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ABSTRACT Accurate fault diagnosis of high-voltage circuit breakers is crucial for the safety of power grids.
Mechanism action time, though can reflect the state of high-voltage circuit breakers, is usually difficult to
obtain, as multiple sensors are required for acquisition. To solve this problem, a novel method that can extract
mechanism action time from vibration signals was proposed in this paper. Themethod involved enhancement
of vibration signals using short-time zero-crossing rate and determination of mechanism action time by the
double threshold method. Then, time parameters were utilized to calculate singular spectrum entropy as
the input vector for a classifier. Finally, a hybrid classifier that involved support vector data description
and extreme learning machine was developed to identify faults. The hybrid classifier can not only classify
known mechanical states but also detect unknown mechanical faults of high-voltage circuit breakers. The
effectiveness of the proposed method was verified using a 35-kV high-voltage circuit breaker.

INDEX TERMS Fault diagnosis, circuit breakers, motion estimation, time measurement, vibration measure-
ment, signal processing, entropy, pattern recognition.

I. INTRODUCTION
High-voltage circuit breakers (HVCBs) directly affect the
stability and safety of the power system as it is one of
the important control components in a high voltage circuit
[1], [2]. Previous study has reported that the vast majority
of faults of HVCBs are mechanical faults [3]. As a result,
it is necessary to monitor mechanical states of HVCBs so as
to maintain the power grid [4], [5]. In general, the mecha-
nism action time can effectively reflect the state of HVCBs.
However, the mechanism action time, though effective, is
usually extracted from multiple signals, which requires mul-
tiple sensors to collect the signals. Thus there is the need to
install sensors at each static contact to measure the arrival
and departure time of the moving contact, and also the
need to collect current signals to measure the action time
of HVCBs. Therefore, in order to find a more simpler
method for mechanical fault diagnosis of HVCBs, significant
research efforts have been devoted to process various signals
such as coil current, contact displacement, acoustic signals,
and vibration signals for monitoring condition over recent
years [6]. Mei et al. [7] developed a hybrid fault diagnostic
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model for HVCBs by using electromagnet coil current infor-
mation, and the result showed that the model could correctly
identify faults of HVCBs. Moreover, Forootani et al. [8]
constructed a dynamic model to track changes in the con-
tact displacement and finally realized the detection of early
faults of HVCBs. Yang et al. [9] realized faults diagnosis
of HVCBs based on acoustic signals by searching different
intervals of amplitude between the normal signal and fault
signal. Huang et al. [10] constructed a hybrid classifier to
identify faults of HVCBs based on feature vectors extracted
from vibration signals. Among all the signals being currently
used for the extraction of fault-related features of HVCBs,
the vibration signal is the most used signal due to its conve-
nience of acquisition [11]. Waveforms of vibration signals of
various faults are similar but fault features may exist in differ-
ent frequency components; therefore, multi-scale decomposi-
tion methods such as empirical mode decomposition (EMD),
empirical wavelet transform (EWT), wavelet packet trans-
form (WPT), and variational mode decomposition (VMD)
have been applied to decompose vibration signals for extrac-
tion of features. After the decomposition, a vibration signal
can be transformed into several intrinsic mode functions
(IMFs). Liu et al. [12] applied EMD method on vibration
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signals and then extracted feature vectors from selected IMFs.
Li et al. [13] employed EWTmethod to decompose vibration
signals and then extracted time-frequency entropy as feature
vectors. Ji et al. [14] decomposed the vibration signal into
different frequency bands by WPT. Then sample entropy in
low frequency band and energy in high frequency band were
calculated as feature vectors respectively. Huang et al. [15]
extracted feature vectors from the IMFs decomposed by
VMD for the diagnosis of HVCBs. Although these stud-
ies have achieved good diagnostic results, the above men-
tioned decompositionmethods are subjected to disadvantages
including energy leakage, endpoint effect, and randomness of
the determination of decomposition levels, which may affect
the robustness of diagnostic results. Moreover, these decom-
position methods require considerable time to implement,
which does not meet the requirement of real-timemonitoring.

Considering that a vibration signal recorded using an
acceleration sensor is the reflection of motions of structures
involved in operating mechanism [16], starting time and end-
ing time of some major vibration events such as motion of
the cam and collision of the moving contact and the static
contact may be extracted from vibration signals. Inspired by
the endpoint detection method used in the processing of a
speech signal [17], short-time zero-crossing rate (STZCR)
combined with double threshold method (DTM) was devel-
oped to extract time parameters from vibration signals in this
study. With the help of time parameters, the time domain
segmentation of a vibration signal was realized. Then singular
spectrum entropy (SSE) was calculated as feature vectors.

After feature extraction, the key issue is to construct
an effective classifier model. The support vector machine
(SVM) [14]–[16], fuzzy C-mean (FCM) [18]–[20], back
propagation neural network (BPNN) [21], [22], random forest
(RF) method [6], [23], and generalized regression neural
network (GRNN) [13] have been commonly applied in fault
diagnosis of HVCBs. However, FCM is sensitive to noisy
data and BPNN relies on considerable training dataset to
ensure high recognition rate. SVM is greatly influenced by
two parameters, namely, penalty coefficient and kernel func-
tion parameter [24], which may lead to a misjudgment of
fault identification. RF method, though powerful, requires
considerable time for training. As a new fast machine learning
model, extreme learningmachine (ELM) offers a fast learning
speed and generalization ability. ELM is developed for single
hidden layer feedforward neural networks (SLFNs). Different
from BPNN, ELM can randomly initialize input weights and
biases between the input layer and the hidden layer [25], [26].
Moreover, the connection weights and the neuron thresholds
do not require adjustment during the training of ELM. Over
the past years, ELM has been successfully used in fault
classification and feature learning due to its superiority [27].
In this study, ELMwas employed to classify faults of HVCBs.

Previous researches are mostly holding that all faults are
known. However, recording all types of mechanical faults for
the training of classifiers is unrealistic. Unknown faults are
definitely identified as a known state. Therefore, performing

identification of unknown faults is necessary. In this study,
samples belonging to unknown faults were assumed as out-
liers, which could be identified by a one-class classifier.
As a result, support vector data description (SVDD) [28]
was employed to identify unknown faults. SVDD has many
applications in fault diagnosis, which realizes the identifica-
tion of unknown faults by constructing an optimal sphere.
Whether the sample is located in the sphere is the basis for
the distinction between known states and unknown faults.

This study proposed a novel approach for diagnosis of
mechanical faults of HVCBs. STZCR combined with DTM
was first used to extract parameters of mechanism action
time from vibration signals. Then vibration signals were seg-
mented into several segments by time parameters. Based on
this, SSE was calculated as feature vectors for the training of
the hybrid classifier that was composed of ELM and SVDD.
Finally, identification of faults of HVCBs was realized by the
hybrid classifier.

The remaining sections of this paper are arranged as fol-
lows. Section II introduces the research framework, which
contains the process of fault diagnosis, techniques for feature
extraction, and fault identification. Section III describes the
experimental setup andmeasurement procedures. Results and
analysis of experiments are presented in Section IV. Finally,
Section V highlights the conclusions.

II. RESEARCH FRAMEWORK
A. FAULT DIAGNOSIS PROCESS
As a complicated mechanical system, different mechani-
cal faults of HVCBs are always holding similar features.
To extract more useful features of faults, mechanism action
time parameters extracted from vibration signals were used
to segment vibration signals into smaller segments, and then
SSE was extracted as feature vectors from the segments.
Finally, SVDD was trained to identify unknown faults while
ELM was trained to classifier known states. The process of
the approach proposed for the fault diagnosis of HVCBs
is shown in Fig. 1, which is composed of the following
three parts: data acquisition, feature extraction, and faults
identification.

B. ANALYSIS OF MECHANISM ACTION TIME
The spring operating mechanism of an HVCB is a multi-
link mechanism which uses stored energy of spring to realize
operations of opening or closing [29]–[31]. The operating
mechanism of anHVCB is linkedwith several structures [32],
including the cam, rods, moving contact, arms, and insu-
lating rod, as shown in Fig. 2. Operations of HVCBs were
accomplished by sequential motions of these structures, thus
recording action time parameters of main structures such as
the cam and the moving contact can indirectly reflect the
mechanical state of an HVCB. In this study, motion of the
cam and collision of the moving contact and the static contact
were designated as sub-events.
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FIGURE 1. Fault diagnosis process of the proposed method.

FIGURE 2. Schematic illustration of the spring operating mechanism of
HVCBs.

The actual starting time of the sub-events can be extracted
from the coil current of the iron core and contact states of the
moving contact, as shown in Fig. 3.

Moreover, the specific descriptions of the time parameters
are as follows [33]–[35]:

Time 0 is the moment when the HVCB receives an action
instruction.

FIGURE 3. Actual time parameters of sub-events.

T1: t1 is the moment when the iron core impacts the
shackle, then, the spring operatingmechanism starts working.

T2: t2 is the moment when the moving contact starts
shifting.

T3: t3 is the moment when the moving contact reaches the
position of the static contact.

When the iron core successfully knocks the lock, the oper-
ating mechanism starts working. Motions of structures of
the operating mechanism cause vibration, in particular,
the motion of the cam and the collision of the moving con-
tact and the static contact. Correspondingly, vibration signals
collected using an acceleration sensor during a process of
the operation of HVBCs, are the superposition of vibra-
tion caused by structures of the operating mechanism. Since
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motions of structures are sequential, time parameters may be
extracted from vibration signals. Furthermore, compared to
acquisition of coil current and contact state signals requires
multiple sensors, the acquisition of vibration signals is more
convenient as it only requires one sensor. Therefore, it will
greatly reduce the complexity of fault diagnosis if the time
parameters can be successfully extracted from vibration
signals.

C. EXTRACTION OF MECHANISM ACTION TIME
To meet the requirement of fast breaking current, the action
process of HVCBs is very quick. It is thus difficult to extract
time parameters of sub-events. In this study, STZCRwas used
to enhance the feature of sub-events. Then DTM was used
to extract time parameters. Before using STZCR, vibration
signals should be split into multiple frames by a window
function with defined length beforehand, which is called
framing.

Assuming that a vibration signal is x(t), after framing,
the ith frame is shown as follows:

yi(n) = ω(n) ∗ x((i− 1) ∗ inc+ n) (1)

where ω(n) is the window function, yi(n) is the ith frame of
a vibration signal, n = 1, 2, . . . L, i = 1, 2 . . ., fn, inc is the
shift length of framing, L is the length of the framed signal,
and fn is the total number of the framed signal.
In this study, Hamming window function was adopted,

which is defined as follows:

ω(n) =

{
0.54− 0.46 cos(2πn/(L − 1)) 0 ≤ n ≤ L − 1
0 otherwise

(2)

1) SHORT-TIME ZERO-CROSSING RATE
STZCR stands for the frequency that a frame passes through
the transverse axis, which is used to enhance the vibration
signals and can be expressed as follows:

Z (i) =
1
2

L−1∑
n=0

|sgn[yi(n)]− sgn[yi(n− 1)]| (3)

where,

sgn[x] =

{
−1 x < 0
1 x ≥ 0

(4)

2) DOUBLE THRESHOLD METHOD
TheDTMendpoint detection algorithm should set two thresh-
olds for STZCR. The time parameters of a sub-event were
detected by higher threshold while the lower threshold was
used to accurately detect real-time parameters of a sub-
event. The specific judgment process is shown in Fig. 4.
Clearly, T1 is higher threshold, while T2 is lower threshold.
Fig. 4 demonstrates that the AB and CD segments are defi-
nitely sub-events as they are higher than T1. Then both sides
from AB and CD are searched to determine the starting time
and ending time of sub-events at low thresholds.

FIGURE 4. DTM for judging time parameters.

D. FEATURE EXTRACTION
Effective working of a classifier is directly influenced by
feature vectors. There is a clearance in motion pairs of the
operating mechanism; therefore, differences of time parame-
ters may even exist in samples belonging to the same type of
faults [36]. Thus, time parameters are unsuitable to be used
as feature vectors directly. In this study, time parameters were
used to segment vibration signals, and then feature vectors
were calculated from segmented signals.

Singular spectrum analysis is an effective method for ana-
lyzing and predicting non-linear time series [37], which is
thus suitable to mine the essence of vibration signals. In this
study, SSE was calculated as feature vectors of vibration
signals of HVCBs.

First, n-dimensional phase space was reconstructed.
Assuming that the signal to be reconstructed is x(i), the recon-
struction result is as follows:

A(N−n+1)×n

=


x(1) x(2) · · · x(n)
x(2) x(3) · · · x(n+ 1)
...

...
...

...

x(N − n+ 1) x(N − n+ 1) · · · x(N )


(5)

Then the matrix A is decomposed by singular value decom-
position (SVD):

A = U(N−n+1)×lSl×lV T
l×l (6)

where nonzero diagonal elements λ(i) of Sl×l are called
singular values.

SSE is calculated as follows:

HSSE (k) = −
n∑
i=1

q(i) ln q(i) (7)

where,

q(i) =
λ(i)
n∑
i=1
λ(i)

(8)

E. HYBRID CLASSIFIER
1) PRINCIPLES OF EXTREME LEARNING MACHINE
As a new fast machine learning algorithm, ELM is developed
for SLFNs and can randomly initialize input weights and
biases [38]. Fig. 5 shows the principle of ELM.
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FIGURE 5. The principle of ELM.

Assuming that there is a training set {(xj, tj)|xj ∈ Rn,
tj ∈ Rm}, thus an SLFN with l hidden nodes can be defined
as follows:

yj =
l∑
i=1

βig(wi · xj + bi) j = 1, 2, · · · ,M (9)

where xj represents the input feature vector of the jth sample,
tj represents the desired output label of the jth sample, wi =
[wi1,wi2, · · · ,win]T represents the input weight that connects
the ith hidden node and input nodes, bi represents the bias
value of the ith hidden node, yj represents the output of the
ELM model of the jth sample, g(·) represents the activation
function, and βi = [βi1, βi2, · · · , βim]T represents the output
weight that connects the ith hidden node and output nodes.

If the outputs of the SLFN are consistent with the cate-

gories of samples, namely,
M∑
j=1

∥∥yj − tj∥∥ = 0, then (9) can be

transformed as follows:

l∑
i=1

βig(wi · xj + bi) = tj j = 1, 2, · · · ,M (10)

Equation (10) can be represented as:

Hβ = T (11)

where,

H (w1,w2, · · · ,wl, x1, x2, · · · , xM , b1, b2, · · · , bl)

=

 g(w1 · x1 + b1) · · · g(wl · xl + bl)
... · · ·

...

g(w1 · xM + b1) · · · g(wl · xM + bl)


M×l

(12)

β = [β1, β2, · · · , βl]Tl×m (13)

T = [t1, t2, · · · , tl]TM×m (14)

where T represents classes of samples.
In order to have better generalized performance, a kernel

function can be used to replace the active function g(·).

In this study, Gaussian kernel function was adopted, which
is defined as follows:

K (xi, xj) = exp(

∥∥xi − xj∥∥2
σ 2 ) (15)

where σ is the kernel width.
Thus the hidden layer output matrix can be rewritten as:

H =

 K (x1, x1) · · · K (x1, xl)
... · · ·

...

K (xM , x1) · · · K (xM , xl)


M×l

(16)

The output weight vector β can be calculated as follows:

β = H+T (17)

whereH+ represents the Moore–Penrose generalized inverse
of matrix H , and T represents classes of samples.

2) PRINCIPLES OF SUPPORT VECTOR DATA DESCRIPTION
As a one-class classifier, SVDD has a good application in
the detection of outliers. In this study, SVDD tries to find a
sphere that can distinguish whether samples belong to known
states or unknown faults, as shown in Fig. 6. Moreover,
the sphere should contain samples belonging to known states
as close as possible.

FIGURE 6. The principle of SVDD.

Assuming that the training samples are Q = {xi|
i = 1, . . . ,M}, then the sphere can be defined by [39]:

min f (r, a, ξi) = C
M∑
i

ξi + r2

s.t. ‖xi − a‖ ≤ r2 + ξi, ξi ≥ 0 (18)

where ξi is the slack variable, C is the penalty factor which
aids in balancing the volume of the sphere against the quantity
of samples that belong to unknown faults, r is the radius of
the sphere, and a is center of the sphere.
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Equation (18) can be solved by using the Lagrange multi-
plier method.

f (αi, r, a, ξi) = C
M∑
i

ξi + R2 −
∑
i

γiξi

−

∑
i

αi

[
r2 + ξ2i − (xi − a)

2
]
, ai > 0, γi ≥ 0 (19)

where αi and γi are the Lagrange multipliers.
The kernel function is introduced to solve the above

mentioned optimization problem:

min f =
∑
i

αiK (xi, xi)−
M∑
i,j

αiαjK
(
xi, xj

)
s.t. 0 ≤ αi ≤ C,

M∑
i=1

αi = 1 (20)

where K (xi,xi) is radial basis function. Solving (20) can pro-
vide a set of Lagrange multipliers αi. Moreover, samples xi
with αi >0 are called support vectors, which are the points
on the boundary of the sphere in Fig. 6.

The distance D from a sample to the center of the sphere is
calculated as follows:

D=

√√√√√K (x, x)+
M∑
i=1

M∑
j=1

αiαjK
(
xi, xj

)
− 2

M∑
i=1

αiK (xi, x)

(21)

Whether the sample is located in the sphere is the basis
for the distinction between known states and unknown faults,
which can be judged by:

fsvdd = sgn
(
r2 − ‖xi − a‖2

)
= sgn

(
r2 − D2

)
(22)

F. COMPUTATIONAL COMPLEXITY ANALYSIS
The computational complexity of the proposed method was
analyzed using the big O notation. The proposed method
comprises of three parts, time parameters extraction, SSE cal-
culation, and the hybrid classifier training. The computational
complexity of these three parts was analyzed respectively.

The computational complexity of time parameters extrac-
tion is equal toO(fn·L), where fn is the total number of framed
signal, and L is the length of the framed signal.
The computational complexity of SSE calculation is

approximate to O((N −n+1) ·n2+n), where N is the length
of the segmented signal, and n is the dimension of the phase
space.

According to Ref. [40] and Ref. [41], the computational
complexity of SVDD and ELM with M training samples are
all O(M3), thus the computational complexity of the hybrid
classifier training is O(2M3).
In summary, the total computational complexity of the

proposed method is O(fn · L + (N − n+ 1) · n2 + n+ 2M3).
By removing the low-order terms and constant terms, the

computational complexity of the proposed method can be
approximate to O((N − n) · n2 +M3).

III. EXPERIMENTAL APPLICATION
A real high-voltage SF6 circuit breaker was used as the exper-
imental platform. A monoaxial acceleration sensor named as
DH131E was used to record vibration signals of the HVCB,
whose frequency response was 1-8000Hz and the measure
range was 0-500g. Previous research reported that the instal-
lation position of the acceleration sensor significantly affects
the accuracy of fault diagnosis of HVCBs [42], [43].

Considering the stability and convenience of data acqui-
sition, two principles should be followed for the installation
of acceleration sensors: (1) acceleration sensors do not affect
operations of HVCBs; (2) the installation positions for accel-
eration sensors are close to the structures which are mostly
concerned. The beam near the operating mechanism is the
position for the installation of the acceleration sensor in this
study. The experimental platform and the position for the
installation of the acceleration sensor are shown in Fig. 7.

FIGURE 7. Data acquisition system of HVCB.

When receiving the instruction of closing, the data acquisi-
tion system starts recording data, with the sampling frequency
of 10 kHz and the sampling time period of 300ms. Three
types of mechanical faults: invalidation of the buffer spring
(Fault I), looseness of the base screw (Fault II), and fault of
the actuator (Fault III) were simulated in this study.

These three faults occur frequently in HVCBs and simu-
lated as follows: removal of the buffer spring for the simula-
tion of Fault I, as shown in Fig. 8a; loosening of base screw for
the simulation of Fault II, as shown in Fig. 8b; and adjustment
of the length of the transmission rod for the simulation of
Fault III, as shown in Fig. 8c. In order to prevent damage
to the HVCB from excessive operations, 30 samples were
collected from each type of faults. Moreover, 30 samples
were collected from the Normal State. Furthermore, the con-
tact state and the coil current were recorded using a high
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FIGURE 8. Simulation of (a) Fault I. (b) Simulation of Fault II and
(c) Fault III.

FIGURE 9. Typical waveforms of vibration signals of (a) normal state,
(b) Fault I, (c) Fault II, and (d) Fault III.

voltage switch dynamic characteristic tester. Fig. 9 shows
typical waveforms of vibration signals of the four different
mechanical states.

Analysis of vibration signals of the four different types of
states shown in Fig. 9 led to the following conclusions:

The maximum amplitude of Fault I is greater than that of
the other types of states, which is due to the fact that the buffer
spring does not play a good buffering role.

The starting time of fault III is ahead of the other types of
states, which is because of the shortening of the transmission
rod. Obviously, these two differences are insufficient to clas-
sify faults. More effective features are needed.

IV. RESULTS ANALYSIS
A. EXTRACTION OF MECHANISM ACTION TIME
Avibration signal was first split into 148 frames by Hamming
window function with a frame length of 60 points and a frame
shift of 20 points. Then STZCR combined with DTM was
used to extract mechanism action time of the framed vibration
signals. Fig. 10 shows the extraction results, exhibiting that
the sub-events are correctly extracted from vibration signals.
Time parameters were marked in the form of the vertical lines
in Fig. 10. The vertical dotted lines stand for the starting time
of a sub-event and the vertical solid lines in Fig. 10 stand for
the ending time of a sub-event.

The results were compared with actual time parameters
obtained from the contact state and coil current, as shown
in Fig. 11. The vertical dotted red lines stand for the actual
starting time of sub-events. The black lines stand for time
parameters extracted from vibration signals, which have the
same meaning as vertical lines in Fig. 10. Moreover, time
parameters extracted from vibration signals match up well
with actual time parameters.

It appears that the starting time extracted from vibration
signals of cam movement is earlier than the actual time while
that of the collision of contacts lags behind the actual time.
Prior to the action of the cam, the collision caused by the iron
core and shackle causes vibration. This affects the extraction
results of time parameters of the cam movement. For the
collision of contacts, the fact that the acceleration sensor is
not located near the vibration source is the reason for the
delay time between t3 and t3’.

Comparisons of ending time are limited because of the fact
that high voltage switch dynamic characteristic tester cannot
get ending time of sub-events.

Themaximum error between the extracted time parameters
and actual time parameters is listed in Table 1

TABLE 1. The maximum error of time parameters extracted from
vibration signals.

The maximum error of different types of mechanical states
is less than 5% in most cases, which illustrates the effec-
tiveness of extraction of time parameters of sub-time from
vibration signals.

Using time parameters, a vibration signal can be divided
into five segments in the time domain. The first segment and
the last segment of the vibration signal are veryweak and con-
tain little useful information; therefore, both of them do not
participate in the calculation of feature vectors. Fig. 12 shows
an example of the segmentation, which is composed of three
segments. Every segment can be transformed into a matrix
according to (5). Then singular values are obtained by the
decomposition of the matrix, which is conducted by SVD.
Finally, SSE is calculated according to (7) and (8). The spatial
distribution of SSE is shown in Fig. 13.

In previous studies, signals were usually segmented based
on equal-time [10] or equal-energy [13] in the process of
extracting feature vectors. Following this, SSEwas calculated
based on equal-time and equal-energy respectively, and the
spatial distribution of SSE is shown in Fig. 14.

Obviously, feature vectors shown in Fig. 14(a) and 14(b)
are more disordered than those in Fig. 13. Fig. 14 shows
obvious aliasing between different states whether for equal-
time method or equal-energy method, which indicates that
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FIGURE 10. Time parameters extracted from vibration signals of (a) normal state, (b) Fault I, (c) Fault II, and (d) Fault III.

TABLE 2. Computational time of different feature extraction methods.

segmenting the vibration signal using time parameters ismore
scientific in the process of calculating SSE.

It is well known that the sooner the fault of HVCBs is
detected, the smaller the economic loss. Therefore, it is nec-
essary to monitor the state of HVCBs in real time. In the
intelligent diagnosis of HVCBs, feature extraction often
consumes a lot of time, especially when signal decompo-
sition is required. Therefore, computational time of three
different feature extraction methods used in previous stud-
ies was compared in this study. EMD energy entropy
(EMD-EE) [16], VMD local singular value decomposition
(VMD-LSVD) [15], and EWT improved time-frequency
entropy (EWT-ITFE) [13] were calculated to compare com-
putational time. The results are presented in Table 2. TP-SEE
in Table 2 was used to refer to the feature extraction method
proposed in this study. All experiments were implemented
in Matlab 2016b running the computer with a core i7 6700
3.4GHz processor and 4GB RAM. The feature extraction
method used in this study takes much less time than the
methods reported in literature studies [13], [15], [16], thus

it is more in line with the real-time monitoring requirement
of the HVCBs.

B. FAULT IDENTIFICATION USING EXTREME LEARNING
MACHINE AND SUPPORT VECTOR DATA DESCRIPTION
For comparative analysis, ELM, SVM [14]–[16], BPNN
[21], [22], RF [6], [23], FCM [10], and GRNN [13] were
all used for the classification of faults of the HVCB, respec-
tively. Moreover, the widely used k-nearest neighbor (KNN)
classifier participated in fault diagnosis. These classifiers
should be trained first. To compare the performance of these
classifiers, 100 trials were conducted to calculate the average
diagnosis accuracy. In each test, 24 samples were randomly
selected from each state to form the training set and the other
6 samples of each state were grouped into the testing set.
The average classification accuracy is listed in Table 3. For
better comparison, the results in Table 3 are also illustrated
in Fig. 15. Table 3 and Fig. 15 reveal that ELM achieves
the highest accuracy of 97.67%, which is significantly higher
than that of 91.12%, 75.83%, 89.17%, 92.08%, 87.5%, and
93.33% of SVM, BP, KNN, RF, FCM, and GRNN, respec-
tively. For the identification accuracy of each state, all the
classifiers were sensitive to Fault I and Fault III, especially
Fault I, which can be completely identified bymost classifiers
except BP. Noteworthy, FCM can completely identify both
Faults I and III, but it has low identification accuracy in
Normal state and Fault II. In all classifiers, only ELM main-
tains high identification accuracy for all states.
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FIGURE 11. Comparison between time parameters extracted from vibration signals and actual time parameters of
(a) normal state, (b) Fault I, (c) Fault II, and (d) Fault III.

TABLE 3. Comparative results of seven classifiers.

FIGURE 12. Segmental result of a vibration signal of the normal state.

Furthermore, Table 3 summarizes that ELM takes the
shortest time for training and testing, which is more useful
for real-time diagnosis.

In fact, simulation of all mechanical faults of HVCBs
for the training of ELM is unrealistic. Typical multi-
class classifiers definitely misclassify unknown faults into
known states. It is thus necessary to identify unknown faults
before the classification implemented by ELM.

In this study, SVDD was used to detect unknown faults.
In order to reflect the performance of SVDD in deferent
conditions, Fault I (Case a), Fault II (Case b), and Fault III
(Case c) were all assumed to be the unknown fault, respec-
tively. The training set and testing set were constructed in the
same way as ELM except that the samples belonging to the
unknown faults did not participate in the construction of
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TABLE 4. Comparative results of two one-class classifiers of three cases.

FIGURE 13. Spatial distribution of SSE calculated based on time
parameters.

FIGURE 14. Spatial distribution of (a) SSE calculated based on equal-time
and (b) SSE calculated based on equal-energy.

the training set. Finally, the testing set was fed into SVDD to
test its identification ability for unknown faults. Specifically,
the training set has 72 samples belonging to three mechanical
states, and the testing set has 24 samples belonging to three
mechanical states and the unknown fault. The average identi-
fication accuracy was reflected by 100 trials and is presented

FIGURE 15. Comparative results of seven classifiers.

FIGURE 16. Comparison of results between SVDD and OCSVM from
perspectives of (a) identification accuracy of known states and
(b) identification accuracy of unknown faults.

in Table 4. The identification accuracy of known states and
unknown faults was expressed separately.Moreover, the over-
all accuracy was calculated. For better comparison, results
in Table 4 are also illustrated in Fig. 16. Fig. 16(a) illustrates
the identification accuracy of known states and Fig. 16(b)
illustrates the identification accuracy of the unknown fault.

Table 4 and Fig. 16 indicate that all the samples that belong
to the unknown fault of three cases are identified correctly
by SVDD. Furthermore, misidentification occurred in known
states. If samples belonging to the unknown fault are not
successfully detected, they may be classified as the normal
state in subsequent state classification, which will be very
harmful. It is thus necessary to ensure high identification
accuracy of unknown faults in the step of unknown fault
detection, even at the expense of the identification accuracy of
known states. As a result, the hybrid classifier constructed in
this study prioritized the identification of samples belonging
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to unknown faults, which is the reason for the high identifi-
cation accuracy of unknown faults. Furthermore, whether the
HVCB was healthy or not was not mistaken, thus the result is
acceptable.

Moreover, the superiority of SVDD was verified by
the comparison with another one-class classifier, namely,
one-class support vector machine (OCSVM). OCSVM can
also be used for the identification of unknown faults
[14], [44]. Table 4 and Fig. 16 show that all the unknown
samples are also identified correctly by OCSVM. However,
OCSVM is poor in recognizing known faults, with the accu-
racy of 53.33%, 51.67%, and 53.89% of three cases, which
is much lower than 90.00%, 88.33%, and 91.25% of SVDD,
respectively, leading to the overall accuracy of OCSVM far
less than that of SVDD. SVDD is thus more suitable for the
identification of unknown fault of HVCBs.

V. CONCLUSIONS
This study proposed a novel approach for mechanical faults
diagnosis of HVCBs, which can effectively extract precise
features from vibration signals and improve the identification
accuracy of faults. Mechanism action time was first extracted
from vibration signals by STZCR and DTM. Then the raw
vibration signals were divided into multiple segments by time
parameters. SSE was then calculated as feature vectors from
the segmented signals. The hybrid classifier that involved
SVDD and ELM was finally employed to identify faults of
the HVCB, which could not only classify known states but
also identify unknown faults. The main contribution of the
method proposed in this study involved the introduction of
mechanism action time for feature extraction to improve the
diagnosis accuracy and diagnosis speed. The conclusions can
be drawn as follows:

(1) Aiming at the difficulty of obtaining the action time
of mechanism, a method of extracting the mechanism action
time from the vibration signal was proposed in this study.
The mechanism action time extracted from vibration signals
matched well with the actual mechanism action time.

(2) Compared to equal-time and equal-energy segmenta-
tionmethods, the segmentationmethod proposed in this study
exhibited superiority in the calculation of feature vectors,
resulting in a significant improvement of spatial distribution
of feature vectors.

(3) Compared to other classifiers used in previous studies,
the hybrid classifier can achieve the highest identification
accuracy with the shortest training time.Moreover, the hybrid
classifier can precisely detect unknown faults of HVCBs.

Owing to the easiness of the collection of normal samples
in the actual operating environment, there is a problem of
sample imbalance. Sample imbalance has a high requirement
for the classifier and will be studied in future work.
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