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ABSTRACT We take advantage of human hair-specific geometry to visualize sparse submicron and micron-
sized cuticle peelings with imaging dark-field scattering at highly oblique tip-side illumination. The paper
shows that the statistics of these features can directly estimate hair quality is much lower magnifications
(down to 20×) with less powerful objectives when the features themselves are significantly below the system
resolution. Our technique for quality categorization of black, blond, and grey human scalp hair samples
is successful in detecting healthy and damaged hair in all cases by a large margin (factor of 5 contrast
in proposed metric). As demonstrated, the proposed metric even has a strong correlation with the type of
damage such as ironing, discoloration, and UV (ultraviolet) exposure. Therefore, this technique has a strong
potential for lower cost, portable, and automatic hair diagnostic apparatuses.

INDEX TERMS Hair assessment, computational imaging, low magnification.

I. INTRODUCTION
Hair composition can be studied with conventional polarime-
try techniques, SEM (Scanning Electron Microscope) and
different spectroscopic techniques [1]–[9] for clinical pur-
poses. Hair quality can be classified thoroughly by extensive
spectroscopy and analysis of the essential chemical compo-
nents in hair down to molecular level [10]–[13]. The infrared
and visible scattering of the hair is also recently shown to
correlate with hair quality [12], [13]. The current instrument
for analyzing hair quality are rather bulky and relatively
expensive [6]–[9], [12], [13]. Such a cost and form factors
are unjustifiable for cosmetic applications targeted toward
portable consumer products and mobile diagnostics. Also,
analysis of the chemical compounds of hair is not always
necessary as the effects of some of the invasive damaging
factors are manifested in the geometry of the hair [4], [9].
Unfortunately, the variations in the features of the cuti-
cles of healthy and unhealthy (for example UV (ultraviolet)
exposed or bleached [9]) hair are rather small (submicron) in
xy plane (sample plane) and close or below the diffraction
limit of optical microscopy. These are three dimensional
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features that can have larger z variations that are not neces-
sarily visible in simple wide-fieldmicroscopy configurations.
Thus, higher magnification objectives with large numerical
aperture (e.g. 100×and 0.9NA) and more complex interfer-
ometric or confocal techniques are necessary to resolve and
study these features [2], [3], [5], [6]. This higher resolution is
obtained at the cost of reduced field of view, reduced depth of
field, increased alignment sensitivity, and higher complexity.
Other challenges for using optical microscopy while studying
human hair are the strong absorption and scattering of light by
inner structures of black hair (cortex and medulla - Fig. 1(a))
in transmission mode and strong reflection of light from outer
layers of blonde or grey hair (Fig. 1(b)) in reflection mode.

In recent years, computational methods have eased the
demand on the hardware; these methods can reduce the num-
ber of acquisitions [14], demix signals at lower SNR [15],
and enable imaging in exotic geometries [16]–[18]. Based
on prior knowledge of the sample type, by customizing the
detection process both at hardware level and software level
the detection efficiency can be significantly increased in dif-
ferent applications [19], [20]. Here, we have taken the idea
of oblique illumination microscopy also known as dark-field
microscopy [8] to the extreme by employing near perpen-
dicular (highly oblique illumination) to capture dark-field
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FIGURE 1. Challenges in using conventional illumination configurations
with low magnification objective (20×/0.75NA): (a) black hair is imaged
in transmission mode. Absorption and scattering from inner layers reduce
the signal to noise ratio (SNR) at the areas shown by arrows. (b) The
intense reflection in the middle region (shown by arrow) from the outer
layers and the geometry of the hair renders the sides of the blonde hair
dark. This forces use of larger dynamic range sensor. Scale bars are
40 micrometer.

scattering of the mechanical features on the surface of the
human hair. By exploiting the sparsity of the submicron
features and polarization of scattered light, we have been able
to characterize human scalp hair with 20× objective at highly
oblique LED (Light-emitting diode) illumination. Usually,
the quality of human hair is measured with SEM and/or
spectroscopic techniques qualitatively (based on cosmetic
features) and quantitatively. In qualitative analysis, cracks
and peeling cuticles are determined by visual inspection.
In quantitative analysis, SEM has been employed to deter-
mine human hair quality by measuring the tensile strength
(surface tensions, force measurements) [21], [22]. Another
method which has been employed to determine hair quality
analytically is by using surface with step heights using atomic
force microscopy [23]. These methods need high-cost equip-
ment for measurement of strength or height.

In our method, after acquiring hair samples, region of inter-
est (ROI) and features are extracted computationally at low
magnifications. The main idea is to compute a damage level
for each hair sample based on combination of DT (Delaunay
triangle), HD (histogram density), and VD (Voronoi diagram)
of these features. Our method can categorize black, blond,
and grey hair into healthy and unhealthy (or damaged) with
100% success within our limited (6 strains per category)
sample set. This paves the way for lower cost, portable form
factors such as cell phone add-ons [24] that could analyze hair
quality for cosmetic or sanitary applications.

II. SETUP AND IMAGE ACQUISITION
The setup consists of an infinity corrected objective
(20× Olympus UPLSAPO Objective, 0.75 NA, 0.6 mm
WD) that is coupled into an aperture, a rotatable linear
polarizer, and then a 1.3 Mega pixel camera (Point grey
FL3-U3-32S2C-CS). A hair strand is held vertically in midair

with a sample holder and illuminated on a black absorptive
background with a broadband non-polarized LED in highly
oblique angle (85◦) as in Fig. 2. The sample holder is coupled
into a course 0.5" miniature dovetail mechanical 3D stage.
The setup is not alignment sensitive due to low magnifi-
cation of the objective. The LED has a polymer coupled
lens and there is no more condenser optics used for the
illumination. Due to specific geometry of hair, the difference
between healthy and damaged hair becomes significantly
evident when a hair strand is illuminated from the tip side.
This is because there are a greater number of cuticles that are
peeled off from the hair strand. The edges of these cuticles
will scatter light that is strongly polarized in the horizontal
direction compared to the weaker reflection from the body
of the hair strand (Fig. 2(a)). This helps us to eliminate the
background (shown with ⊥ in Fig. 2). We also didn’t find as
significant of a scattering when we illuminated the sample
with the same angle from the root side. This is expected as
the peelings have small angle with the main axis of the hair
strand (Fig. 2(b)). The optical axis of the objective and hair
shaft are perpendicular to each other and can define a plane of
incidence in which the reflected (scattered) light would have
S polarization. The consistency of the lighting can affect the
observed image; we used a collimated 1 cm by 1 cm white
diode to illuminate the sample uniformly across the entire
depth of field of the objective and even beyond it. Since the
angle of incidence is very large, it is important that the other
components such as sample holder don’t cast a shadow on
the sample. Also the tilt of the sample holder can affect the
results. For each sample there is a need for slight alignment to
bring the image into focus. We attempted to obtain an align-
ment where highest number of features are visible and images
are in sharpest focus. It is worth mentioning that the system
is not strongly alignment sensitive in terms of statistics that it
extracts from the samples (the sample canmove few hundreds
of microns and still be in focus). Misalignment or different
positions of same samples generates different data; however,
the relative ratio in numbers between damaged hair and un-
impacted hair is not changed notably. This robustness to
alignment is because the objective has lower magnifications
which provides large depth of field for the lens allowing the
hot spots to be in focus. Also, the sample holder is designed
in such a way that it eliminates ambient light and provides
an absorptive black background to the sample. The oblique
illumination creates dark scattering of the submicron peelings
on the hair which would not be visible unless there is sub-
micron level depth resolution for the acquisition device. This
is a significant advantage as it allows the features to be visible
with lower magnification optics that are much more cost
effective and can capture larger field of view to reveal the
statistics of the cuticle peelings.

III. COMPUTATIONAL CATEGORIZATION
The hair categorization procedure is illustrated in Fig. 3. The
procedure consists of three major blocks: feature contrasting
(optical and computational), quality evaluation, and finally
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FIGURE 2. Measurement setup schematics: (a) illumination from the tip side results in large number of
spot-like features that can be detected with 20× objective. The scattering from the edges of the peeled
cuticles is highly polarized as seen in the measurements on the right. (b) Illumination of the same
sample from the follicle side. Only a few larger irregularities can be seen. (⊥ is cross polarized with
cuticle scattering, ‖ is parallel polarization with these scatterings).

FIGURE 3. Block diagram of computational categorization process:
feature contrasting, quality evaluation, and decision making from left to
right respectively.

decision making on category of the hair damage. While
other methods can be used in each block, the procedure core
remains unchanged.

The hair features are highlighted optically by oblique illu-
mination (Fig. 4(a)). The acquired hair image is used for input
image I as shown in Fig. 4(a).
Statistical metrics are the proper option for evaluating the

hair quality, since the method needs to tune to mechanical
features of the hair surface below the spatial resolution of
the objective. The metric should indicate or at least have a
meaningful correlation with the actual damage type or dam-
age extent of the hair sample. In addition, it should work
for large variety of hair types such as black, blond, and grey
hair without the need for significant parametric initialization.
This motivates for defining or highlighting features across the
hair with a feature extraction process. Once these features are

extracted, one can study the spatial statistics of these features,
for example how uniformly are these features spread? How
many of them are there? And what is the overall density and
size of these features. These are the information obtainable
from the sample without resolving it down to submicron level
(Fig. 4(b)). In other words, the method sacrifices localized
resolution for obtaining larger scale image to capture the
overall statistics of the features. To the best of our knowl-
edge, there is no study to show how exactly the statistics
of the scattering spots on the hair surface should change
with regards to the hair damage level. This study is the first
attempt toward this end, our initial investigations show that
denser and uniformly distributed scattering spots are strongly
correlated with higher damage level. Based on this initial
observation, ideally to quantify this correlation, we needed
to develop a metric that: a) responds linearly to the dam-
age level of the hair, to avoid amplifying higher damage
levels or neglecting lower ones; b) captures the density and
distribution of the features while responding minimally to
the global shifts of the features in the region of interest
(ROI) (e.g. because of the cylindrical symmetry of the hair
there should be no difference if the spots are mostly on the
perimeter or the center, and c) can work for all types of
hair with minor or no parametric initialization. The region
of interest (ROI) is extracted by measuring the largest region
(largest number of pixels in extracted region) from binary
(black and white) image where there are detectable features.
The red color indicates extracted region as shown in Fig. 4(c).
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FIGURE 4. Categorization process: (a) conventional coaxial illumination acquisition, (the illumination direction is transverse to the hair shaft
but coaxial with the optical axis of the objective), (b) image after oblique illumination from the hair tip side. The peelings are scattering light,
(c) the region of interest (ROI) is computed, (d) the region of interest is shown by a red rectangle, (e) feature extraction based on regional
maxima (contrast is enhanced for better visualization); after the calculation of Delaunay triangles, histogram density, and Voronoi diagram
the categorization process is completed based on the calculated damage value.

Figure 4(d) just shows the largest region from Fig. 4(c). This
region is used for defining the boundary of feature extraction.
If we didn’t set such a boundary, then erroneous features
from unwanted areas would enter the evaluation. Figure 4(e)
shows the cuticle peeling features, which are extracted by
using extended-maxima transform [25]. This transform finds
regional maxima with 8 connected components (8 neighbor-
ing pixels). The centroid of each extracted blob IR (x,y) is
used for final features to calculate feature distribution quality.
To find regional maxima, we set the threshold value of the
extended maximum transform as 15 for all of the images.
This number which is a threshold on the pixel intensity is
obtained heuristically and can be affected by the contrast and
noise level of images in the system. If this value is set to 30,
for instance, many of the features will be ignored and if it
is set to 2 some of the noisy pixels will also be detected as
features. The dimension of this window can vary depending
on the magnification of the objective lens. The spatial and
statistical distribution of scattered features are studied by
using Delaunay triangles (DT) [26], histogram density (HD),
and Voronoi diagram [26], [27]. These metrics are commonly
used for image analysis and any other application that deals
with computing in Euclidean geometry [28].

A. DELAUNAY TRIANGLE (DT)
A set of Delaunay triangles (DT) is computed for each input
image by using extracted features as shown in Fig. 5(a) (Input
image).

The area and the shape of each triangle can be used to
represent the distribution of points [29], [30]. The area DTA
and radiance DTR of Delaunay triangles are used to calculate
distribution quality of hair as in Eq. 1 to Eq. 4.

DTA =

√√√√∑n
i=1

(
Ai
A
− 1

)2
n− 1

, A =

∑n
i=1 Ai
n

(1)

FIGURE 5. Delaunay triangles: (a) input image, (b) delaunay triangles are
generated based on extracted features.

where n is the number of Delaunay triangles, Ai is the area of
the ith triangle, andA represents themean area of the triangles.
Also to calculate DTR equation below is used:

DTR =

√∑n
i=1 (Ri − 1)2

n− 1
, Ri =

3
π
max (θ1, θ2, θ3) . (2)

where Ri indicates maximum radian value of the largest angle
among three angles (θ1, θ2, θ3) of the ith triangle computed
as [26].

DTA × DTR =

√√√√∑n
i=1

(
Ai
A
− 1

)2
n− 1

×

√∑n
i=1 (Ri − 1)2

n− 1
.

(3)
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FIGURE 6. Histogram density (HD): (a) input image, (b) 2D feature histogram. Histogram density is calculated
based on this type of input, (c) normalization of (b).

DT =
1

DTA × DTR
. (4)

Higher DT value indicates a greater spread of features.
We used DT based on simplicity and computational cost for
portable applications. This is not necessarily the optimized
approach.

B. HISTOGRAM DENSITY (HD)
Figure 6(b) shows the 2D histogram of the features across the
hair surface in the region of interest (ROI). To calculate the
histogram density, we accumulate the features within each bin
and then normalize each bin to a binary matrix that indicates
either the presence or absence of features. Finally, we get HD
value by dividing the total sum of the resulted binarymatrix to
thematrix dimensionM×N . For example, if the size of ROI is
100× 200 and the size of bin is 20, then we have (100/20)×
(200/20) = 50 bins. If there are features on 10 bins, then
total probability is 10/50 = 0.2. More detailed information
is found in Algorithm 1.

Algorithm 1 2D Histogram Density
Data: P(xi, yi): feature points, B(M ,N ): Bin, w: bin size,

(X ,Y ): image size
Result: Total probability of histogram density
for m = 1 to M do

M = dXw e ;
for n = 1 to N do

N = dYwe ;
if P(xi, yi) within B(M ,N ) then

Density← 1 ;
Normalization ;
if Density > 1 then Density = 1;
;

Total probability (HD) =
M ,N∑

m=1,n=1

Density
m×n ;

The bin size was fixed to 20 × 20 for all the measure-
ments. Certainly, all our parameters are dependent on this bin
size; for example, an extremely large bin size will saturate
the HD parameter to 1 and a too small bin will push HD
toward zero. The number 20 × 20 is chosen to represent
and average feature size with slight margin around it. This
number could be changed for different objectives with dif-
ferent point spread functions and image sensor sizes. The
optimal number for the bin size should represent an average
feature size on the hair which is about few microns (2-5 µm).
The total probability indicates the overall spreading of the
features. The higher probability indicates more widespread of
damage.

C. VORONOI DIAGRAM (VD)
The mean value of Voronoi tessellation area of a feature
set is calculated using Voronoi diagram (VD) (Fig. 7). The
boundary of Voronoi diagram is computed using convex hull
of feature set (Fig. 7(b)) [31]. This boundary limits the area
of the cells at the margin of the diagram to enable measuring
the average area that contains a feature. The VD value indi-
cates average size area that contains a feature. A very small
VD indicates that the damages are widely and densely spread
across the hair surface; larger VD can indicate that features
are just localized in one area.

D. DAMAGE LEVEL CALCULATION
Higher values of DT and HD depict a higher damage
level. To classify hair condition, these two parameters
are simply multiplied to represent the damage level (DV)
as

Damagevalue(DV ) = DT × HD. (5)

We can observe that there is a notable meaningful differ-
ence between the calculated damage value for ‘‘healthy"
and ‘‘damaged" hair in further experimental results with the
dataset.
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FIGURE 7. Voronoi parameter extraction. (a) Input image (b) Boundary of Voronoi diagram (computing area),
(c) Voronoi diagram.

FIGURE 8. Simulated data (fixed ROI: 50× 50) for distribution evaluation: (a) distribution quality (damage
level) is getting decreased from (a1) to (a4). The distance of the points is increased by decrease in
distribution (b) normalized value for Delaunay triangle, histogram density, and Voronoi diagram.

IV. RESULTS
A. SIMULATION RESULTS
To demonstrate the operation of the proposed algorithm, and
investigate the dynamics of its response, we have generated a
synthetic data set as shown in Fig. 8.

Figure 8 indicates that the distribution quality correlates
with DT and VD super linearly while it correlates with HD
sub-linearly. In our study the contrast between the damage
values of samples are large enough to justify simple thresh-
olding in the decision-making block of Fig. 3. Inclusion of
DT and VD parameter not only brings the damage value
metric to a more linear metric, but DT and VD will also
work together to make the metric more robust to the random
global shifts of the features in ROI. More complex decision-
making algorithms are conceivable for further sophistication.
For example, if the damage is a combination of different types
of damage more complex output can be considered for the
decision-making block.

TABLE 1. Damage level comparison.

Here synthetic data set was used for fixed ROI size
(Fig. 8: 50 × 50). In reality, the ROI size may differ from
every acquisition of different hair sample. We observed the
proposedmethod provide damage value in term of the varying
ROI size as table 1.

B. EXPERIMENTAL RESULTS
Our samples were composed of three natural hair colors:
black, blonde, and grey (or white due to aging). Within
each sample set we had four categories of hair: healthy,
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FIGURE 9. Healthy versus damaged (96 hours UV exposured) hair; scale bar is 40 micrometer.

FIGURE 10. Different hair damages are successfully categorized. (a) Damage level value for different types of damage and hair
color. The metric is even capable of identifying the damage type with fair average consistency. For each point 3 measurements
is performed and the results are averaged. (b) Measurements at three spots on a single hair for healthy and UV-exposed hair
for three different hair colors. The algorithm successfully finds the damaged hair in all the cases.

discolored (bleached), ironed, and 96 hours UV-exposed hair.
While other types of damage are known to explicitly express
mechanical changes in the human hair, UV exposure damage
is known to be very subtle [32]. In fact, in earlier years it
has been controversial between different researchers as to
if UV damage express itself in the physical structure of the
hair [9]. As noticed in Fig. 9 there are clear difference in the
number and density of the scattering clusters in healthy and
UV exposed hair. It is noteworthy that the imaged features
are sparse and also not fully resolved as seen in Fig. 9.
However, due to sparsity we can yet study the statistics of
these features and, therefore, categorize the hair samples
as in Fig. 10(a). Fig. 10(a) shows the damage level for
different hair. By merging data from all hair samples we
can observe the proposed method finds the damaged hair in

all cases using a certain constant threshold. This threshold
is calculated by k-means clustering of all data sets. It is
clear that the damage value is strongly correlating with the
damage level of the hair. Fig. 10(a) further shows that not
only the introduced metric can categorize between healthy
and unhealthy with 100 percent accuracy in our sample set,
but it can also categorize between different types of damage
on average. This is because all the averaged curves are in
parallel and well distanced from one another. The ground
truth is based on the preparation process of the hair sam-
ples in the laboratory. For example, the UV exposed hair is
exposed to UV for 96 hours with UV radiance mimicking
the sun profile at sea level from 280nm to 400nm whereas
the healthy hair is not. Since we are studying a biological
sample and not a physical sample, it is difficult to pinpoint
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TABLE 2. Hair damaged value (DV) comparison using Delaunay triangle (DT), histogram density (HD), and Voronoi diagram (VD).

a sharp gold benchmark on what is a ‘‘healthy’’ hair; as hair
chemical structure and geometrical features varies by race
and from person to person. However, this does not mean
that one cannot measure the impact of external damaging
factors on biological systems. Here when we refer to healthy
hair, we are referring to an un-impacted hair or part of the
sample batch that hasn’t been exposed to the specific damage
factor. The hair samples are collected from healthy adults
and elderly with no medical condition or malnutrition by
Natura Company under due clinical standards. In general,
the results show that the damage value is about 3 to 4 folds
higher for UV-exposed hair compared to healthy hair. This
value is about 5 to 6 times higher for bleached hair and finally
about 7 to 8 times larger for flattened or ironed hair. This can
provide an expected damage value range that can categorize
the hair quality. For example, any hair sample that has damage
level above 0.3 can be considered heavily damaged most
likely because of flattening. As Fig. 10(a) indicates, there
are some differences in these values for different hair colors.
Grey hair has the largest error bars. In general, the standard
deviation for DV is about 0.02 for un-impacted or healthy
hair samples whereas the standard deviation of this metric
increases to 0.1 for impacted or damaged hair. The standard
deviation as indicated in Fig. 10(a) for the measurements is
the highest for damaged gray hair (specifically flattened gray
hair) and lowest for dark brown healthy hair. This is expected
as gray hair already has anomalies on its structure due to
aging process and it is further refractive to the visible range
light which create further noise in the measurements. This
is completely the opposite case for healthy dark brown hair
where the hair itself is very well absorptive of the spectrum.
This strong absorption assists the clearing of the background
scattering and results in a better contrast for the scattering
spots. The values do however show a consistent trend with

regards to different types of damage as shown in Fig. 10(a).
While in some cosmetic applications a rough damage value
may suffice, further extended measurements are necessary
for a more demanding clinical application with regards to
damage type. This may require some automation on the hard-
ware to reduce the data acquisition time. It must be noted that
the damage level is relative and not absolute. The level can
change from setup to setup and therefore there can be some
relative shifts in the values. For example, we disassembled
and realigned the setup for Fig. 10(b) which shows the results
for three measurements at different parts of single hair for all
three colors. As noted, the variation for the same hair is much
smaller. Table 2 shows an example detailed data set for one
set of measurements. One of the factors that can contribute to
this damage level change in these two setups is the change in
image size on the sensor and not updating the relative bin size
accordingly. Another factor is the slight changes in the tilt of
the sample holder and alignment of the optics, e.g. change in
aperture size or angle of polarizer. Finally, the last factor that
can contribute to the shift in the parameter is the background
light that can vary from setup to setup due to slight variations
in illumination geometry, camera acquisition parameters, and
optical isolation of the setup from surrounding light.

V. DISCUSSION
While our study shows that lower magnifications can be
used for categorizing different levels of hair damage, at this
point we were unable to resolve the damage features properly
with lower end 10× (0.25 NA) objectives. However, it is
conceivable that if more than one strand of hair is used
simultaneously, or if higher resolution sensors (as those in
modern smart phones) are used there can be a better SNR
for feature extraction. It is noteworthy that while our algo-
rithm demonstrates the successful computational human hair

91816 VOLUME 7, 2019



B. Heshmat et al.: Computational Cosmetic Quality Assessment of Human Hair in Low Magnifications

categorization, it is by no mean the optimized or the most
accurate algorithm; therefore, finding better and more accu-
rate algorithms to match even lower magnification objectives
can be the topic of future research. The technique can be
used for other colors and potentially artificially dyed hair,
however, the colors chosen here make up majority of the
color composition of the population. There is some variance
in the data that changes based on the hair color and type of
the damage. In real-time applications the DV (damage value)
can be calculated in per frame however as in any other real-
time processes there can be a tradeoff between frame rate and
accuracy of the results. While the hot spots themselves can
be notably smaller than the resolution of the optical system
that we are using; this does not mean that our measurement
is not impacted by noise. The impact of noise in our detec-
tion process is not linear as there are multiple thresholding
processes that affect the data. The noise initially impacts the
process through feature extraction step that is performed via
extended-maxima transform. This error then propagates to
the rest of the process and impacts the extracted statistics. The
effect of noise and background illumination ismore evident in
grey hair samples as the background illumination is closer to
the illumination level of hot spots created by peeling cuticles.

VI. CONCLUSION
By computationally exploiting the sparsity of mechanical fea-
tures on human hair we enable categorization of hair quality
and damage type under low magnifications (as low as 20×).
Our use of polarized dark-field scattering and Euclidian met-
rics such as Voronoi diagrams and Delaunay triangles pro-
vides a single numeric metric that shows significant contrast
(4 to 8 fold contrast) between different types of damage.
This technique is not optically or computationally expensive
and, therefore, is highly appealing for portable form fac-
tors and real-time applications both in cosmetic and clinical
applications.
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