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ABSTRACT In the application of the Internet of Things (IoT), a sensor board depends on a battery that has
a limited lifetime to function. Furthermore, the IoT sensor board with multivariate sensors influences the
battery life-time, since there are additional data transmissions that must be supported by the board causing it
to drain the battery much faster than the sensor board with one sensor. The main aim of this paper is to increase
the battery life of the IoT sensor node. To do so, this paper proposes an efficient real-time data collection
model for multivariate sensors in [oT/WSN applications named RDCM. The general structure of RDCM is
composed of two main levels: the IoT sensor board level and the fusion center level. The IoT sensor board
level is implemented in real time by all the IoT sensor boards simultaneously in each cycle and fusion center
level is executed by the fusion center. The IoT sensor board level includes various stages as follows: check
the physical conditions of the IoT edge device (board) stage and update data strategy stage, data validation
stage, and sensed data reduction stage. The average of the total percentage of energy saved by the application
of RDCM to real-time data sets injected with various percentages of errors for all nodes is 98%. In summary,
the RDCM has a very high performance in terms of energy consumption compared with other algorithms.

This paper concludes with the limitation of the current study and some further research opportunities.

INDEX TERMS IoT, WSN, data collection, energy consumption, multivariate sensors.

I. INTRODUCTION

A. OVERVIEW

Wireless sensor network (WSN) consists of spatially dis-
tributed autonomous devices that used sensors to monitor
physical or environmental conditions. It integrates a gate-
way that provides wireless connectivity to the internet. The
Internet of Things (IoT) is a communication paradigm that
envisions total connectivity with objects of everyday life and
is an integral part of the Internet [1] infrastructures. Hence,
the IoT concept promotes the Internet even more immersive
and pervasively, enabling an easy access and interactions with
a variety of devices [2]. Various practical communications
models are used in IoT implementations, and each model
has its own characteristics. There are three models described
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by the IoT architecture board which includes machine-
to-machine, machine-to-cloud, and machine-to-gateway-to-
cloud as shown in Figure 1(a), Figurel(b) and Figurel. (c),
respectively. These models highlight the flexibility in ways
that IoT devices can be connected and provide value added
to the user [4]. It must be noted that in all previous models
the source machine (IoT edge devices) is the backbone of the
system, which is used to collect the data.

The world evolves, and so does our lifestyles, where
we are more dependent upon numerous modern electronic
devices. In recent years, WSN has played a vital role in
IoT applications. Numerous applications are based on WSNs
and IoT technologies, which have been applied in various
fields. They may be in healthcare, smart homes and buildings,
air pollution, military, industrial, precision farming, modern
horticulture industry and many more. In the wearable medical
monitoring applications [3], [4] sensors can be very useful
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FIGURE 1. Three architecture data collection loT -based WSN; (a) loT edge
sensor to device, (b) loT edge sensor to cloud and (c) IoT edge sensor
to BS.

to provide accurate and reliable information about people’s
activities and behaviors, provide assistance to the human liv-
ing environment [5], [6]. Furthermore, healthcare is not only
for humans, but also includes animal care observing biolog-
ical parameters such as rumination, body temperature, heart
rate, ambient temperature and humidity [7]. Smart home and
building applications, such as home environment monitor-
ing [8], real-time wireless monitoring of indoor air quality [9]
and energy management, all contribute to the widespread
usage of WSN/IoT integration. WSN possesses several con-
straints such as limited energy availability, low memory size,
and low processing speed, which are the principal obstacles to
designing efficient management algorithms for WSNs [10],
even more so if it concerns WSN/IoT integration.

B. MOTIVATION

Various data collection algorithms played a very important
role in improving the efficiency of the real-time IoT/WSN
applications. Nevertheless, there are still obvious challenges
and development issues faced by data collection algo-
rithms for real-time applications. Numerous researchers have

89064

addressed the issue of reducing the number of transmissions
packets by the IoT/WSN sensor board with a univariate sen-
sor. However, reducing the number of transmissions pack-
ets by IoT/WSN sensor board with multivariate sensors is
one of the most important research issues. Similarly, data
reduction methods based on the coding scheme in WSN/IoT
still have many constraints, such as delay, solve floating
point variables, and historical data. Despite all this, the prob-
lem of multivariate sensors is still a critical issue open
for further research. In WSN/ 10T, sensor data consist of
one attribute (univariate) or multiple attributes (multivariate).
Since the sensor board is only used to collect one type of data
(light/temperature or humidity), this type of data is called
univariate data. Similarly, in some IoT / WSN applications,
each sensor board is equipped with a multivariate sensor to
support different application needs. Furthermore, the current
multivariate data models used in IoT/WSN applications for
the purpose of reducing or validating the sensed data during
data collection process may have some challenges. For exam-
ple, these models are dependent on training, which means that
the accuracy of those models is declining over time due to the
increment in the approximation error. This increment in the
approximation error of the multivariate data model during
the real-time data collection is one of the significant chal-
lenges. The standard solution to this issue is accomplished
by applying an adaptive model that is able to update its
reference parameters during data collection. However, the act
of increasing the updating frequency of the model reference
parameters will affect the energy efficiency of the sensor
board due to the size of transmitted data after the updates.
Normally the model reference parameters typically are larger
than or equal to the payload data size without reduction. The
process of determining the threshold value is a difficult task
in the multivariate data models, which is why an objective
solution is needed.

This paper studies the problem of how to design and
improve an efcient real-time data collection model for
IoT/WSN sensor board with multivariate sensors. It will be as
a means to address several issues which have been described
previously. The research problem as such be stated as the
follows:

(i). How will the model reduce the number of transmissions
packets by IoT/WSN sensor board with multivariate
sensors?

(i1). What is the most beneficial method to determine the
threshold value for multivariate data reduction models?

(iii). How will the proposed model avoid transmitting incor-
rect sensed data during the data collection for oT/WSN
sensor board with multivariate sensors?

(iv). How will the model reduce the number of bits’ payload
for IoT/WSN sensor board with multivariate sensors?

Il. RELATED WORKS

It should be noted that some of the recent works aim to
improve the network performance by means of focusing on
the sensed data processing, dissemination and scheduling.
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For example, in [10], adaptive data processing and dissem-
ination for drone swarms in urban sensing named ADDSEN
has been proposed. The authors focused on improving the
in-network quality by means of observing the low-quality or
faulty sensed data and separating it from the set of sensed
data and redundant data. Similarly, many researchers focus
on mobility management and flow scheduling in IoT, where
the work in [11] achieved scalable mobility management and
robust flow scheduling in IoT multi-networks. For example,
compared with other software-defined networking (SDN)
systems as presented by the authors, the throughput has
been increased by 67.21%, the delay has been reduced by
72.99%, and the jitter has been improved by 69.59%. It is
clear that the previous solutions benefit mobile nodes. In our
work, like many previous works [13]-[48], have addressed
the fixed nodes scenario. For more clarity, this work focused
on payload data only. Also, there is no connection between the
nodes with the assumption that each IoT sensor node is able
to immediately update its sensed data to the fusion center.
We are probably the first to address various issues in one
model data collection for multiple sensors in IoT application.
Therefore, in this section of related works, it is divided the
prior works into two main parts: first, (A) evaluation of
measures related to the reduction in the number of transmitted
packets, which includes two subsections (i) reduce the num-
ber of transmitted normal data and (ii) reduce the number of
transmitted incorrect data. In this study, normal data is correct
sensed data. However, the aim of the update data strategy
during sensing phase is to save the energy consumption of
the IoT sensor board with multiple sensors by reducing the
number of transmission packets if no significant change is
reported by the payload sensing block. Similarly, the incorrect
data, their values measured by the sensor board that are
wrong, therefore avoiding the waste of energy consumption
for incorrect data. In the second part, (B) evaluation mea-
sures related to payload data size reduction approaches are
presented.

A. EVALUATION MEASURE RELATED TO REDUCTION IN
THE NUMBER OF TRANSMITTED PACKETS

In order to decrease energy consumption, various methods
have been proposed to reduce the number of transmitted data.
On the other hand, avoiding transmitting incorrect sensed
data during the data collection will contribute significantly
to saving the energy of IoT Edge device.

1) REDUCE THE NUMBER OF TRANSMITTED NORMAL DATA
Packet transmission can be drastically reduced if data pre-
diction algorithm such as time series prediction (TSP) can
be utilized. TSP is a significant applied technique for com-
mercial, inventory, weather prediction, manufacturing control
and signal processing. TSP is defined as a sequence of data
that is ordered by time and characterized by chronological
importance. Thus, the indices of variables and the correlation
between them can be used to develop mathematical mod-
els. Therefore, the main purpose of time series modeling is
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to collect and study historical values in order to find the
appropriate models that represent the general structure of
a given data [13]. The prediction of the time series based
sensing data model is a conventional technique for reduc-
ing the transmission by sensor nodes, and there are several
ways to use this technique, which includes: moving aver-
age (MA), exponential smoothing (ES), autoregressive (AR),
autoregressive with exogenous inputs (ARX), and autore-
gressive integrated moving average (ARIMA). Nonetheless,
these methods only support a single type of data sensor. For
instance, in [14], the authors presented a prediction-based
data reduction method by joining it with an adaptive sam-
pling rate. In addition, the recent work by Tan and Wu [15]
introduces a method to reduce the number of sensor node
transmitted packets by applying the hierarchical Least-Mean-
Square (HLMS) in the presence of adaptive filter. In the
previous work by [16], the authors presented a fast and
efficient dual-forecasting method to reduce the number of
messages sent from the sensor board. Careful evaluation of
the findings presented by [15] and [16] shows that only
univariate data with a fixed threshold error were investigated.
Recently, the work by [13] proposed a new method based
on forecasting to reduce the number of transmitted packets.
The advantage of the proposed model is its ability to evaluate
the proposed model using vibration sensors datasets. How-
ever, the method only addresses the univariate data. In [17],
the study shows a prediction of a light-weight model with
0.2 tolerance error and in [19], Artificial Neural Networks
(ANN) was employed to predict the sensed data. It uses a
Multi-Layer Perceptron (MLP) to decide on the required data
samples. Collective forecast exploiting temporal-spatial cor-
relation named CoPeST based on Least Mean Square (LMS)
algorithm as reported in [19] reduces the amount of energy
that is crucial for expensive transmission while maintaining
the data integrity to be within the error threshold of the
user. In [20], the study is a preliminary work on optimizing
sensor node energy employing an efficient data collection
and dissemination (EDCD) updating strategy. EDCD is a
strategy to update sensed data to the fusion center, which
is employed to reduce the number of transmitted packets.
On the other hand, ref [21] proposed an adaptive method
for data reduction (AM-DR). AM-DR method is based on
a convex combination of two decoupled Least-Mean-Square
(LMS) windowed filters with different sizes. AM-DR is used
to reduce the number of transmission packets by predicting
the current sensed data at the base station. The trends in
the majority of the forecasting methods are to broadcast the
original sensed data to the sink, when the predicted data
error is more than the threshold value. The authors in [22]
proposed an adaptive data acquisition mechanism that allows
each sensor node to adjust its sampling rate according to its
environmental changes while optimizing its energy consump-
tion. In another attempt, the author [23] used a simple linear
regression to save power consumed by sensor nodes. It is done
by reducing data transmission. The study considered that only
one attribute is related to the prediction, and only one attribute
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TABLE 1. Characteristics of the prior works that address the problem of reducing the number of transmitted packets.
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is used to predict the dependent variable. Time characteristics
are not the most relevant variables compared to other features
such as lighting, temperature and humidity, which makes the
predictions used by the solution inaccurate [24].

As a key assessment, most of the methods currently used
to reduce the number of transmitting packets in WSN/IoT
cover only univariate data, except for the work involving
multivariate data in [20]. Table 1 illustrated the character-
istics of the prior works that address the problem of reduc-
ing the number of transmitted packets. The authors applied
separately these algorithms to each type of sensors listed
in Table 1.
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2) REDUCE THE NUMBER OF TRANSMITTED

INCORRECT DATA

In WSN/IoT, the sensing data error detection approaches
can be divided into two types, namely: centralized error
discovery method and distributed error discovery method.
Most existing error detection approaches use periodic batch
testing at a central location, possibly a cluster head or a fusion
center [25]. A useful background overview of the current
outlier detection methods for WSN can be found in [25]-[28].
In addition, recent work [25] introduced a novel mathematical
model for assessing the impact of different data verification
systems on energy dissipation in the edge device. The One
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TABLE 2. Characteristics of the prior works that address the problem of abnormal data.

*
Ref Applications Network topology Implementation Dataset used Type of sensors Accuracy
(30] Environmental Cluster Simulation IBRL, GSB and T,A. T, RH and 9723%
monitoring Sensor Node Level MATLAB LUCE S.T o270
[32] Networked Aquatic
Environmental Cluster Simulation Microbial Observing o
monitoring Sensor Node Level MATLAB System (NAMOS) THand v 94.8%
IBRL and LUCE
[34] . . carbon-dioxide
Environmental Star ansdlrgzgliit;?iz E:itAb)e d Dataset collected by (CO2), carbon- NA
monitoring Sensor Node Level the authors monoxide (CO),
and H
[36] Environmental Cluster Sllgl)ul;?gll{(ggl;‘: ?;A IBRL and Dataset Tand H 979%
monitoring Sensor Node Level collected by authors ¢

testbed

*Accuracy is the average of all authors results

Class Quarter Sphere Support Vector Machine (OCSVM) was
used in [29] to create an anomaly discovery algorithm. The
authors in [30] proposed a method for observing outliers by
using a kernel principal component analysis (KPCA) based
on the Mahalanobis kernel. The idea behind is to isolate the
anomaly from the normal data distribution pattern. However,
this work was executed at the CH level and only supports
a single sensor (single variable). The previous work [31]
reported a qualified study of strategic detection of abnormal
sensed data in the smart city applications based on WSN.
In [32], the study presented an adaptive One Class Principal
Component Classifier model to detect the outliers in real-
time. The problem in the proposed work, which was how to
detect outliers on training samples, was not solved. Therefore,
in [33], the authors proposed a statistical training sensed
data removing approach for PCA-based chiller sensor fault
discovery, diagnosis, and data reconstruction technique. The
study discussed the discovery and the elimination of outliers
from the original training sensed samples. In [34], the authors
proposed a data validation algorithm for detecting different
types of faults. Its evaluation used data samples of WSN’s
prototype for environment monitoring injected with different
types of faults. The Modified-Z score method [35] was used
to detect outliers. Similarly, in [36], they proposed a new real-
time algorithm for observational verification of sensor data
at the node level, which is named Validity of the measuring
sensor reading at node level (VSNL). VSNL is a sensor data
verification algorithm based on an adaptive threshold. VSNL
considers detecting various types of errors in the sensed
data and proposes a simple mechanism to classify errors and
events. Sensor anomaly detection system for distinguishing
between real and false alarms has been provided in [37] for
healthcare applications. Table 2 illustrates the characteristics
of the previous works that address the problem of abnormal
data.
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B. EVALUATION MEASURES RELATED TO PAYLOAD

DATA SIZE REDUCTION APPROACHES

In the previous section, some of the work related to reduc-
ing the number of packets transmitted in WSN/IoT were
explored. However, this section provides a thorough discus-
sion on the latest work on the method of reducing payload
data size through the transmission of sensed data from the
IoT edge device to the FC. In a report presented by [38],
the authors propose a coding scheme to reduce the size
of the payload data sent by the cluster head node. Similarly,
the work of [39] aims to improve the accuracy of the data
received by the fusion center. The proposed coding scheme
is based on relative differences and precision factors rather
than the absolute variation method used in [38]. These tasks
are beneficial for cluster head nodes with univariate data.
Principal Component Analysis (PCA) is one of the most
widely used methods for multivariate data reduction. Various
types of PCA-based data reduction models are reported in
[40]-[44]. Due to limited resources of the sensor board,
the original version from PCA is not suitable for WSN/IoT
edge level. Therefore, a lightweight version of PCA called
Candid Covariance-free Incremental PCA (CCIPCA) was
proposed in [45]. The previous work in [46] used CCIPCA
as multivariate data reduction in WSN with a fixed threshold
and two Principal Component (PC). In addition, the recent
work [47] proposed two methods for multivariate data reduc-
tion for adaptive threshold known as PCA-B and MLR-B.
PCA-B is a multivariate data reduction that used CCIPCA
with adaptive threshold and set the number of PC to one in
order to achieve a high reduction level. MLR-B is a multivari-
ate data reduction utilizing Multiple Linear Regression model
(MLR) with an adaptive threshold. According to the work
of [47], the size of transmitted data after updating the model
reference parameters which are larger or equal to the payload
data size without reduction. It means that the sensor board
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TABLE 3. Characteristics of the prior works that address the problem of reduction the size of payload data.

s . Payload Data

Ref Applications Network topology Implementation  Dataset used Type of sensors Reduction
Environmental ~ Cluster Simulation o

(24] monitoring Sensor Node Level MATLAB IBRL THand L 0%

[41][46] Environmental ~ Cluster Simulation IBRL T.H, Voltage(V) and L 50%
monitoring Sensor Node Level MATLAB GSB, LUCE AT,RHand S.T 339,
Environmental ~ Cluster Simulation o

[47] monitoring Sensor Node Level MATLAB LUCE AT,RHandS.T 66.6%

48 Environmental  Start Simulation EBURCLF: GSB and T,H,VandL 95%

[48] monitoring Sensor Node Level MATLAB A.T,RHand S.T ?

38] Environmental ~ Cluster topology Simulation Data collected T 259
monitoring CH Node Level MATLAB usingMTS420CA o
Environmental ~ Cluster topology Simulation

[39] monitoring CH Node Level MATLAB IBRL TH NA

requires more energy in the updating stage than the reduction
stage. The study recommended the frequency of updating
the model reference parameters during data collection be
used as a new metric to evaluate the performance of the
multivariate data reduction models. More detail regarding
the data reduction methods has been described in recent
work [48]. Additionally, that work proposed a new sim-
ple mechanism called the Adaptive Real-time Payload Data
Reduction Scheme (APRS) for energy-efficiency purpose in
IoT/WSN sensor board with multivariate sensors. APRS aims
to reduce the transmitted packet size for each sensed payload.
Table 3 illustrates the characteristics of the previous works
that address the problem of reducing the size of payload
data. In addition, Table 4 and Table 5 show the summary
of comparison of the related works for each issue and the
summary of their limitations, respectively.

Ill. MATHEMATICAL MODEL OF ENERGY
CONSUMPATION FOR REAL-TIME DATA COLLECTION
SCHEMES IN loT/WSN EDGE DEVICE LEVEL

In this section a mathematical model of energy consump-
tion to evaluate the real-time data collection schemes for
IoT/WSN edge device level is introduced. The model solves
several problems related to the energy consumption of IoT
sensor nodes. It addresses the issues related to reduction of
transmission packets when using multiple sensor IoT board.
In this model, incorrect data transmission is avoided and also
it reduces the amount of payload bits before transmitting it to
FC. The proposed model can be used for numerical analysis
of energy consumption in different highlighted issues.

A. CONSTRAINTS
Let us consider that an IoT sensor board battery life-time £
is defined as Eq. (1).

L = (bmax < Epir) (D

Thus, in this work the problem of data collection formulae is
defined as

fc (gtotal, :R) < L;
R={ri,rn...rn};c

[
¥
a

@
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where by, is the maximum number of bits that could be
transmitted and received during a period time, Ep;; the energy
cost of transmitting or receiving one-bit, R the measured
data , N is the number of samples and C is the number of
constraints, Esprar = Etota@, d, v)

Subject to

Minimize — {f(w), f(d),f(v)}

where f (u) is the function referring to reducing the number
updating times during data collection issue, f (d) is the func-
tion referring to reducing the number of transmitted bits issue
when it is necessary to update the IoT sensor board sensed
data to the FC/cloud and f (v) is function referring to reduc-
ing the cost of data validation as well as avoiding sending
incorrect data issues. It should be noted that another reason
for the loss of sensor node energy is data processing. In this
paper, the transmitted data during the data collection phase
constitute a fundamental component of energy consumption.
This is because the energy consumed in sending one bit via
sensor board is higher than running many microcontroller
instructions [49]. Hence, in wireless devices, the energy con-
sumed by transceiver accounts for 80% of the overall energy
consumption of the node [50].

This study highlights that incorrect data is one of the rea-
sons for wasting battery energy. This is because the transmis-
sion of erroneous data requires the same amount of energy as
transmission of normal data. In addition, at FC this data will
be removed from the dataset after applying a data validation
algorithm, which means we avoid wasting some energy by not
transferring the incorrect data. Therefore, applying a simple
solution at the IoT sensor node level to avoid transmitting
incorrect data will help in saving the energy of the IoT sensor
node.

B. NUMERICAL EXAMPLE

Consider that a battery is used to equip an IoT sensor node for
a specific application. The maximum number of samples that
can be sent to the FC is N = 1000 samples when the sensor
node is in active mode/ RF(on) with energy consumption

VOLUME 7, 2019



N. A. M. Alduais et al.: RDCM: Efficient Real-Time Data Collection Model for 1oT/WSN Edge

IEEE Access

TABLE 4. Summary of comparison the related works.

Sensor .
board Issues addressed Complexity Threshold
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5 s & 5 2 h g 3 g = ﬁ : % 8
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= $eE2 5525 £ 2 2% it ¢
g £E 2E 55 8§ 2 £ & Z: g
= = »w»o £6 oF X & = b5 £ K
s =% 2e F b 7 =
[14] Yes X Data prediction & adaptive Sampling x X Yes % X Yes X X x Yes
[15] Yes X LMS prediction x X Yes % X Yes X % % Yes
[16] Yes  x Fast and efficient dual-forecasting X x Yes % x Yes  x % % Yes
[13] Yes X Dual-forecasting x X Yes % X Yes X x x Yes
[17] Yes  x light-weight forecasting x x Yes % x Yes  x x x Yes
[18] Yes X A neural data-driven x X Yes % X Yes X x x Yes
[19] Yes X Prediction (CoPeST) X X Yes X% X Yes  x x x Yes
[20] y Yes EDCD - Relative change/ Relative « y Yes  x y « Yes x x Yes
difference
X Dual prediction scheme using a convex X X X
[21] Yes combixtion of two LMS adaptive filters 8 Yes  x . Yes Yes
[22] Yes Adaptive Sampling X x Yes % Yes Yes © % % Yes
[23] Yes x based SLR X X Yes X% x Yes ¢ x x Yes
[24] X Yes  based MLR X X * Yes * Yes ¢ x x Yes
[38]39] Yes x Based coding scheme for cluster head « « x Yes * x YVes * x x
nodes level
48] X Yes Based coding scheme for sensor node y « Yes Yes Yes X Yes > X X
level
[40-45] x Yes  based on PCA X X x Yes Yes x x Yes
[46] x Yes  based on CCIPCA x x x Yes * Yes ¢ x * Yes
[47] X Yes  Based on CCIPCA xmed PCA-B X X X Yes X% Yes X Yes X% X
[47] X Yes  Based on MLR xmed MLR-B X X X Yes X% Yes X Yes X% X
[29] X Yes  Based on OCSVM Yes x X X X Yes  x X X Yes
[30] X Yes  Based on KPCA Yes x X X X X X X X
[32] X Yes  Based on OCPCC Yes x X X X Yes  x X X Yes
[34] Yes X Based on MZ-score X Yes x X Yes x Yes  x X Yes
[36] X Yes  Based on absolute change X Yes X% X Yes x X Yes X% X

Epyer = 52.92u)/byte and for simplicity, we assumed that
the consumption in sleep mode/RF(Off) is Epyer = Oul.
The number of sensors in the same node is n = 3 and
each sensor needs 4 bytes. The number of incorrect data is
Er = 100 samples. The energy consumption for each scenario
is as follows:

o Secnariol: Transmit all data.

Energy = (1000 x 4 x 3 x 52.92uJ) = 6350401)
o Secnario2: Transmit correct data only.

Energy = ((1000 — 100) x 4 x 3 x 52.92u))
= 571536u]

C. DISCUSSION

From the above numerical analysis, we can prove that avoid-
ing the transmission of incorrect data leads to minimizing the
total energy consumption gy
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According to [25], the IoT sensor node energy consump-
tion will be affected by a mechanism that is used to detect
and remove the incorrect data during data collection for IoT
real-time application. The cost of the error detection and
transmissions Epy_ppase during the validation phase based
on the approaches applied is defined as in Eq. (3).

Epv—Phase (Ptime )
= &1r (Piime )
+ ENN (Ptime) + Esp (Ptime )
= Zf:lfne:l ((Hrpits x e17) +ENN (Piime ) + EsD (Pime )
3)
where e1; is the energy consumption for transmission of
normal data, Enn is the energy dissipation to receive data

from various nearest neighbor nodes, Hrp;r is the size of
transmitted data, Pme is the current time and Egp is the
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TABLE 5. Summary the current data collection limitations.

Issue Methods

Limitations

Reducing number . o Univariate data only address
L Reducing the number of .
of transmissions transmissions by applyin e Fixed threshold
by Edge device . Y appying e Number of update models effect the energy consumption
. . forecasting / prediction . . . .
with multiple methods e Based on the above issues it could be difficult to apply those methods for edge device
sensors equipped with multiple sensors.
o Statistical method simple but is of no benefit for real-time applications.
Based on Statistical o The tolerance error / threshold is fixed

Data validation methods , classification

and PCA.

o Training data need extra energy.
o Updating the reference model is not based on approximation error, in this case the

model not accurate enough.

Multivariate data
reduction

MLR /SLR, PCA
and, Data coding

o Extra energy for Training is needed.
o Number of retraining times negatively effect the energy consumption.

e Heavy code book and historical data are needed and support only univariate data

energy dissipation to read/write data from SD-card memory
during data collection. For example, if the used algorithm
to observe an incorrect data during data collection does not
need to build a historical data or receive data from nearest
neighbor nodes, the Esp and Eny is equal to zero. Therefore,
our proposed model is able to observe the incorrect data
without the need to build historical data or receive data from
the nearest neighbor nodes (See in Algorithm 4).

According to Eq. (3), we can infer the following:
(i) Increase in the value of Egp negatively affects the energy
dissipation to detect the incorrect data. This is because the
error observation approach is unable to check whether the
data is being sensed directly in real-time, but it needs to
collect enough number of samples N, and save in a memory,
thus creating a historical data. (ii) Similarly, increase in the
value of EnNn negatively affects the energy dissipation to
detect the incorrect data. This is because the error observation
approach is unable to check the condition of the sensing data
in real-time directly, but it needs to receive the neighbor’s
sensed data to verify its validity. This mechanism is thus
totally dependent on the spatial-temporal correlation among
neighbor’s edge devices. Regardless of the percentage of
accuracy, its disadvantage is in the energy consumption of
error observation. (iii) the use of online/real-time approach is
the best way to observe incorrect data with the lowest energy
consumption. The key point of this situation is that the error
observation method can check the sensor data in real time
without delay, or need to construct historical data or bring
neighbor data for data validity verification.

The energy dissipation to receive data from various nearest
neighbor nodes Enn defined in Eq. (4). From the equation,
it is clear that increasing the number of nearest neighbor
nodes will increase the cost of detecting the data error at the
edge device. This is because the cost of detecting the status
of the sensed data (normal/abnormal) is higher than the cost
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of transmitting the sensed data itself.

N ni
ENN (Ptime ) = Zl‘:]b (Hroits x Ep) “

where JHppirs is the size of received data, &, is the energy
dissipation to receive one-bit and Ny;, is the number of
nearest neighbor nodes.

Eq.(5) defined the energy dissipation for reading/writing
samples from memory Esp during data collection which
used for checking the validity measured data. The number of
samples and its sizes affect the cost of the observed error.

H H
Esp = Z (Roits X REcost) | + Z (Whits X Whcost)
i=1 i=1

&)

where Rpirs, Whiss the number of read and write bits to and
from the memory, respectively. Rgcost, WEcost represent the
cost of energy dissipation to read and write bits from the
memory, respectively. 3 is the number of samples that have
been collected before checking validity of the current data.

The energy consumption during the reduction phase
ERD—Phase depends on the methods used as defined as fol-
lows. Equation Eq.(6) is used to calculate the energy con-
sumption during the reduction phase ERp—_phase as in [48].
ERD—Phase 18 divided into three parts as follows (i) Reduc-
tion Mode (RM), (ii) Non-Reduction Mode (N-RM) and (v)
Retraining Mode (RTM).

H,
ERD-Phase = [ Y En—rm() | +

i=1

H,
> Erm()
i=1

33
+ 1D &rrm@® ]| (6

i=1
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where Ex_rM, ErM and ErT—M are the energy consumption
per sample in N-RM, RM and RTM, respectively. H, H,
and H3 are the number of forwarded samples through data
collection in N-RM, RM and RTM, respectively.

N-RM is a common mechanism for sending payload data
from the sensor node to the FC without reducing its size.
The energy consumption per sample in N-RM is defined as
in Eq. (7).

EN-RM = (ORLengnt x €71) (7

RM is a mechanism for sending payload data from the sensor
node to the FC with reducing its size by applying a benefit
algorithm. The energy consumption per sample in RM is
defined as in Eq. (8).

fRDLenght))
erM = | eNcrM X [ 1 — ——— ®)
RM ( N—RM ( ORLenght

The efficiency of the data reduction models that are depen-
dent on training declines over time due to the increase
in the approximation error. The retraining process aims to
update the reference parameters to represent the new dynamic
changes in the sensed data [46]. Therefore, the sensor node
needs to transmit a copy from the reference parameters to the
FC. The energy consumption per sample in RTM is defined
as in Eq. (9).

eRT-M = (RTLengih X €T) + €rRM )

where ORpength, RDLength and RF L engtn is the original length
of payload, reduced data and the model reference parameters
per sample, respectively.

D. DISCUSSION
From Eq. (6) it is clear that the energy consumption of the
sensor node is affected by the type of the algorithm used to
reduce the sensed data during data collection. For example,
if the data reduction model is based on training such as
PCA-B and MLR-B, which means that increase in the value
of ENn—rM, Erm and Err—_Mm negatively impacts the battery
life-time. Therefore, in our proposed model we are taking
this issue into account, where the cost of En_grwM is the same
energy consumption for transmission of one sample where
Hi = 1 only (See in algorithm2 ). In addition, there is no
effect for Egrr—m because in the proposed model, there is no
need to retrain or transmit any reference parameters to the FC,
which means Egr_m = 0 due to Hz = 0.

The total energy consumption is calculated by combining
equation (3) and equation (6) as defined in Eq. (10).

STaml = ‘SRD—Phase + (CJDV—Phase (10)

It should be noted that Eq. (10) highlighted numerous issues
impact on energy consumption. In summary, avoiding trans-
mitting of incorrect data helps in reducing energy consump-
tion, thus selecting an appropriate approach for that purpose is
very important. This is because the value of energy consumed
by applying an approach to check the validity of the sensed
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data is higher than the energy consumption if it is forwarded
to FC (See in Eq. (3)). Similarly, reducing the size of payload
data in the sensor board with multivariate sensors will help in
saving the energy consumption. Nevertheless, as is clear from
Eq. (6), design of an efficient model for that aim is a vital
issue, as previously discussed. Accordingly, the proposed
RDCM model addressed different issues that help to save
energy such as reducing the number of transmission packets
by IoT sensor board with multiple sensors, avoiding trans-
mission error measured and reducing the number of payload
bits. More details about the RDCM model is presented in the
following section.

Analyse the Physical Yeg
Conditions of IoT Edge | ¢
Device (Board )

Sensed
R B Stx [t] Data No
{ Sleepmode | | Update Data Strategy |
i RF(OmM
_______ r S ¢

L Yes

| Check Sensed Data Validation |

v

No
Er=0

¢ Yes

| Sensed Data Reduction |

New cycle

1 RF(ON) :

(a) loT Sensor Board Level

(b) FC Level

FIGURE 2. RDCM block diagram; (a) loT sensor board level and
(b) FC level.

IV. PROPOSED RDCM

In this section, a detailed description about the proposed
RDCM is provided. Figure 2 illustrates the block diagram
of the RDCM in a general structure, composed of two main
levels; IoT sensor board level and fusion center level. The
IoT sensor board level is implemented in real-time by all IoT
sensor boards simultaneously in each cycle and fusion center
level is executed by the fusion center. [oT sensor board level
includes various stages; (i) analyze the physical conditions of
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the ToT edge device; (ii) update data strategy stage (iii), data
validation and (iv) sensed data reduction.

IoT edge device phase dealt with the physical state of the
IoT edge device. The quality of the sensed data is a correlation
with the state of the edge device, such as the temperature and
the battery level of the board. Therefore, it is important to
check the physical state of the IoT edge device before start
sensing. If the edge device is not in good condition, an alarm
is send to the fusion center informing that the device needs
maintenance or change. In this paper, a simple algorithm to
check the physical state for the IoT edge device has been
proposed (See in Algorithm3 ). If the edge device is in good
condition, the board will start sensing. After that, the sensed
data is passed to the update data phase. Updating data phase
makes a decision to transmit the sensed data or not depends
on the percentage of the different between the current sensed
data and the last transmitted sensed data. If the sensed data
must be transmission to the fusion center, the model will pass
the sensed data to the data validation phase. Data validation
phase able the algorithm to decide the state of the sensed
data are correct or error event. If the sensed data either it
is incorrect/error the model will define it as unreliable data
it must be discard and increment the error counter by one,
after which it reads a new sample again. In another case,
when the sensed data is correct the model will forward the
sensed data to payload data reduction phase. Payload Data
Reduction Phase dealt with reducing the payload size for the
edge device with multiple sensors. The key point for this
phase is that it only uses one variable D[¢] to represent the
multiple sensors measured data S1x,[f] (n-variables) based
on the relative difference between the current measured data
S1xnlt] and last transmitted measured data Six,[t — 1] to
the fusion center for all sensors. At the fusion center, the
RDCM is able to execute reconstruction of the original real-
time sensed data S 1xn [t] (n-variables) from D][¢].

A. RDCM-IoT SENSOR BOARD LEVEL

IoT sensor board level is the main phase in the RDCM model,
which is implemented in real-time at the edge board with
multiple sensors.

1) RDCM - INITIAL PHASE

This phase includes the following steps (i) calculate the
prediction model threshold that will be used to check the
measured data validity only during data collection (ii) sensor
board transmits only one sample without any reduction in the
payload packet size.

This paper proposed the calculation of the model threshold
during the initial phase. Accordingly, the minimum resid-
ual errors between the training data and approximated data
occurred during the initial phase [47]. This is because the
purpose of training any model is to get the benefit of refer-
ence parameters / weights which will be used later to enable
prediction of one attribute from various attributes based on
simple linear regression. The proposed threshold is adaptive
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such that the value of the threshold changes during data
collection as in Algorithm 1.

Definition 1 (Reference Parameters ( RFP) Function):
we compute the prediction model references r by applying
Eq. (11) as follows;

—1
r:(sfxs,) x ST xS, (11)

After careful study of the correlation between the multiple
sensors on the same sensor board, the independence sensor Sy
and dependence sensor S, are selected, where S, < Syxp[7T']
the Predicted sensor and the other multiple sensors Sy, x;[7]
where i # pi = 1,.n VS, S, € RY>W_ The Predicted
sensor in this study is a sensor having high correlation with
all sensors in the same board.// S; = [ones, Sy xil.
Definition 2 (Predicted Sensor Value( PSV) Function): we
calculate the predicted sensor S'p by applying Eq. (12)

Sp() = ro + 1i X Si() + .. 1 X Su(j) (12)

where i # p,i = 1,.nandj = 1,2..., w is the number of
collected samples.

In order to determine the value of the threshold, we first
calculate the approximation error between the training data
Sp [T] and Predicted data S'p [T] which is defined in Eq. (13).
After that, estimate the threshold value by selecting maxi-
mum approximation error value for Sj.

AE () =S, () — Sp()|,  Er e RV (13)

According to [47], [48], increase the number of updating fre-
quency metric (UFM) for data reduction model effect of the
energy consumption. This is because the size of transmitted
data after updating the model reference parameters which is
larger or equal to the payload data size without reduction.
It means that the sensor board requires more energy in updat-
ing stage than the reduction stage. The UFM values in the
case of the non- adaptive threshold is larger than the adaptive
one. The reason for that, the model based on non-adaptive
threshold is entirely dependent on the value of threshold that
has been calculated during the training phase and is used
in reduction phase without any change in the value of that
threshold. Furthermore, the probability that the value of the
threshold to be small for the first time. In this case, the model
will still be retrained as the dynamic data will change in
most of the cases leading to the production of error that is
larger than the threshold. Conversely, the adaptive threshold
changes its value every time the reference parameters need
updating. Therefore, this study updated the model reference
parameters at the node level without send a copy from the
reference parameters to the FC. This is because this study
used the prediction model only to check the validity of the
sensed data (See algorithm4) at the sensor node level. More
detail about determining the threshold and step phase steps
is presented in the following pseudocodes for algorithm1 and
algorithm 2, respectively.

It should be noted that RDCM-Initial phase is run only
once during data collection. The detailed description of this
phase is stated in the following pseudo-code.
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Algorithm 1 Adaptive Threshold (ATR)
1) Input: p, w, n, S,y xn[T] € RV
2) Output: Thr, T
3) Begin:

4) Set Sp < SwsplT], Sp < SwxslT],
5) r < RFP(S;, Sp),r € R™*"
6) Forj=1towdo
7) S, (j) = PSV(r, Sp)
8)  AE(j) = ABSG, () — Sp(i)
9) End for
10) Thr < max {AE}

Algorithm 2 Setup Phase
1) Compute threshold Call ATR // algorithm1
2) Read Sy«y[t] // nis the number of sensors
3) Send S« [t]
4) Sixnlt =11 < Sixn 1]
5) End

TABLE 6. Classification of physical state of loT sensor boards.

B, Tz CMS Description Classification

1 0 0 Battery level problem Bad conditions

0 1 0 Problem in the Bad conditions
temperature of the board

0 0 1 The sensors measurement  Bad conditions
are not accurate

0 0 0 No problem Good conditions

2) RDCM — SENSING PHASE
In this phase, conditions of the IoT edge sensor board such as
battery level, board temperature and confidence level mea-
sured by the sensors is a very important issue, since bad
conditions will reduce the accuracy of measured data. For
example, in order to read the temperature sensor, the study
in [51] recommended to use the sensor board with battery
level that should be greater than or equal to a specified
threshold.

Definition 3 (Confidence Level Measure for the Sensor
(CMS) Function): CMS is a strategy to measure that amount
of acceptance of the readings obtained from the sensor board.

CMS — (1 > « 100 (14)

E

(E+0)
where E is the number of measured errors and C is the number
of correct measured data. Eq. (14) is used to evaluate how
reliable the IoT sensor board is by dividing the number of
sensor error readings to the total number of sensor readings.
Furthermore, standing IoT/ WSN sensor boards are more
reliable when the error rate (CMS) is close to zero and vice
versa. Table 6 shows the classification of physical state of IoT
sensor boards.

If the IoT edge device is in poor condition, an alert should
be sent to the fusion center to inform the device that it needs
to be maintained or replaced. In this study, a simple algorithm
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has been proposed and described to check the physical state
of IoT edge devices. The following pseudo code details the
implementation steps of the RDCM-Sensing phase.

Algorithm 3 Physical Conditions of IoT Edge (PCIE)

1) Input: By, Tg, CMS

2) Output: F € R1*3

3) Begin:

4) If By, < Brg

5) F() <« 1l;else F(1) <0
6) End if

7) If TB >= TBd

8) FQ2) <« l;else F(2) <0
9) End if

10) If CMS >= CMS,

11) F@3) <« 1;else F3) <0
12) End if

3) RDCM -DATA UPDATING PHASE

The aim of this phase is to save the energy consumption of
the IoT sensor board with multiple sensors by reducing the
number of transmission packets if no significant change is
reported by the payload sensing block.

Definition 4 (Relative Difference (RTV) Function): we cal-
culate the relative difference vector RID between the current
sensed data S;x,[?] and last transmitted data Sy x,[t — 1] by
applying the Eq.(15).

(Sile] — Silt — 1)

2
(5:0] + Silt —1]) %05 10

RD; = " (15)

where i = 1, 2, .. nand n is the number of sensors on the same
board.

Decision: If there is no significant change in the sensed
data (for more detail, see algorithm5), then set RF (Off),
otherwise check the validity of the current sensed data.

4) RDCM - VALIDATION PHASE

The aim of this phase is to avoid transmitting any incorrect
data, which will contribute to saving in energy consump-
tion as well as increase the system accuracy. The following
pseudo code details the implementation steps of the RDCM-
Validation phase. In this study, the types of error are range
error (RE), constant error(CE) outlier error (OE) and event
value (EV).

o Definition RE: The invalid reading sensor value detects
when the value is outside the visible measuring range,
where S € [MinValue, MaxValue]. For example, regard-
ing the features of the MCP9700A temperature sensor,
the sensor measurement range is [—40°C, +125°C].

o Definition CE: fixed measured fault occurs when a sen-
sor appears as a fixed value for an enormous number of
continuous samples.

o Definition OE: Let us consider that all the samples
that have been measured are within the range as
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in ““ Definition RE”, but some samples lie outside,
either smaller or larger than most of the other val-
ues in a set of samples, so those values are denoted
as outliers. For more explain, consider that B =
St—-—1,5t—-2),...5@ —w)} is the past sensed
data read by the sensor S, in the setup phase and w is the
number of samples. The array of measuring differences
D ={d;, d», ..d,,}, can be defined as follows:

d(i) =[S, (t) = B (i)

This work considers the current measured value Sp(¢) is an
outlier fault if the maximum difference value is higher than
the threshold value, otherwise, the sensed value is normal.
In addition if, the sum of matrix {ID} is zero, in this case S,(¢)
is an constant fault. Table 4 shows the transmission decisions
based on the status of the current sensed data.

i=12,...,w (16)

Algorithm 4 Sensed Data Validation (SDV)
1) Inputs: Sp(t), B, Thr, w
2) Output: Err,EV
3) Begin:
4) If Sp (t) > MaxVORSp(t) < MinV

5) RE <1
6) Else
7) Fori=1towdo
8) d(i) = ABS(Sp(1) — B (i)
9) End for
10) If SUM{D} ==0
11) CE <1
12) Else
13) If Max{D} > Thr
14) OE <1
15) Else
16) S, () = PRV (r, S(1))
17) AE (t) = ABS(S, (1) — Sp(t)
18) If AE (t) > Thr
19) Update threshold // Call algorithm1
20) Sy (t) = PRV (r, S(1))
21) AE (t) = ABS(Sp (t) — Sp(1)
22) If AE (t) > Thr
23) EV <1
24) End if
25) End if
26) End if
27)  Endif
28) End if

29) Err «<SUM {RE, CE, OE}

5) RDCM — REDUCTION PHASE
The main aim of this phase is to reduce the transmitted packet
size for each sensed payload, which will help in saving the
energy of the IoT sensor board as in APRS [48].

The following pseudo code details the implementation
steps of the RDCM-Reduction phase.
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Algorithm 5 Multivariate Data Reduction (MDR)
1) Inpu t: RD, n
2) Outpu t: D[t]
3) Begin:
4) m < |log2(Max){ABS(RD)} | + 1
5) L<m+1
6) Fori=1tondo
7) IfRD@G) >0
8) Sh(i) <2/ (@xL)-1

9) Else
10) Sbh@) < 0
11) Endif

12)  X(@) < ABS(RD (i)) x 2A<L-L) 4 Qpj)
13) End for

14) D[t] < SUM{X}

15) Send D[t] to FC

16) S1xalt] < Approx(RD,Sy, [t — 11)

17) Sysn [t — 11 < Sixalt]

First, calculate the required number of bits to represent
|RD;| as the following

m = |log2 (Max (IRD1xn|))] + 1 a7)

where m is the maximum number of bits.
Calculate the total number of bits (L) required to represent
relative difference =RD; and defined as

L=m+1 (18)

Definition 5: In order to manage negative and non-negative
RD tests, Eq.(19) is applied

Sb; = {2((1’ x L) —1) for positive change (+RDj) 19

0 for negative change (—RD;)

Definition 6: calculate the representation of the sensed data
D[t] in real time [t] as defined in Eq. (20).

D[t] = Z; IRD;| x 2P0 4 sby) (20)

Definition 7: Approximated data (Approx) Function), we cal-
culate the approximated of the sensed data S, [¢] at current
time t as the following

Stnlt] = (Stanlt = 1% (RD1n x 1072) )+ St = 1]
@1

The following pseudocode details the implementation
steps of the RDCM- IoT edge device Level. IoT sensor board
level includes various stages including analyse of the physical
conditions of the IoT edge device, updating data strategy
stage, sensed data validation and sensed data reduction.

B. RDCM- FUSION CENTER LEVEL

It should be noted that the FC receives data from the IoT
sensor nodes and is able to identify each IoT sensor node by
its ID, where the sensor node ID is the name of the node.
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Algorithm 6 [oT Edge Device Level

Algorithm 7 IoT FC Level

1) Input: Thr, r, S1x,[t] and S1x,[t — 1], B,n
2) Output:

3) Begin:

4) F < PCIE(BL, Tg, CMS)// algorithm

5) fSUM{F}) =0

6) RD «RTD(Sixnlt], Sixnlt — 11)

7) If Max {ABS(RD)} > 8

8) {Err,EV} < SDV(S,(¢), B, Thr, w)
9) IfErr=00rEV =1

10) Call MDR//
11) C«+C+1
12) Else

13) E <« E+1
14) End if

15) Endif

16) Else

17) D[t] < BinToDec(F)
18) Send D[t] to FC
19) End if

1) Input: D[t], S1xn [t — 1], n

2) Output: Slxn[t]

3) Begin:

4) L1 < |log2(D[t])] + 1

5) IfL1 >3

6) m < ||L1/n]|

7) Db <DecToBin(D[¢], m x n)
8) Fori=1tondo

9) X1) <« Db((mxi)+1—m:m x i)
10) D(i) < BinToDec(X (i))
11) If D (i) > 2/Vm—!

12) RD (i) < D (i) — 2"\~

13)  Else

14) RD () < D@ x —1
15) End if

16) End for

17)  Stunlt] <Approx(RD,S1n [t—1])
18) Slxn [t_l] <~ Slxn[t]
19) End if

After the FC receives the reduced data D [t] from the IoT
sensor node, we determine the total number of bits of the
received data D[t] by applying Eq. (22).

L1 = [log2(D[t])] + 1 (22)

If the size of the received data is 3 bits, which means
that the IoT sensor board is not in a good condition,
do the action based on the frame information as shown in
TABLE 6. Otherwise, the received data will pass through
approximation phase as follows (See in algorithm?7). First,
we estimate the number of bits for each sensor by applying
m = ||[L1/n|, || || denotes the nearest integer to m. Next,
we convert D[] from decimal to binary based on BCD code
Db = Dec2bin(D [t], m x n), where (m x n) is the number of
bits. Then, we predict the relative difference for each sensor
RD; by taking m-bits from right to left, Db is stated as the
following

D;=Db[mxi)+1—m:mxi)] (23)
After that, we convert D; from binary to decimal as follows;

| Bin2Dec(D;) — 2m=1 " Bin2Dec(D;) > 2™!
Bin2Dec(D;) < 2™~
(24)

RD; = 1.
Bin2Dec(D;) x —1,

Finally, we predict the S 1xn [t] sensed data S 1xn [t] at the time
[t] at the IoT sensor node level by applying Eq.(21). For the
next cycle, we Set Sy, [t — 1] = Slxn [t]. More detail is
shown in the following pseudocode.

V. IMPLEMENTATION AND PERFORMANCE EVALUATION
Performance evaluations of the proposed RDCM model
are done using different real-time data sets as follows:
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TABLE 7. Transmission decisions based on the status of the current
sensed data.

RE CSE OTE EV Status Decision

Transmitted (ON)

0 0 0 0  Normal —State Update Buffer

Out-Rang .

1 0 0 0 data Transmitted (Off)

0 1 0 0 Frozen data Transmitted (Off)
Transmitted (ON)

0 0 1 0 Event —State Update Buffer

0 0 1 1 Outlier-data Transmitted (Off)

0 0 0 1 Error-Data Transmitted (Off)

(i) “Intel Berkeley Research Lab dataset (IBRL). IBRL wire-
less network recorded various types of sensed data as fol-
lows; air temperature, air humidity, light and voltage” [52];
(i) “Grand St. Bernard dataset (GSB). GSB network used
sensor nodes to measure the metrological characteristics of
the environment which are ambient temperature, surface
temperature and relative humidity ““ [53]; (iii) “Lausanne
Urban Canopy Experiment dataset (LUCE). LUCE mea-
sure critical environment quantities which are ambient tem-
perature, surface temperature and relative humidity” [54];
(iv) UTHM_LAB measure air quality which are tempera-
ture and humidity [36]. MATLAB is used to simulate the
algorithms effect in the performances of IoT edge node. The
proposed RDCM model is evaluated using different bench-
mark real-time datasets as shown in Table 7 and Table 9.
These datasets and network structure (See in Figure 3) are
commonly used to evaluate the performance of some existing
approaches in WSN (See in Tables 2-5). The assumptions
of the simulation system model are summarized as follows
[20], [36], [47], [48]:
i Each IoT sensor board has different sensors as shown
in Figure 3, § = {S1,82,....,8,:},S; i-th sensor,
= {1,2,...,n and (n) is the number of sensors.
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FIGURE 3. Network structure.

For example, the humidity, temperature, atmospheric
pressure, carbon dioxide and some other sensors are
supported on IoT Lobelia Waspmote Gases board.

ii The IoT sensor board must update its data to the fusion
center continuously at a specific interval time.

iii Each sensor board is able to directly update its mea-
sured data to the fusion center. In other words, the sen-
sor node does not need to use two or more wireless hops
to convey information from its location to the fusion
center.

iv. The energy consumption for transmission of one byte
is 52.92uJ in calculated for MICA2Dot mote.

v The energy consumption in the case of no transmission
(Off) is OpJ .

Real-Time Definition: In general, real-time data (RTD) is
data that is provided directly after aggregation. The sensor
node transmits the measured data to the fusion center without
any delay. The simple meaning of real-time sensed data is
that it is information that is not saved or stored, instead,
it is provided to the end-user/gateway as it is collected. The
RTD does not actually mean that the data will reach the
end-user immediately as there may be presence of bottle-
necks correlated to the data collection structure, bandwidth
between numerous events, or slowness of the computer of the
end-user. Unfortunately, the RTD does not promise sensed
information within a certain number of microseconds. It only
means that the sensed data is not planned to be kept back
from its eventual use after it is collected [48]. The authors
declared that, in this paper, the word “‘real-time”” refers to the
real dataset and, also to show that the proposed model has
been applied for the sensed data after sensing immediately
at the sensor node level. Figure 4 shows some samples of
real-time dataset versus some samples of real-time datasets
have been injected by random errors. In this study, the real-
time data set is original datasets that have been collected by
sensor nodes without any change in its values. The injected
dataset is a real-time dataset after injected with some artificial
errors.

89076

TABLE 8. Summary of the characterises of real-time dataset used in this
work.
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FIGURE 4. Real-time dataset (original) vs injection real-time dataset with
random errors.

A. THE EFFECT OF B (TOLERANCE UPDATE DATA)
TO RDCM ALGORITHM
In the related works to reduce the number of transmitted
packets is supported by a single variable data. These methods
require different thresholds for sensor boards with multiple
sensors. Therefore, this work proposes a simple and effective
updating data strategy. The proposed method aims to reduce
the number of messages transmitted by a sensor board with
multiple sensors based on the relative difference between the
current and last sensor measurements transmitted. The advan-
tage of this solution is that it prevents any transmission if the
payload sensing block does not report a significant change.
The proposed method uses only one threshold for multiple
sensors on the same board (See in the Algorithm5 step 7).
This section examines the effect of 8 on the performance
of the proposed model. The value of 8 is set to 0%, 1%, 2%,
3%, 4% and 5%. RDCM applies for different real-time data
sets and various nodes. This study used real-time data set with
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TABLE 9. Summary of the type of sensors for all selected nodes.

Equipped sensors
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FIGURE 5. Average of Energy consumption by applying RDCM with
various g values.

no change in its content (no injection error). The results of
the study in this section is shown in Figure 5 and Figure 6,
respectively. The results show that energy consumption is
reduced by applying RDCM with 8 = 5%, which is better
as compared to other 8 values. From the results, a significant
increase in B will reduce the energy consumption of the
IoT sensor. The reason is that the fusion center can only
be updated if the difference between the current sensor data
value and the previously sent data is lower than 8. Although
the increase in 8 reduces the number of transmitted packets
and thus saves energy, as the results show, some nodes only
sent 17 of 1000 samples. This will inadvertently affect the
system accuracy. The advantages of the proposed model are
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FIGURE 6. Percentage of transmissions packets (%) by applying RDCM
with various g values.

that its 8 value can be easily adjusted depending on the appli-
cation used. In order to obtain the highest possible accuracy
in this study, the B value was set to 0%. Hence, RDCM and
APRS can reduce the amount of bit payload sensing data
before sending it to the fusion center.

B. THE ANALYSES OF RDCM-VALIDATION PHASE

In our work [47] we suggested a novel method for estimat-
ing the error threshold value during the training phase. The
outcome showed that the adaptive threshold is better than the
non-adaptive threshold with respect to decreasing the number
of times the model required updating of its reference parame-
ters, which positively affected prolonging the IoT sensor node
lifetime. Moreover, adapting the threshold produced more
accurate results. Therefore, the proposed threshold for the
models that are being used to observe outliers or recover the
sensed data in IoT/WSN real-time application would help in
increasing the accuracy of these systems. The RDCM verifies
the validity of the current sensed data before sending it to the
fusion center.

C. PERFORMANCE OF THE RDCM-VSNL METHOD
In RDCM - validation phase as shown in the section that
described RDCM model, sensed data validation checks for
only one attribute from multiple attributes. The attribute
(sensor) is denoted as S,(7) and it has a high correlation
with other sensors on the same IoT sensor board. The
RDCM- VSNL method is used for this purpose in order to
examine performance of the RDCM-VSNL method during
RDCM-validation phase. In this subsection, RACAD_
UTHM and IRBL-Intel datasets have been injected randomly
with 10% errors of 40627 and 1000 samples, respectively.
From the simulation results as shown in Table 10, it is
clear that the RDCM- VSNL is able to observe the sensed
data errors in the real-time during data collection with high
performance and the average of accuracy for all examined
sensors is around 97 %.
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TABLE 10. Results of apply RDCM- VSNL for different data sets.

z @~ = 5’ 3
Real-Time 5 s 2 = s
> A4
Datasets 5 52 & <g E
Temp 406 405 0.9975 40627
RACAD UTHM  Humdity 406 405 0.9975
Temp 10 10 1
IRBL-Intel Humdity 10 10 1 1000
Voltage 10 9 0.9
Avarage 0.97

D. PERFORMANCE OF RDCM-PREDICTED METHOD FOR
ADAPTIVE THRESHOLD (thrd) WITH VARIOUS

BUFFER SIZES (W)

This section investigates the effect of buffer size W on
the adaptive threshold in Predicted model performance. The
value of w is set to 5, 15, 25, 35, 45 and 55. RDCM-
Predicted method applies for real-time data sets and various
number of samples are 500, 1000, 2000 and 6000. This study
uses the real-time data set with no change in its content.
RDCM-Predicted model is a simple Machin learning
approach called linear regression with multiple variables.

8Er=0.088325 &W =5

——AE
6 —Thrd

1Er=0.072424 &W =15 . 5Er=0.l)63318 &W =25

0.5

mmeu“ 1 S 0

0 500 1000 0 500 1000 0 500 1000
samples samples samples

0 8Er=0.049218 &W =35 0 6Er=0.0441(~39 &W =45 0 6Er=0.()3(-3291 &W =55

——AE
0.6 — Thrd

04

0

0.2

0 - 0
500 1000 0 500 1000 0 500 1000

samples samples samples

o

FIGURE 7. Absolute Error (AE) vs adaptive threshold (Thrd) for real-time
dataset 1000 samples with various buffer size W.

Figure 7 to Figure 11 show the simulation results of study
of RDCM-Predicted model for real-time data set with 500,
1000, 2000 and 6000 samples and various buffer size W.
The maximum average absolute error occurs when W was 5,
and no slight change in the adaptive threshold during
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FIGURE 8. Absolute Error (AE) vs adaptive threshold (Thrd) for real-time
dataset 500 samples with various buffer size W.
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FIGURE 9. Absolute Error (AE) vs adaptive threshold (Thrd) for real-time
dataset 2000 samples with various buffer size W.

data collecting. This is because the small size of W effects the
accuracy of determining the model parameters. In contrast,
using a large size training model W effects the efficiency of
the IoT sensor node due to the resource constraints. There-
fore, in this study, a small value of w was chosen, ranging
from 5 to 55. This is to obtain acceptable performance con-
sidering the IoT sensor node component constraints. From the
results it could be estimated that the model shows a better
performance when the value of W is more than 15 samples.
In addition, as long as the model RDCM - the Predicted model
needs to update its reference parameters, the value of the
adaptive threshold changes dynamically. The importance of
changing the threshold according to the training of the model

VOLUME 7, 2019



N. A. M. Alduais et al.: RDCM: Efficient Real-Time Data Collection Model for 1oT/WSN Edge

IEEE Access

5Er=0.073236 &W =5

——AE
20 —— Thrd

1Er=0.080793 &W =15 . 5Er=0.053925 &W =25

0 ' th [~ ™~ 0 0
0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000
samples samples samples
5Er=0.047833 &W =35 1Er=0.040916 &W =45 1Er=0.038918 &W =55

——AE
Thrd

0.5

0 0 0
0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000
samples samples samples

FIGURE 10. Absolute Error (AE) vs adaptive threshold (Thrd) for real-time
dataset 6000 samples with various buffer size W.
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FIGURE 11. Predicted data (P-Data) vs real-time data(R-Data) with
various buffer size W.

is very important because the model here is used to detect
irregular data. The lack of accuracy in the model reduces the
performance of the pattern in detecting errors or events during
real-time data collection.

E. PERFORMANCE COMPARISON RDCM
WITH DIFFERENT ALGORITHMS
In this section the performance of various algorithms in terms
of energy consumption is investigated. It should be noted that
this study used the original datasets with no change in its con-
tent values. In order to analyze the performance of RDCM,
EDCD2 and APRS algorithms with real-time datasets that
have some errors, the original real-time datasets are randomly
injected with different percentages of errors. The percentage
of errors is set to 1%, 2% 3%, 4%, 5%, 6%, 7%, 8%, 9% and
10%. The number of samples is 1000.

Figure 12, Figure 13, and Figure 14 show the energy
consumption (uJ) results for APRS, EDCD2, and RDCM
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FIGURE 12. Energy consumption (xJ) by applying APRS algorithm for
IBRL - sensor nodes with different percentages of errors.

FIGURE 13. Energy consumption (uJ) by applying EDCD2 algorithm for
IBRL - sensor nodes with different percentages of errors.

algorithms applied to IBRL sensor nodes with different error
percentages, respectively. Obviously, increasing the number
of incorrect data transmissions will affect the energy of the
IoT sensor board because the sensor board wastes its energy
sending incorrect data that will be omitted at the fusion center.
However, if the fusion center cannot detect the erroneous
data received, then those errors will affect the accuracy of the
whole system.

RDCM shows better performance than other algorithms,
as shown in Figure 15. This is because RDCM can detect
errors and ignore them during real-time data collection of
IoT/WSN applications. In addition, RDCM can reduce the
number of transmission packets and reduce the number
of transmission bits of payload data. The average of the
energy saving ratio for the algorithms RDCM, APRS, and
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FIGURE 14. Energy consumption (xJ) by applying RDCM algorithm for
IBRL - sensor nodes with different percentages of errors.
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FIGURE 15. The average of the energy saving ratio for all IBRL-Sensor
nodes with various errors (1%-10%).

EDCD?2 applied to all IBRL-Sensor nodes with various errors
(1%-10%) is 98%, 90% and 58%, respectively.

F. ANALYSIS THE ENERGY CONSUMPTION

MODEL BASED ON RDCM

Table 11 shows the qualitative comparison of the proposed
algorithms in energy saving. Compared with other solutions,
RDCM has the advantage of saving energy because it solves
most of the problems of wasting IoT board energy during
data collection. Figure 16 shows the total energy consumption
for applied EDCD2, VSNL, APRS, PCA-B, MLR-B, RDCM
and Direct to real-time data LUCE- sensor node (N10) with
its measured value injected with 2% errors of 1000 samples.
The results show that sending the sensing data directly (with-
out any algorithm) has the worst performance. The applied
VSNL, PCA-B, MLR-B and EDCD?2 show different perfor-
mance because each save the energy of the IoT sensor board
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TABLE 11. A qualitative comparison of the presented algorithms in this
paper in terms of energy saving.

Issues

Reducing the Reducing the

T
2 number of  number of  Reducing -Size of
g transmitted- transmitted - transmitted data
Normal data Error Data
EDCD2 v X X
VSNL X N X
APRS v X N
PCA-B X X vV
MLR-B X X v
RDCM v v v
8 x10°
7
2 6
2
=
E
£ 5
w
£ =
034
-
o
1™
€ 3
w
=
2 2

PCA-B MLR-B EDCD2 APRS RDCM VSNL Direct

FIGURE 16. Total energy consumption for applied different algorithms to
Real-Time Datasets LUCE -N10 (1000 samples) injected with 2% error.

by addressing only one issue. For example, the PCA-B and
MLR-B algorithms can only reduce the size of the trans-
mission. However, they cannot reduce the number of trans-
missions or observe errors. VSNL can only reduce incorrect
data transmission. The EDCD2 can reduce the number of
transmitted packets only if the current sensed data does not
change significantly compared to the last transmitted data.
APRS and RDCM show high performance because it solves
several problems, as shown in Table 11.

VI. CONCLUSION

This paper introduces a new model designed to save the
energy consumption of IoT sensor board, which is denoted
as RDCM. RDCM in a form of general structure is composed
of two main levels; IoT sensor board level and fusion center
level. IoT sensor board level is implemented in real-time by
all IoT sensor boards simultaneously in each cycle and fusion
center level is executed by the fusion center. IoT sensor board
level includes various stages as follows; (i) check the physical
conditions of the IoT edge device (board) stage, (ii) update
data strategy stage (iii), data validation stage and (iv) sensed
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data reduction stage. The average of the total percentage of
energy saved by applied RDCM to real-time data sets injected
with various percentage of errors for all nodes is 98%. In sum-
mary, RDCM has a very high performance in terms of energy
consumption compared to other algorithms.

The research stated in this paper reveals some possible
further research opportunities as follows:

1

i This work proposes solution to reduce size of payload
data only from whole of packet during transmission
phase. It is recommended to propose a new scheme to
reduce whole packet size.

ii This work assumes that the sensor node is able to
send the data directly (One hop) to the FC/BS. It is
recommended to design a new data collection model
for multivariate sensors in IoT applications with con-
sideration of the multi-hop network.

iii The algorithms EDCD, VSNL, ARPS, MLR-B,

PCA-B and RDCM discussed in this paper are analyzed
through environment dataset for smart and green blind-
ing application. It is recommended to analyze those
algorithms with vibration dataset for industrial appli-
cation. In addition, apply those algorithms for wearable
health-care application and logistic application.

iv The MRL-B and PCA-B models cannot reduce the

AC

number of transmitted packets. It is recommended to
design a hybrid model involving those models with the
EDCD algorithm.

v Similarly, the PCA-B is based on a lightweight ver-
sion from PCA. It is recommended to use the adap-
tive threshold which was proposed in this paper with
PCA-B for anomaly detection at the cloud/FC level.
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