engineering. These uncertain factors must be taken into
consideration in the design process of practical engineering
structures since they will result in the fluctuations of the
mechanical properties of structures [1]–[4]. Reliability-based
design optimization (RBDO) is regarded as one of the most
powerful non-deterministic optimization methods [5]–[8]
which simultaneously considers both the performance and
reliability of uncertain structures in design optimization.

The associate editor coordinating the review of this manuscript and
approving it for publication was Lorenzo Ciani.

The RBDO problems of engineering structures are usually
described as either probabilistic or non-probabilistic mod-
els [9]–[11]. Specifically, uncertain parameters are usually
described as random variables or random fields based on the
theory of probability and statistics when the sample data of
uncertain factors are abundant [12]–[14], and then the failure
probability of an engineering structure can be precisely calcu-
lated based on reliability analysis [15], [16]. The probabilistic
reliability analysis has two characteristics: 1) It depends on
the probability density function (PDF) which relies on a
large amount of statistical data; 2) It is very sensitive to
the variations of the parameters’ probabilistic distributions.
Whereas the uncertainties are described as non-probabilistic
models such as the interval model when there are insufficient
sample data [17]. The non-probabilistic reliability analysis is
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an effective method to deal with the reliability problem that
has few or insufficient statistical data. The non-probabilistic
reliability index based on the interval model is actually the
minimum norm of the coordinate vector in the standard-
ized space while the solution of non-probabilistic reliabil-
ity index is actually an optimization problem with equality
constraint [18]. Non-probabilistic RBDO approaches have
also been put forward based on imperialistic competitive
algorithm and interval model [19], enhanced chaos control
method [20], and so on [21], [22].

For practical engineering structures, it is probable that
there are abundant sample data for some uncertain factors
but insufficient sample data for others. Thus, a lot of scholars
have devoted to the investigation on the reliability analysis
and RBDO approaches for engineering structures based on
hybrid probabilistic and non-probabilistic models in recent
years [23]. In the aspect of reliability analysis (RA), Guo
and Du [24] proposed a new reliability sensitivity analysis
method considering random and interval variables. Chen and
Qiu [25] proposed a novel uncertainty analysis method based
on polynomial chaos expansion for composite structures with
random and interval variables. Li et al. [26] developed a pre-
cise and efficient univariate method for the mixed reliability
evaluation of composite laminates with random and interval
parameters. Zhang et al. [27] proposed a hybrid reliability
analysis (HRA) method by combining the projection outline
based active learning method with Kriging model. Brevault
et al. [28] proposed the reliability analysis method in the
presence of aleatory and epistemic uncertainties, and applied
it to the prediction of a launch vehicle fallout zone. Zhang
et al. [29] presented a HRA method for spacecraft docking
lock with random and interval variables. Liu et al. [30] pro-
posed a new HRA method based on probability and prob-
ability box models. Bai et al. [31] proposed a probabilistic
and non-probabilistic HRA method based on dynamic sub-
structural extreme response surface decoupling. In the aspect
of RBDO, Wang et al. [32], [33] investigated the hybrid
time-variant reliability estimation for active control structures
under aleatory and epistemic uncertainties, and proposed
the structural design optimization approach based on hybrid
time-variant reliability measure under non-probabilistic con-
vex uncertainties. Wu et al. [34] proposed a hybrid uncertain
design optimization method for structures with both random
and interval variables utilizing orthogonal series expansion.
Huang et al. [35] established a hybrid RBDO (HRBDO)
model which included interval variables in the probability
distribution functions of random parameters, and developed
an efficient decoupling algorithm to solve the model. Keshte-
gara and Hao [36] proposed a hybrid descent mean value for
accurate and efficient performance measure in RBDO. Kang
and Luo [37] presented a hybrid reliability index for uncertain
structures based on the probabilistic and multi-ellipsoid con-
vex set hybrid model, and solved the optimization problem
including reliability constraints based on the linearization of
the performance function.

However, most of the present researches on structures
with random and interval uncertainties focused on the
hybrid reliability analyses of relatively simple structures with
explicit performance functions, whereas the research topic of
HRBDO of uncertain structures receives much less attention.
The linearization-based HRBDO approach [37] is obviously
inapplicable to realistic engineering structures because their
performance functions with respect to uncertain variables
are usually nonlinear. Although several HRA approaches
have been proposed in recent years for structures with no
explicit performance functions [25]–[28], the HRA of practi-
cal engineering structures with high geometrical complexity,
especially those with strong nonlinearity, needs to be fur-
ther investigated. Meanwhile, the computational efficiency
of the HRA with random and interval uncertainties needs
to be enhanced in order to realize the HRBDO of realistic
engineering structures since a huge amount of HRA compu-
tations are involved in the HRBDO process. Therefore, it is
necessary andmeaningful to develop an efficient and versatile
HRA method and the built on HRBDO approach for realistic
complex engineering structureswith the consideration of both
random and interval uncertainties.

This paper systematically investigates the HRA and
HRBDO of complex engineering structures with random and
interval uncertainties. After the construction of the HRBDO
model for complex engineering structures considering the
influences of random and interval uncertainties on their per-
formance indices, a new HRA method based on adaptive
step size (ASS-HRA) is proposed to efficiently calculate the
minimum reliability of structural performance under random
and interval uncertainties. Then a new HRBDO approach
integrating polynomial response surface model (PRSM),
ASS-HRA and genetic algorithm (GA) is developed for com-
plex practical engineering structures with implicit perfor-
mance functions of strong nonlinearity. The computational
efficiency and effectiveness of the proposed ASS-HRA and
the built on HRBDO approach as well as their applicability
and effectiveness in realistic complex engineering problems
are demonstrated by illustrative examples. Therefore, the
proposed HRBDO approach based on ASS-HRA can provide
an efficient and versatile design optimization method for
realistic complex engineering structures with probabilistic
and non-probabilistic uncertainties.

This rest of the paper is organized as follows. Firstly, the
HRBDO model of complex engineering structures is pro-
posed in Section II. Then an efficient ASS-HRA method
is presented for analyzing the minimum reliability of struc-
tures with random and interval uncertainties in Section III.
Subsequently, a new HRBDO approach integrating the
ASS-HRA method and PRSM is proposed in Section IV.
Then an engineering example is investigated in Section V
to demonstrate the effectiveness and applicability of the pro-
posed approach in solving realistic complex nonlinear engi-
neering problems. Finally, conclusions are summarized in
Section VI.
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II. HRBDO MODEL OF COMPLEX STRUCTURE WITH
RANDOM AND INTERVAL UNCERTAINTIES
The reliability index of a complex structure under random
and interval uncertainties is an interval number due to the
influence of interval uncertainties on structural performance.
The lower bound of the interval reliability index, which are
named as the minimum reliability index herein, is chosen
as the measure for evaluating the reliability index of the
performance function for the complex uncertain structure in
order to ensure the satisfaction of the reliability requirement
on a performance function in its worst case under random and
interval uncertainties. Thus, the HRBDO model considering
the influences of both random and interval uncertainties can
be described as:

min
d

f (d)

s.t. Rimin [gi(d,X,U) ≥ 0] ≥ ηi, i = 1, 2, . . . , p.

d = (d1, d2, . . . , dl),X = (X1,X2, . . . ,Xm),

U = (U1,U2, . . . ,Un); dL ≤ d ≤ dU . (1)

where d is the l-dimensional design vector of a complex
uncertain structure while dL and dU are its allowable min-
imum and maximum values; X is an m-dimensional random
parameter vector; U is an n-dimensional interval parameter
vector; f (d) is the objective function; gi(d,X,U) is the i-th
performance function; p is the number of performance func-
tions;Rimin is the minimum reliability of the i-th performance
function; ηi is the i-th desired value of theminimum reliability
index prescribed according to the reliability requirement on
the uncertain structure.

III. A NEW ASS-HRA METHOD FOR STRUCTURES WITH
RANDOM AND INTERVAL UNCERTAINTIES
This section firstly introduces the fundamentals of HRA
with random and interval variables, and then proposes a new
ASS-HRA method for improving the convergence efficiency
of HRA. A cantilever beam with random geometrical vari-
ables and interval external loads is utilized to verify the
efficiency and accuracy of the proposed ASS-HRA method.

A. FUNDAMENTALS OF HRA
The failure probability of the i-th performance function
gi(d,X,U) in the HRBDO model (1) can be computed by:

pif ∈ Pr {gi(d,X,U) < 0} (2)

which generally belongs to a limit state zone pif ∈

[pLif , p
R
if ] composed of two boundary limit state surfaces

maxU gi(d,X ,U) = 0 and minU gi(d,X,U) = 0 due to the
existence of interval parameter vector U. Geometrically, two
boundary limit state surfaces have the nearest and furthest
distances to the origin among all the limit state functions with
different values of interval parameter vector U, see Fig. 1 for
the illustration of a 2D problem [38].

According to the first order second moment (FOSM)
method [39], the random parameter vector can be transformed
from X space into the standard normal space V, and the limit

FIGURE 1. Limit-state strip for a 2D problem.

state space gi(d,X,U) can also be transformed into the stan-
dard limit state space Gi(d,V ,U) = 0, as shown in Fig. 2.
Then the reliability index is defined as the minimum distance
from the origin to the failure surface in the standard normal
space. The reliability index corresponding to a design vector d
under the influences of both random and interval uncertainties
is an interval number, the minimum and maximum values of
which can be calculated byβimin = min

V
‖V‖

s.t. min
U

Gi(d,V ,U) = 0
(3)

βimax = max
V
‖V‖

s.t. max
U

Gi(d,V ,U) = 0
(4)

where V represents the standard normal parameter vector
transformed fromX;Gi(d,V ,U) = 0 represents the standard
limit state space transformed from gi(d,X,U) = 0; βimax
and βimin represent the i-th maximum and minimum reliabil-
ity indices, respectively.

In order to guarantee the satisfaction of reliability require-
ment on the uncertain structure in the worst case, the mini-
mum reliability index βimin is chosen as the hybrid reliability
index, which can be calculated by:

Rimin=1−8(−βimin) (5)

where 8 is the standard normal cumulative probability func-
tion.

B. THE PROPOSED ASS-HRA METHOD
The HL-RF method was firstly proposed by Hasofer-Lind
and Rackwitz-Fiessler based on the idea of expanding the
performance function in Taylor’s series [40], [41]. It is widely
utilized for HRA due to its advantages of simplicity and
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high efficiency. Later, the improvedHL-RF (iHL-RF)method
was developed to quantify the effects of random and interval
inputs on reliability associated with performance charac-
teristics [42]. However, for highly complex and nonlinear
limit-state functions, the iHL-RF method may also con-
verge slowly or even result in divergence. Guo and Du [24]
developed an efficient sequential single-loop (SSL) method
for structural reliability analysis, in which the reliability in
terms of random variables was decoupled from the interval
analysis in terms of interval variables. However, a rigorous
mathematical foundation is absent for this decoupling strat-
egy, and it is difficult to ensure the robust convergence of
this reliability analysis method. Jiang et al. [43] proposed a
new HRA method through the construction of an equivalent
model with only random variables, in which the maximum
failure probability was evaluated by solving the equivalent
model. However, their approach involves the minimization of
a merit function to determine the iterative step size of iHL-RF
method in solving the equivalent model, which increases the
computational cost of HRA.

In order to overcome the shortcomings of the above HRA
methods and improve the computational efficiency of HRA,
a new ASS-HRA method is proposed in this section which
decouples the HRA process into two layers of relatively
independent iterations based onHL-RFmethod [44], [45] and
efficiently locates the most probable point (MPP) by avoiding
zigzagging iteration with the introduction of a correction
angle. Specifically, the inner layer RA iteration takes random
parameters as variables, in which the correction angle is
utilized to avoid zigzagging iteration. The outer layer RA
iteration takes interval parameters as variables. The HRA
process terminates when reaching the prescribed convergence
threshold.

The inner RA iteration searches for the optimal random
parameter vector V∗{∥∥V∗∥∥ = min

V
‖V‖

s.t. Gi (d,V ,U) = 0
(6)

The outer RA iteration searches for the optimal interval
parameter vector U∗{

Gi(d,V∗,U∗) = min
U

Gi(d,V∗,U)

s.t. UL
j ≤ Uj ≤ U

U
j , j = 1, 2, . . . , n

(7)

Assuming that the random vector V k and interval vector
Uk have been obtained by the kth iteration, the interval vector
Uk is fixed for the next inner RA iteration, and then the
random vector V k+1 can be obtained by (8) based on the
iHL-RF method.

V k+1

=
∇Gi

(
d,V k ,Uk)T V k

−Gi
(
d,V k ,Uk)∥∥∇Gi (d,V k ,Uk)∥∥2 ∇Gi

(
d,V k ,Uk

)
(8)

FIGURE 2. Limit-state strip in standard normal space for a 2D problem.

where ∇Gi
(
d,V k ,Uk) is the gradient of Gi

(
d,V k ,Uk),∥∥∇Gi (d,V k ,Uk)∥∥ is the Euclidean norm of

∇Gi
(
d,V k ,Uk).

The ideal iteration process for HRA would converge
rapidly without zigzagging iteration. To achieve the ideal
iteration for HRA, a correction angle (denoted as θ herein)
between the random vector and the gradient direction of the
standard normal limit-state space is introduced for a point
on the standard normal limit-state space, see Fig. 3 for illus-
tration. For an ideal HRA process, the correction angle θ
should decrease gradually and finally approach zero, namely,
the following condition should be satisfied

θk+1 ≤ θk (9)

where θk+1 at the (k + 1)th iteration can be calculate by

θk+1=acrcos

(
∇Gi

(
d,V k+1,Uk)T

∇Gi
(
d,V k ,Uk)∥∥∇Gi (d,V k+1,Uk)∥∥∥∥∇Gi (d,V k ,Uk)∥∥

)
(10)

The zigzagging iteration will occur when the convergence
condition in (9) cannot be satisfied. Thus, an adaptive step
size λ(θ ) calculated by (11) is introduced herein to adjust the
iterative random vector V when (9) cannot be satisfied. And
the new iterative random vector V k+1

new is calculated by (12).

λ (θ) =
1

1+
(
θk+1/θk

)2 (11)

V k+1
new = V k

+ λ (θ)
(
V k+1

− V k
)

(12)

As demonstrated in Fig. 4, the adaptive step size λ(θ )
approaches 0 when the inner RA iteration deviates far from
the MPP and the angle ratio θk+1/θk is large. The adap-
tive step size approaches 1 when the inner RA iteration
approaches the MPP and the angle ratio θk+1/θk is small.
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FIGURE 3. Schematic diagram of HRA iteration process in 2D condition.

FIGURE 4. The relation of adaptive step size with regard to the correction
angle.

As for the outer RA iteration, the interval vector Uk+1

can be obtained by (13) through interval analysis based on
the random vector V k+1 obtained by the inner RA iteration.
In this paper, the MATLAB build-in function fmincon that
applies the trust region reflective method is utilized to deter-
mine Uk+1 efficiently.

Uk+1
= minGi

(
V k+1,Uk

)
(13)

The above two-layer RA iteration process continues
until (14) and (15) are satisfied.∥∥∥V k+1

− V k
∥∥∥/∥∥∥V k

∥∥∥ ≤ ε1 (14)∣∣∣Gi (d,V k+1,Uk+1
)∣∣∣ ≤ ε2 (15)

where ε1 and ε2 are the prescribed convergence
tolerances.

And finally, the minimum reliability index βimin can be
calculated as the shortest distance from theMPP to the origin.
Consequently, the minimum reliability Rimin of the HRBDO
problem can be calculated by (5). The proposed ASS-HRA
algorithm is provided as follows while its flowchart is embed-
ded in Fig. 6:

Algorithm 1 The Proposed ASS-HRA for Structures With
Random and Interval Uncertainties
Step 1: Initialize the random variables and interval vari-

ables with their means, prescribe the convergent tolerances
of ε1 and ε2, and set k as 1.
Step 2: Calculate the random vector V k+1 and angle θk+1

by (8) and (10).
Step 3: If θk+1 > θk , calculate the adaptive step size λ

by (11) and adjust the random vector V k+1 by (12), then go
back to Step 2. Otherwise, go to Step 4.

Step 4: Calculate the interval vectorUk+1 by (13) based on
the V k+1 obtained in Step3.
Step 5: Output the minimum reliability Rimin calculated

by (5) based on the minimum reliability index βimin calcu-
lated by (3) if (14) and (15) are satisfied. Otherwise, increase
k by 1 and go to Step 2.

C. BENCHMARK TEST
The cantilever beam from the literature [43] is utilized as a
benchmark example to verify the feasibility of the proposed
ASS-HRA method. As illustrated in Fig. 5, the cantilever
beam is subjected to a vertical load Y1(N) and a lateral
load Y2(N). The width w(mm) and thickness t(mm) of the
cross section as well as the length l(mm) are treated as
random variables while the vertical load Y1(N) and lateral
load Y2(N) are interval variables. All the statistics of these
uncertain variables are listed in Table 1. According to the
failure mode of the cantilever beam, the maximum stress at
the fixed end of the beam should be less than a yield stress
S = 320MPa. Thus, the HRA problem of the cantilever beam
can be described as follows:

min R [g (w, t, l,Y1,Y2) ≥ 0]

s.t. g (w, t, l,Y1,Y2) = S −
(
6Y1l
wt2
+

6Y2l
w2t

)
X = (w, t, l) ,U = (Y1,Y2) (16)

where X is a 3-dimensional random parameter vector, U is
a 2-dimensional interval parameter vector, g (w, t, l,Y1,Y2)
is the performance function of the cantilever beam,
R [g (w, t, l,Y1,Y2) ≥ 0] is the reliability of the cantilever
beam under random and interval uncertainties.

The minimum reliability of the cantilever beam is analyzed
by the proposed ASS-HRA method as well as the HRA
method based on the equivalent transformation of interval
variables into random ones (ET-HRA) [43] and the HRA
method based on the sequential single-loop (SSL-HRA) [24],
the results of which are listed in Table 2. The HRA result
based on 107 groups ofMonte Carlo simulations (MCSs) [46]
is utilized as the reference value for verifying the accuracy
of three different HRA methods. The minimum reliability
index calculated by the proposed ASS-HRA converges at
the 6th iteration with the minimum reliability achieved as
Rmin = 0.9172, the corresponding random and interval
variables are X = (75.60, 188.90, 1043.00)mm and U =
(27000.00, 53000.00)N, respectively.
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TABLE 1. Statistics of the uncertain variables for the cantilever beam.

FIGURE 5. A cantilever beam.

As listed in Table 2, the relative errors of the minimum
reliabilities of the cantilever beam calculated by both the pro-
posed ASS-HRA method and the SSL-HRA method are only
around 0.5% with regard to the reference value calculated
by the MCS-HRAmethod, demonstrating that the ASS-HRA
and SSL-HRA methods can achieve accurate HRA results.
Whereas the ET-HRAmethod has much lower analysis preci-
sion since the minimum reliability calculated by the ET-HRA
method has much larger relative error of 2.48% with regard
to the reference value of 0.9125 calculated by the MCS-HRA
method.

Meanwhile, the proposed ASS-HRA method is very effi-
cient in comparison with both the ET-HRA and SSL-HRA
methods since it only needs a total of 36 functional eval-
uations and 6 iterations. Here the iteration refers to the
outer RA iteration that described between Step 2 and
Step 5 in the HRA algorithm. The SSL-HRA method has
much lower efficiency since it needs a total of 198 func-
tional evaluations and 18 iterations although it can also
achieve the accurate HRA results. Therefore, the proposed
ASS-HRA method has advantages in both the HRA accu-
racy and computational efficiency over the other two HRA
methods.

IV. AN EFFICENT HRBDO APPROACH BASED
ON ASS-HRA
In this section, an efficient HRBDO approach integrating the
proposed ASS-HRA method with the PRSM technique is
developed for the HRBDO of complex engineering structures
with random and interval uncertainties. The effectiveness of
the proposed HRBDO approach is verified by a numerical
example.

A. CONSTRUCTION OF PRSMS
The RBDO of complex engineering structures involves the
massive calculation of structural performance indices which

are implicit functions with high nonlinearity. To avoid the
computationally intensive finite element analyses (FEAs),
surrogate models are often utilized to compute the perfor-
mance functions of complex uncertain structures. Consider-
ing that the derivatives of the performance functions with
respect to the design vector need to be calculated in the RBDO
process, the performance functions in the HRBDOmodel are
approximated by the PRSMs [47] in this paper. In order to
improve the prediction accuracy, the PRSMs are constructed
based on the determination of the basis functions according
to the physical property of the optimization problem [48].

Taking the objective function in (1) as an example,
the complete PRSM with the unknown highest order is con-
structed as:

f (d)= ϕ0+
l∑
i=1

ϕi · di++
l∑
i=1

ϕi+l · dai +. . .+
l∑
i=1

l∑
j≥i

ϕij ·didj

+

l∑
i=1

l∑
j≥i

ϕij+x · dai d
b
j
+. . .+

l∑
i=1

l∑
j≥i

l∑
k≥j

ϕijk ·didjdk

+

l∑
i=1

l∑
j≥i

l∑
k≥j

ϕijk+y · dai d
b
j
dc
k

(17)

where di is the i-th variable of the l-dimensional vector
d, ϕ0, ϕi, ϕi+l, ϕij, ϕij+x , ϕijk , ϕijk+y are the unknown coeffi-
cients, a, b, c are the highest order of variables. As for the per-
formance functions gi(d,X,U), the corresponding PRSMs
can be constructed by substituting vector d with (d,X,U).
The unknown coefficients and the orders of every basis

function in (17) are determined by the reverse design method.
Specifically, the coupling effects among different variables
are analyzed and the corresponding coupling item is removed
if there is no coupling effect. Then the highest order of every
variable in every basis function is determined by the control
variable method. And finally, the coefficients of a PRSM
can be determined by the least square polynomial regression
method based on the sample data arranged by Latin hyper-
cube sampling (LHS). The prediction capability of a PRSM
is evaluated by the root mean squared error RMSE, fitting
determination coefficient R2 and correlation coefficient CC
calculated by (18), (19), (20), respectively [49].

RMSE =

√√√√1
n

n∑
k=1

(
f k − f̂ k

)2
(18)

where f k and f̂ k denote the actual performance value and the
predicted performance value of an engineering structure at
the kth test point respectively; n is the number of test points.

R2 = 1−

n∑
k=1

(
f k − f̂ k

)2
n∑

k=1

(
f k − ¯̂f k

)2 (19)
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TABLE 2. HRA results of the cantilever beam obtained by different methods.

where ¯̂f k denotes the mean of predicted performance value.

CC =

n∑
k=1

(
f k − f̄ k

) (
f̂ k − ¯̂f k

)
√

n∑
k=1

(
f k − f̄ k

)2√ n∑
k=1

(
f̂ k − ¯̂f k

)2 (20)

where f̄ k denotes the mean of actual performance value.
For a PRSM with high-fidelity, the RMSE should be close

to 0, while the R2 and CC should be close to 1.

B. DESCRIPTION OF THE PROPOSED HRBDO APPROACH
The HRBDO process for solving the optimization model (1)
is decoupled into the optimization solution and reliability
analysis, which forms double loops. In the inner loop, the reli-
ability analysis of an engineering structure at a design point
is implemented based on the ASS-HRA method proposed in
Section III. In the outer loop, the HRBDO model is solved
by GA for locating the optimal design with the minimum
objective function under the condition that the reliability
requirement on the structure is satisfied.

The fitness value of an individual is settled as 0 in GAwhen
its reliability index does not meet the reliability requirement.
The individuals whose reliability indices meet reliability
requirement are ranked according to their objective function
value. As a result, design vector d i corresponding to the i-
th individual in the current population of GA is assigned a
rank number Ranki. And the smaller rank number means the
better design vector. The fitness value of design vector d i can
be calculated by

Fit (d i) = 1/Ranki (21)

The flowchart of the proposed HRBDO approach is shown
in Fig. 6, the implementation of which proceeds as follows.

Step 1: Construct the HRBDO model of the uncertain
structure with random and interval variables.

Step 2: Construct the PRSMs for calculating the objective
and performance functions.

Step 3: Prescribe ε1, ε2 and initialize GA parameters,
including the population size, maximum iteration number,

crossover and mutation probabilities, and the convergence
threshold. Set the iteration number as 1 and generate the
initial population.

Step 4: Set the initial random and interval vectors to their
means. Calculate the minimum reliabilities of all individuals

FIGURE 6. Flowchart of the proposed HRBDO approach.

in the current population based on the proposed ASS-HRA
method.

Step 5: Rank the individuals in the current population
of GA according to their objective values and calculate
their fitness values according to their ranks if they satisfy
reliability requirements. Otherwise, set the fitness values
to 0.

Step 6: Output the design vector with the largest fitness
value when reaching the maximum iteration number or the
convergence threshold of GA. Otherwise, increase the itera-
tion number of GA by 1 and go to Step 4.
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TABLE 3. Statistics of uncertain variables for the numerical example.

C. A NUMERICAL EXAMPLE
The numerical HRBDO problem with two random variables
and two interval variables in (22) is utilized to verify the
efficiency of the proposed HRBDO approach based on ASS-
HRA. Both the convergence values for ε1 and ε2 in ASS-HRA
process are prescribed as 0.001 for this numerical example.
The population size, maximum iteration number, crossover
and mutation probabilities are prescribed as 50, 50, 0.90 and
0.01 respectively. Besides the maximum iteration number
prescribed as the stop criterion, the GA evolution terminates
when the difference between the objective value at the opti-
mal solution of current GA generation and that of the last GA
generation is less than 10−4.

min
d

f (d) = (d1 + 3)2 + (d2 + 3)2

s.t. Rimin [gi(X,U) ≥ 0] ≥ ηi, i = 1, 2.

g1(X,U) = x1 (x2 + U1)− U2

g2(X,U) = x1 − (x2 + U1)
2 U2

µX = d, σX = 0.1d

d = (d1, d2) ,X = (x1, x2) ,U = (U1,U2)

0.01 ≤ d1 ≤ 10, 0.01 ≤ d2 ≤ 10, η1 = η2 = 0.9956

(22)

where d is the design vector, which is the mean of random
parameter vector X = (x1, x2); the standard deviation of
randomparameter vectorX is 0.1d;U is the interval parameter
vector; f (d) is the objective function; gi (d,X ,U) is the i-th
performance function; Rimin [gi(X,U) ≥ 0] is the minimum
reliability for gi(X,U) ≥ 0; ηi is the desired reliability for
the i-th performance function. All the statistics of uncertain
variables are listed in Table 3.

The convergence curve of the optimal objective value
obtained by the proposed HRBDO approach based on
ASS-HRA is shown in Fig. 7. The optimal objective value
converges at the 27th generation of GA, the minimum reli-
abilities of performance functions g1 and g2 at the optimal
solution are 0.9983 and 0.9995, respectively. Thus, the reli-
ability requirements are satisfied. To verify the accuracy of
the minimum reliabilities calculated by the proposed ASS-
HRA, the minimum reliabilities of performance functions
g1 and g2 at the optimal solution (4.8459, 0.7613) are also
calculated by the MCS-HRA involving 107 sample points,
which are 0.9994 and 0.9984, respectively. As can be seen,
the HRA results at the optimal solution calculated by the
proposed ASS-HRA are very close to those calculated by the

MCS-HRA. Specifically, the relative errors of the minimum
reliabilities corresponding to performance functions g1 and
g2 are only 0.1101% and 0.1102%, respectively. However,
the computational time of the proposed ASS-HRA is much
smaller than that of MCS-HRA. This further proves the accu-
racy and efficiency of the proposed ASS-HRA as well as its
applicability in the GA-based HRBDO algorithm.

The solution of the HRBDO model in (22) is also car-
ried out by replacing the ASS-HRA with previous HRA
approaches, namely SSL-HRA and ET-HRA, in the identical
GA-based optimization algorithm illustrated in Fig. 6. The
convergence curves are demonstrated in Fig. 7 while the
performance comparison of different HRBDO approaches
and theHRA results at the optimal solutions are listed in Table
4 and Table 5 along with the results of the HRBDO based
on the proposed ASS-HRA. All the HRA results of their
corresponding optimal solutions are verified by MCS-HRA.
As demonstrated in Table 4, all three approaches achieve
similar optimal solutions as well as minimum objective func-
tion values, further demonstrating the correctness of HRBDO
results. The slight difference in GA generation among three
HRBDO approaches based on different HRAmethods is con-
sidered normal due to the randomness of the GA framework.
Neglecting this difference, it is evident that the application of
the proposed ASS-HRA in the GA-based HRBDO process
dramatically reduces the total and average HRA iterations,
especially for the case of g2 where the decreases of aver-
age HRA iterations are 59.33% and 58.20% compared with
SSL-HRA and ET-HRA, respectively. The results demon-
strate that the proposed ASS-HRA can achieve accurate
optimal solutions and improve the computational efficiency
in solving HRBDO problems. Consequently, the good con-
vergence performance and high efficiency of the proposed
HRBDO approach based on ASS-HRA are demonstrated.

V. APPLICATION IN ENGINEERING
To demonstrate the versatility and efficiency of the pro-
posed HRBDO approach based on ASS-HRA in the design
of complex engineering structures with strong nonlinear-
ity, it is applied to the design optimization of a realistic
complex engineering structure (namely, the slider of an ultra-
precision high-speed stamping press with random and inter-
val uncertainties), the objective of which is to realize the
reliability-based lightweight design. With the PRSMs for
efficiently calculating the performance functions of the slider
constructed based on sample points, the optimal design of
the slider satisfying reliability requirement is achieved uti-
lizing the proposed HRBDO approach, which are compared
in detail with those achieved by substituting ASS-HRA with
SSL-HRA.

A. DESCRIPTION OF THE HRBDO PROBLEM
The slider is the most important part of a high-speed stamp-
ing press, which rapidly moves up and down along the
guide rails of high-speed press in the stamping process. The
slider frequently suffers heavy impact forces in the stamping
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TABLE 4. Performance comparison of three HRBDO approaches based on different HRA methods.

TABLE 5. HRA results comparison among the optimal solutions obtained by different HRBDO approaches.

FIGURE 7. Convergence curves of the objective function of the numerical example utilizing ASS-HRA, SSL-HRA and ET-HRA.

process, which makes it vulnerable to damage [50]. Thus,
it is necessary to optimize the slider’s structure to ensure its
performance reliability and the safe operation of high-speed
press.

The press slider illustrated in Fig. 8 is utilized to demon-
strate the feasibility and effectiveness of the proposed
HRBDO approach in the optimization of complex engineer-
ing structures. Figure 8(a) illustrates the location of the slider
in the actuating mechanism of a high-speed stamping press
while Figs. 8(b) and 8(c) illustrate the 3D solid model and
the cross section of the slider respectively. The geometrical
parameters h, b1, b2, b3(mm) in the cross section of the slider
shown in Fig. 8(c) are chosen as the design variables while
the elastic modulus E(MPa), Poisson’s ratio υ and admissible
stress Q(MPa) are described as interval variables considering
that it is difficult to determine their probability distributions.
The distance l(mm) between the inner and outer linkages
in Fig. 8(a) is described as a random variable considering
that there are sufficient data to determine its probability dis-
tribution. The distance between two outer linkages is fixed
as 1900mm. The initial design is d0 = (h, b1, b2, b3) =
(820, 70, 35, 40)mm, the corresponding weight of which is

w0 = [1125.6, 1139.5]kg. The maximum equivalent stress is
the most important mechanical performance index according
to the performance requirement of the investigated slider.
Thus, the difference between the admissible stress and the
actual maximum equivalent stress of the slider is described as
the performance function. To realize the lightweight design of
the slider, the minimization of the weight is described as the
objective function. Consequently, the HRBDO model of the
slider is constructed as

min
d

w(d,X)

s.t. Rmin [g(d,X,U) ≥ 0] ≥ 0.98

g(d,X,U) = Q− s (h, b1, b2, b3, l,E, υ)

d = (h, b1, b2, b3) ,X = l,U = (E, υ,Q)

700mm ≤ h ≤ 910mm, 54mm ≤ b1 ≤ 120mm,

16mm ≤ b2 ≤ 40mm, 16mm ≤ b3 ≤ 48mm (23)

where d = (h, b1, b2, b3) (mm) is the design vector;
X = l(mm) is the random vector (variable); U =

(E, υ,Q) is the interval parameter vector; w (d,X) is
the weight of the slider; g (d,X,U) is the performance
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TABLE 6. The statistics of uncertain variables of the slider.

FIGURE 8. The slider in an ultra-precision high-speed press.

function; s(h, b1, b2, b3, l,E, υ) is the actual maximum
equivalent stress of the slider; Rmin is the minimum reliability
of the slider under the influences of random and interval
uncertainties. All the statistics of these uncertain variables are
listed in Table 6.

B. CONSTRUCTION OF THE PRSMS
A total of 60 sample points is generated within the
8-dimensional space defined by 4 design variables, 1 random
variable and 3 interval variables utilizing the LHS method,
55 points of which are chosen for generating the PRSMs
while the others are utilized as test points. The LHS pro-
cedure applies uniform distribution and Gaussian distribu-
tion, respectively, for producing sample points of interval
and probabilistic uncertain variables. Then the maximum

FIGURE 9. 1/4 FE model of the actuating mechanism: Loads and
constrains.

TABLE 7. Statistics of PRSMs for calculating the objective and constraint
functions.

equivalent stress and weight corresponding to the 60 sample
points are calculated by finite element analysis (FEA). The
1/4 FE model of the actuating mechanism shown in Fig. 9 is
utilized for FEA considering its symmetry. A uniformly dis-
tributed load of 750kN is exerted on the lower surface of
the slider since the nominal force of the investigated press
is 3000kN while a pressure of 800kN is exerted at the con-
nection of the upper beam with the oil cylinder. The mesh
model of the slider includes 64439 solid187 elements and
117603 nodes.

Considering the influences of design variables h, b1, b2, b3,
random variable l and interval variables E, υ,Q on the max-
imum equivalent stress s and the weight w, the PRSMs for
computing w (d,X) and g (d,X,U) are constructed as:

w(d,X)

= 74.65634+ 0.89488 · h+ 3.18046 · b1
+11.66997 · b2 + 1.76934 · b3 + 0.86049 · l

−0.01077 · h · b2 − 0.00124 · h · b3
−0.00131 · h · l + 0.00026 · b1 · l

−0.02353 · b2 · l − 0.01188 · b3 · l

+0.00003 · h · b2 · l + 0.00002 · h · b3 · l (24)
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TABLE 8. Comparison of the computational efficiency between two different HRBDO approaches.

TABLE 9. Comparison of the optimal designs located by two different HRBDO methods.

g(d,X,U)

= Q− (1.084× 10−7 · E · ν − 2.697× 108 · E

+ 0.00003 · ν − 5.136× 106) · (1.10804 · h

+ 0.78354 · b1 + 1.91884 · b2 + 0.93603 · b3
+ 1.36302 · l + 0.75433 · h · b2
+ 0.75657 · h · b3 + 0.75611 · h · l

+ 0.75657 · b1 · l + 0.75256 · b2 · l

+ 0.75491 · b3 · l + 0.75433 · h · b1
+ 0.75687 · h · b2 · l + 0.75687 · h · b3 · l + 4.14164)

(25)

The prediction errors of the resulting PRSMs for w (d,X)
and g (d,X,U) are listed in Table 7, which demonstrates that
both of their RMSE values are less than 0.04 and both of their
R2 and CC values are greater than 0.99. Thus the PRSMs
in (24), (25) are accurate enough to be utilized as substitutes
for FEAs in the optimization of the press slider.

C. OPTIMIZATION RESULTS AND DISCUSSIONS
Based on the PRSMs in (24), (25), the HRBDO model
in (23) is solved by the proposed HRBDO approach based
on ASS-HRA. The convergence values of ε1 and ε2 in the
ASS-HRAmethod are 0.001. The population size, maximum
iteration number, crossover and mutation probabilities of
GA are prescribed as 200, 250, 0.90 and 0.01, respectively.
Besides the maximum iteration number, the GA evolution
terminates when the difference between the objective value
at the optimal solution of current GA generation and that
of the last GA generation is less than 10−4. The conver-
gent curve of weight obtained by the proposed approach
is shown in Fig. 10, which converges at the 196th gen-
eration of GA evolution. The optimal solution is obtained
as d = (700.9, 54.1, 16.0, 17.0) (mm), the correspond-
ing weight and the maximum equivalent stress of which
are w (d,X) = [1005.1, 1018.0]kg and s(d,X,U) =
[63.960, 64.748]MPa, respectively. The HRA and HRBDO
results are also provided in Table 8 and Table 9 with the
corresponding HRA results obtained by 107 groups of MCSs
utilized as the reference values. As can be observed from
Table 9, the HRA results of the optimal solution obtained by

FIGURE 10. Convergence curves of the objective function value for the
engineering example.

the proposed ASS-HRA are very close to the values obtained
by MCS-HRA with the relative error of only 0.4853%. The
relative HRA error at the initial design is 0.3239%, which
further demonstrates the accuracy of the proposed ASS-HRA
approach.

As can be seen from the results of the benchmark test
in Table 2 of Section III.C, the proposed ASS-HRA has
the similar accuracy as the SSL-HRA while the ET-HRA
may yield relatively large error although it can reduces the
iteration and functional evaluation in the HRA process for
each design vector. Therefore, the HRBDO model (23) is
solved herein by an identical GA framework utilizing the
SSL-HRA instead of the ASS-HRA for comparison so as
to ensure the reliable comparison of the solution efficiency.
The computational efficiency of the HRBDO approaches
based on ASS-HRA and SSL-HRA are compared in Table 8
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while the performance of the optimal designs located by two
different HRBDO approaches are compared in Table 9. It is
obvious from Table 9 that the initial design cannot satisfy the
reliability requirement (namely, the minimum reliability of
the performance function at the initial design is less than 0.98)
while both the optimal designs achieved by two HRBDO
approaches can satisfy the reliability requirement. However,
the ASS-HRA-based HRBDO involves fewer HRA itera-
tions with an evident drop of 39.227% (total) and 38.598%
(average for each GA generation), respectively, compared
to the SSL-HRA-based HRBDO. Moreover, the ASS-HRA-
based HRBDO produces the optimal design with the higher
minimum reliability of the constraint function, the smaller
weight, and the smaller maximum equivalent stress. That is,
the optimal design achieved by theASS-HRA-basedHRBDO
has better performance than that achieved by the SSL-HRA-
basedHRBDO. Consequently, the applicability and effective-
ness of the proposed approach in the HRBDO of realistic
complex engineering structures with random and interval
uncertainties are demonstrated.

VI. CONCLUSIONS
To realize the HRBDO of complex engineering structures
with random and interval uncertainties, a HRBDO model
is constructed with implicit objective and constraint perfor-
mance functions. For the purpose of efficiently calculating the
minimum reliability index of an engineering structure with
random and interval variables, a new ASS-HRA method is
proposed which decouples the HRA process into two layers
of iterations and efficiently locates the MPP with the intro-
duction of a correction angle to avoid zigzagging iteration.
The benchmark example of a cantilever beam demonstrates
that the proposed ASS-HRA method can efficiently achieve
the HRA results of high accuracy in comparison with the
ET-HRA and SSL-HRA methods.

Subsequently, an efficient GA-based HRBDO approach
integrating the proposed ASS-HRA with PRSM is developed
to solve the HRBDO problem for complex engineering struc-
tures with random and interval uncertainties. The results of a
numerical example demonstrate that the proposed HRBDO
approach based on ASS-HRA produces good convergence
performance and high efficiency. The HRBDO results of a
high-speed press slider with random geometrical parameter
and interval material parameters demonstrate the efficiency
and versatility of the proposed approach for the design opti-
mization of realistic complex engineering structures.
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