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ABSTRACT The performance of a speaker recognition system depends highly on which acoustic features
are used. Most speaker recognition systems use short-term acoustic features extracted from a single
speech frame, and the most popular short-term acoustic features are the Mel-frequency cepstral coefficients
(MFCCs). The short-term features are generally static features no dynamic information in the speech signal
is included in either cepstral coefficients or anMFCCs frame. Using an analysis sparse representation model,
in this paper, we introduce the long-term acoustic (LTA) feature for text-independent speaker recognition,
which is a sparse presentation of the static features and dynamic information for the speaker’s speech. First,
the speech signal is segmented into frames which are overlapping with each other, and then the MFCCs
frame features can be extracted to construct some super MFCCs frames by stacking some following frames
of the current frame to capture the dynamic information of the speech signal. The super MFCCs frames
can be combined into a 2-D MFCCs features map (MFCCsmap). Finally, the speaker model can be built
based on the analysis sparse model and the sparse representations of the MFCCsmap are used as the LTA
features. A state-of-the-art deep neural network (DNN) is employed as a classifier for speaker recognition.
The experimental results illustrate the effectiveness and robustness of the proposed system.

INDEX TERMS Analysis sparse representation, deep neural network, long-term acoustic features,
Mel-frequency cepstral coefficients, speaker recognition.

I. INTRODUCTION
Speaker recognition is the process of identifying a person
based on the voice of the speaker [1]. Speaker recogni-
tion can be considered as a pattern recognition problem in
terms of machine learning. In recent years, speaker recog-
nition technology has received extensive attention and can
be widely used in various fields such as general business
interactions [2], [3], forensics [4], and law enforcement [5].

Usually, the process of speaker recognition involves
extracting and identifying unique characteristics of the speech
features from a group of speakers. For improving the per-
formance of a speaker recognition system, it is important to
select a feature extraction method that optimally combines
efficiency and accuracy. Generally, the speech signal is a
slowly time-varying or quasi-stationary signal. For stable
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acoustic characteristics, most existing speaker recognition
systems use the speaker short-term acoustic features, such as
Mel-frequency cepstral coefficients (MFCCs) [6], [7], linear
predictive [8], Gammatone frequency cepstral coefficients
(GFCCs) [9], etc, where a speech signal is processed in
frames which are overlapping with each other. The length
of frame is approximately 20-40 msec, with an overlap of
about 30-75%. These short-term acoustic features are usually
referred to as static features and no time evolution infor-
mation is included in these features. However, the dynamic
information in speech signal is also different from speaker to
speaker. To capture the information about how these acoustic
vectors change over time, the traditional method is to com-
pute first and second derivatives of cepstral coefficients [10].
The first order and the second order derivative are called
delta coefficients (1MFCCs) and delta-delta coefficients
(12MFCCs), respectively. To obtain dynamic information
on the speech signal, in [11], a super-vector MFCCs feature
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FIGURE 1. The proposed speaker recognition system.

was produced by cascading three neighboringMFCCs frames
together, i.e., a center frame, one left context frame, and one
right context frame, the difference of magnitude between the
context frames and the center frame could be used as comple-
mentary features similar to delta features. In [12], the authors
constructed the long-term feature analysis (LTFA) features
by averaging 4 MFCCs frames, and used the total variability
subspace modeling with the speaker LTFA features to realize
speaker clustering and recognition. Inspired by these previous
studies, in this paper, the super MFCCs frame is constructed
by stacking some following frames of the current frame. On
the basis of the analysis sparse model, the sparse representa-
tions of the super MFCCs frames could be used as long-term
acoustic (LTA) features with static and dynamic information
of the speech signal.

Recently, the sparse representation of the speaker acous-
tic features, such as i-vector features [13], the GMM-UBM
features [14], tensor features [15], the MFCCs [16] and the
Gaussian mixture model mean supervectors [17], was intro-
duced for the speaker recognition with synthesis sparse rep-
resentation models. In these models, a signal x ∈ RM×1

is represented as a linear combination of a few atoms
from an overcomplete dictionary D ∈ RM×Q (Q > M),
i.e., x = Da, where a ∈ RQ×1 is the sparse coeffi-
cient, i.e., ‖a‖0 = L � Q, the `0 quasi-norm ‖·‖0
counts the number of nonzero components in its argument.
In general, the dictionary could be obtained using some
dictionary learning algorithms, such as the greedy adap-
tive dictionary algorithm [18], the K-SVD algorithm [19],
or by a fixed dictionary, such as the discrete cosine trans-
form (DCT) dictionary [20], the wavelet dictionary [21],
etc. However, there is an alternative sparse representation
model, i.e., analysis sparse representation (ASR) model. For
a signal x ∈ RM×1 and an analysis dictionary or oper-
ator � ∈ RP×M (P ≥ M), this model suggests that x is
approximately sparsifiable with �, i.e., f = �x, where
f ∈ RP×1 is the sparse representation of x. More recently,
the analysis sparse model has been drawing increasing atten-
tion due to its application in image denoising [22], source
separation [23], [24], image encryption [25], [26] and image
classification [27], [28]. In [27], based on the analysis sparse
model, the sparse representations of an image can be learned
and used as the features of the image for training a support
vector machine to resolve the problems of the image classi-
fication. In [28], a nonlinear discriminative cosparse model
was proposed to represent the image features and simul-
taneously a novel discriminative nonlinear analysis opera-
tor learning framework was proposed to realize the image
classification.

Motivated by the recent success of analysis sparse models
in image classification, we propose a new speaker recog-
nition system employing the sparse representations of the
acoustic features as input to train a DNN classifier. In
the proposed system, after the MFCCs frame features are
extracted from the speech frames, the super MFCCs frame
can be constructed by stacking some following frames of
the current frame to capture the static and the dynamic
information in speech signal. We combine the super MFCCs
frames into a 2-D MFCCs map (MFCCsmap) to learn the
analysis dictionary, which could be used as the speaker’s
model. Then the sparse representations of the MFCCsmap
can be obtained with the speaker’s model and are utilized
as the LTA features to train the DNN classifier for speaker
recognition.

The main contributions of this study are twofold. First,
we propose a new speaker recognition framework employing
a analysis sparse model for measurements combined with
an adaptive analysis operator-based prior for the speaker
speech. The adaptive analysis sparse model, i.e., the speaker
model, is learned with theMFCCsmap of speech signals from
training speaker datasets, which saves runtime during recog-
nition. Second, we present the LTA features including the
static and dynamic information of the speech signal, which
is obtained by using the analysis sparse representations of the
MFCCsmap with the speaker model, and the LTA features are
used as the input of the DNN classifier.

The remainder of this paper is organized as follows:
Section 2 describes the proposed speaker recognition system,
and section 3 gives the implementation details and results
obtained. Finally section 4 presents the conclusion.

II. THE PROPOSED SPEAKER RECOGNITION SYSTEM
Fig. 1 shows the overview of the system. In the training phase,
all training speech signals are divided to a set of time frames
with overlapping windows. The MFCCs extracted from each
frame are converted to super MFCCs frames to construct
the MFCCsmap. Then, the MFCCsmap can be utilized as
the training data for building the analysis sparse model. The
learning dictionary can be regarded as the speaker model,
and the analysis sparse representations of the MFCCsmap
can be used as the LTA features of the speaker for training
a DNN classifier [29]. In the test phase, the MFCCsmap of
the test speech is obtained in the same way as in the training
phase, and the long-term acoustic features are generated by
the speaker model, and then the LTA features are utilized as
the input for the trained DNN classifier to realize the speaker
recognition.
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A. MFCCSMAP
MFCCs features have been used to represent speech signal
distribution. MFCCs can be derived through cepstral anal-
ysis and warped according to the Mel-scale which is con-
structed to reflect the frequency sensitivity of the human ear
(which is better at low frequencies than at high frequencies).
To obtain the short-term MFCCs features, first the higher
frequency components of the speech signal are enhanced with
a pre-emphasis filter 1 − 0.9z−1, then the pre-emphasized
speech signal is separated into n time frames with a Ham-
ming window, where adjacent time frames overlap by 50%.
The frames are transformed from the time domain into the
frequency domain by the Fast Fourier Transform (FFT) to
obtain the amplitude spectrum. The next processing step is
computing the logarithm of the amplitude spectrum, and then
the logarithm of the spectrum is frequency warped to trans-
form the spectrum into Mel frequency by using a Mel filter
bank. Finally, the log Mel spectrum is converted to the time
domain using the discrete cosine transform, and the MFCCs
can be obtained retaining a number of leading coefficients.
The number of resulting Mel-frequency cepstral coefficients
is generally chosen between 12 and 20, and it is set to 12 in
this paper.

The super MFCCs frames {xi}Ni=1 are built by the MFCCs
frames {mj}

n
j=1 are shown in Fig. 2, where N < n. The l

MFCCs frames, from the ith MFCCs frame mi to the kth
MFCCs frame mk are shown in Fig. 2(a), are stacked into
a frame called the super MFCCs frame, i.e.,

xi =


mi
mi+1
...

mk

 (1)

where xi is a super MFCCs frame, and the dimension of the
super MFCCs frame is 12l. For each super MFCCs frame,
there are sMFCCs frames which are different from the other
super MFCCs frames. Then the N super MFCCs frames can
be constructed with nMFCCs frames,

N =
⌊
n− l
s

⌋
(2)

FIGURE 2. The building of MFCCsmap. (a) The block diagram of MFCCs,
where

{
m1,m2, . . . ,mj , . . . ,mi , . . . ,mk , . . . ,mn

}
represent the MFCCs

frames. (b) The b lock diagram of MFCCsmap, where{
x1, x2, . . . , xi , . . . , xN

}
represent the super MFCCs frames.

where b·c means that the fraction n−l
s is rounded down. As

shown in Fig. 2(b), the N super MFCCs frames are combined
into a (12l)× N 2-D MFCCsmap X.

B. SPEAKER MODEL AND LONG-TERM ACOUSTIC
FEATURES
Based on the analysis sparse representation model,
the speaker model and the LTA features of the speaker’s
speech can be obtain using the MFCCsmap. For simplicity,
the super MFCCs frame of the MFCCsmap is denoted by
x ∈ RM×1,M = 12l. Generally, the analysis sparse model is
representation as

min ‖f‖0 s.t. f = �x (3)

where � is the analysis dictionary, f = �x is the sparse rep-
resentation of x. In the proposed speaker recognition system,
� is learned from a given speaker MFCCsmap, so that �
describes the feature properties for the speaker and can be
used as the adaptive speaker model. The sparse representation
of x can be obtained with � and the speaker MFCCsmap,
so that x is dependent on the speaker model and make use of
the static and dynamic information of the speaker’s speech,
and then x can be used as the LTA feature to make effective
speaker-recognition decisions.

To obtain � and x by resolving the problem (3), the `0
quasi-norm could be replaced by the `1-norm, i.e.,

min ‖f‖1 s.t. f = �x (4)

Then the constrained optimisation problem (4) can be trans-
formed into an unconstrained optimisation problem with the
Lagrange multiplier α

min ‖f‖1 +
α
2 ‖f−�x‖

2
F (5)

However, there is a trivial solution for the model (5), that is,
� = 0, f = 0. To avoid such a solution, a function defined
on �T� = I has been imposed as a constraint term, which
enforces � to be a full column rank matrix based on the
fact ranks of�. This leads to the following new optimization
criterion

min ‖f‖1 +
α

2
‖f−�x‖2F s.t. �T� = I (6)

Using a Lagrangian multiplier τ > 0, the optimization
problem can be reformulated as

min ‖f‖1 +
α
2 ‖f−�x‖

2
F +

τ
4

∥∥�T�− I
∥∥2
F

(7)

Note also that when f is sparse, minimizing ‖f‖1 can be
obtained by the minimization of ‖f−�x‖2F , subject to the
sparsity constraint. However, both f and � are unknown.
To solve the problem, the orthogonality constrained analysis
dictionary learning with iterative hard thresholding (OIHT-
ADL) algorithm is employed to update the estimation of f
and � [30].
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1) ESTIMATING f
Given the dictionary �, considering the optimization of f
only, the objective function (7) can be modified as

f̂ = argmin
f
‖f‖1 +

α

2
‖f−�x‖2F (8)

The first-order optimality condition of f implies that

α(f−�x)+ sgn (f) = 0 (9)

Therefore, we have

f̂p =


(�x)p −

1
α
, (�x)p >

1
α
;

(�x)p +
1
α
, (�x)p < −

1
α
;

0, otherwise

(10)

where f̂p is the pth vector element of f with p = 1, 2, . . . ,P.
It is generally known that the above solution for f is called
soft thresholding. Indeed, the sparsity constraint ‖f‖1 is
only approximate for ‖f‖0. In order to promote sparsity
and to improve the approximation, the hard thresholding
method [31] is used as an alternative, that is, setting the
smallest components of the vectors to be zeros while retaining
the others:

f̂p =

{
(�x)p,

∣∣(�x)p∣∣ > εp;

0, otherwise.
(11)

where ε is the value of the hard thresholding. As such,
the solution obtained using the constraint ‖f‖1 will be closer
to that using ‖f‖0.

2) UPDATING �

For a given f, the cost function (7) of estimating � can be
rewritten as

�̂ = argmin
�

L (�)

= argmin
�

α

2
‖f−�x‖2F +

τ

2

∥∥∥�T�− I
∥∥∥2
F

(12)

A simple gradient descent method is used to find the local
minimum of the objective function (12), i.e.,

�t+1
= �t

− γ∇L (�) , (13)

where γ is a step size and ∇L (�) = −α (f−�x) xT +
τ
(
��T

− I
)
�. Considering that the rows of � probably

have different scales of norm and even some are possibly
zeros, the rows of � could be normalized to prevent these
situations, if any, by the normalized random vectors, that is,

ω̂p =


ω̂p∥∥ω̂p∥∥2 ,

∥∥ω̂p∥∥2 6= 0;

λ, otherwise.
(14)

where ω̂p is the pth row of �̂ and λ is a normalized random
vector.

C. DNN CLASSIFIER
For speaker recognition, a deep neural networkwas applied as
the classifier in the paper. The DNN uses four hidden layers,
each having R sigmoidal hidden units. The number of units
in the input layer equals the dimension of the input feature
vector. A softmax layer is used as output layer of the DNN
for multicategory classification, the number of output layer
units is the total number of speakers to be identified.

The parameters of the hidden layers are initialized
through the pre-training based on four restricted Boltzmann
machine (RBM) that are stacked, where the hidden layer of
the previous RBM serves as the visible layer of the next RBM.
The four hidden layers are trained layer-by-layer in a unsu-
pervised greedy manner. The input data of the DNN is the
LTA feature f, and the Gaussian-Bernoulli RBM (GB-RBM)
is used as the first layer of the DNN to represent the distri-
bution of the f. The probability distribution assigned to the
visible-hidden units pair is defined by

P
(
f,h1; θ1

)
=
e−E

(
f,h1;θ1

)
Z

(15)

where f is also the state of the visible layer, h1 denotes the
state of hidden layer, and the superscript is the index of hidden
layer of the DNN. Z is the normalization term defined by∑

f,h1 e
−E

(
f,h1;θ1

)
. E

(
f,h1; θ1

)
represents the energy func-

tion of the visible layer units and the hidden layer units, i.e.,

E
(
f,h1; θ1

)
=

∑
p

(
fp−o1p

)2
2σ 2

p
−

∑
r

b1rh
1
r−
∑
p,r

fp
σp
h1rw

1
p,r

(16)

where p, r are the indexes of the visible layer units and hidden
layer units, respectively. θ1 =

(
o1,b1,w1

)
are the parameters

of the first layer. o1 are biases of the visible layer units, b1 is
the biases of hidden layer, and w1 are the weights between
visible layer units and hidden layer units. σp is the standard
deviation of the Gaussian noise. The log likelihood of the LTA
feature is used as the objective function, i.e.,

L
(
θ1
)
= log

∏
p

P
(
fp
)
= log

∑
h1 e
−E

(
f,h1;θ1

)∑
f,h1 e

−E(f,h1;θ1)
(17)

The parameters can be updated by using the stochastic gradi-
ent method, i.e.,

θ1 (t + 1) = δθ1 (t)− η1
∂L
(
θ1
)

∂θ1 (t)
(18)

where t is the index of the iteration. δ is the momentum factor
used to smooth out the weight updates, and η1 is the learning
rate in the training phase. After the first layer has been trained,
the states of the binary hidden units h1 of the GB-RBM
are used as the input data for training the next RBM. The
rest of the hidden layers of the DNN are pre-trained by the
Bernoulli-Bernoulli RBM. For the first BB-RBM example,

87442 VOLUME 7, 2019



T. Lin, Y. Zhang: Speaker Recognition Based on Long-Term Acoustic Features

the energy function of the visible layer units and hidden layer
units is defined by

E
(
h1,h2

)
=

∑
r

b1rh
1
r −

∑
r

b2rh
2
r −

∑
r,r

h1rh
2
rw

2
r,r (19)

where h1 is the state of visible layer units in the first
BB-RBM, and h2 is the state of hidden layer units.

After pre-training, a randomly initialized softmax layer
is used as the output layer of the DNN for multicategory
classification, the output of the d th node in the softmax layer
is the conditional probability of the current case belonging to
the d th speaker. The calculation of the d th node in the output
layer can be described as below

zd =
exp (qd )∑
c exp(qc)

(20)

where c is an index over all output units, and also the index
of the speaker, qd is the input of the d th unit in the softmax
layer, and zd is the output of the d th unit. The cost function
C is the cross entropy between the target output ẑd and the
output of the softmax zd ,

C = −
∑

d
ẑd log zd (21)

where ẑd is the label for the input LTA feature f, taking
value of one when the LTA feature belongs to the d th
class, otherwise taking value of zero. The gradient descent
back-propagation algorithm is carried to fine-tune all param-
eters for both hidden layers and output layer, i.e.,

θ (ρ) (t + 1) = θ (ρ) (t)− η2
∂C

∂θ (ρ) (t)
(22)

where η2 is the learning rate, and ρ is the index of the layer.

III. EXPERIMENTS
We carried out two experiments to evaluate the proposed
long-term acoustic features on a speaker recognition task. The
evaluation metric is the average classification accuracy rate
(ACA)

ACA=
number of correct classified samples
number of total testing samples

×100% (23)

In the first experiment, the effectiveness of the proposed LTA
is shown by comparing with the performance of the same
recognizer fed with different features, and the recognition
performance of the proposed speaker recognition systems is
demonstrated by comparing the proposed system with the
speaker recognition method in [32]. In the second experi-
ment, the robustness of the LTA features is demonstrated in
the presence of white noise.

We use four different databases to investigate the per-
formance of our speaker recognition system, i.e., the
TIMIT database [33], VoxForge database [34], THCHS30
database [35], and LibriSpeech database [36]. Ten speakers
were selected from the TIMIT database, i.e., seven male
speakers and three female speakers, with 10 English speech
sentences of each speaker. We downloaded 12 speakers,

consisting of 8 males and 4 females, from the online Vox-
Forge website, with 8 English voice samples per speaker.
Ten more speakers, 3 male and 7 female, were selected
from the THCHS30 database, which is an open Chinese
speech database, and each speaker had five voice samples.
Ten speakers, 5 male and 5 female, were selected from the
LibriSpeech database which is an English speech database
with 8 voice samples per speakers. The sampling rate of
all speech materials was 16 kHz, and the sample size was
16 bits. The speakers’ material were randomly selected from
these four database, and the voice samples of each speaker
composed 8s of speech for the training dataset, and 2s for the
test dataset. The languages used for the training and testing
are same, so the system is language dependent. But, the texts
of the speech used in the training and testing are different,
so the system is text independent.

A. THE PERFORMANCE OF THE PROPOSED SPEAKER
RECOGNITION SYSTEM
This experiment was designed to test the recognition per-
formance of the proposed speaker recognition systems. In
the training phase, the training speech for each speaker was
firstly pre-emphasized, and then segmented into 799 frames
with a 20ms Hanning window size and a 10ms step size.
The FFT of each frame was converted from a power spec-
trum to the mel scale by 24 triangular mel-filters, and then
12-dimensional MFCCs were computed by applying log
compression firstly and the DCT transform. With setting
l = 6, s = 1, 793 super MFCCs frames could be constructed
from the 799 MFCCs frames to build the MFCCsmap X,
which dimension was 72× 793. To get the LTA features fc of
the training speech, the speaker model�c, i.e., the dictionary,
was set as 792× 72, and then was randomly initialized. The
�c was firstly learned from the trainingMFCCsmapXc by the
OIHT-ADL algorithm, where the parameters were selected
as follows: α = 1× 10−3, τ = 1, γ = 1 × 10−3 and
the iteration number was 30. Then, we multiplied the �c
by the Xc, and the fc were obtained from the product by
using the hard thresholding method, where the 50 smallest
values in �xp were set as the value of the hard thresholding
εp. The obtained fc were used to train the corresponding
DNN classifier. During pre-training, 5 iterations were used
to pre-train each hidden layer of the DNN with a learning
rate of 0.00025 and a momentum term of 0.9. For fine-tuning,
300 iterations were used and the learning rate was set to 0.01.
These parameters of the DNN classifier were selected by
some experiences. In the test phase, the MFCCs were first
extracted from the test speech signal. The test MFCCsmap
of all speech X̂ was built, then the product of the X̂ and the
learned speaker model�c was calculated, the f̂c was obtained
from the product by using the hard thresholding method.
Finally, the f̂c was recognized by the corresponding DNN
classifier, where the probability value of the softmax layer
was calculated. The ACA of this experiment was gained by
comparing the output of all DNNs. Each experiment did ten
times under the same conditions and its ACAs were recorded.
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The average value of ten ACAs was calculated and presented
in Fig. 3, fromwhichwe can observe that the proposed system
performed about 90% correct speaker identification.

FIGURE 3. ACA (%) by the different speaker recognition system for four
different databases.

We compared the recognition performance of the pro-
posed long-term features with that of a static MFCCs feature
extraction method and the three MFCCs-based methods of
dynamic feature extraction. Both the training and test speech
are converted to the following four features:

• MFCCs features: The speech signal was first pre-
emphasized, and then segmented into 799 frames with
a 20ms Hanning window size and a 10ms step size. The
FFT of each frame was converted from power spectrum
into mel scale by 24 triangular mel-filters, and then
12-dimensional MFCCs were computed by applying log
compression firstly and the DCT transform. TheMFCCs
were the static only features and shared by the static part
of all features.

• MFCCs + 1 + 12 features: Firstly, the static MFCCs
was computed with the same method as above. Then,
the 12 dimensional 1MFCCs frame was computed by
one MFCCs frame and its neighbor 4 MFCCs frames.
The 12 dimensional 12MFCCs frame was computed
by one 1MFCCs frame and its neighbor 4 1MFCCs
frames. The 36-dimensional MFCCs + 1 + 12 vector
was built by a MFCCs frame, a 1MFCCs frame, and a
12MFCCs frame.

• The super MFCCs features: This baseline followed the
idea proposed by Yu et al. [11] with slight modification.
The 12-dimensional MFCCs were first extracted from
the speech of a speaker, and then the 72-dimensional
super MFCCs frames were built by the method in
Section II-B with the parameter l = 6.

• LTFA featrues: The LTFA features were first proposed
in [12], which 12-dimensional MFCCs were extracted,
and the average of four successive MFCCs frames was
calculated as a 12-dimensional LTFA feature vector.

These recognition systems used also the DNN with four
hidden layers to classify the different speakers. The number of
the four DNNs input layer unit was equal to the dimension of
the input feature vectors, and the number of the hidden layers
units were same, i.e., {1584, 1584, 1584, 1584}. The output
layers of the four DNNs were the softmax layer, the number
of units depends on the number of speakers. To get the
best performance of these system, 5 iterations were used for
pre-training each RBM with a learning rate of 0.00025 and
a momentum term of 0.9, and in the fine-tuning, the mean
square error was used as the cost function and a learning rate
of 0.01 for the 500 iterations.

We also compared the proposed speaker recognition with
the recent state of the art techniques, i.e., the truncated
discrete Karhunen-Loeve transform (TDKLT) features [32].
In [32], the speech signal was then divided into overlap-
ping frames of 25ms, with frame shift of 10ms. Each
frame was cleaned up by a noise reduction block based
on the Wiener filter. Further signal enhancements were
then performed by a SNR-dependent waveform processing
phase. Then, the 12-dimensional TDKLT features were com-
puted with the truncated discrete Karhunen-Loeve transform.
Finally, the TDKLT features were used for training a trun-
cated Bayesian classification. The results of experiment were
shown in Fig. 3, and the performance of the proposed system
was better than the method in [32].

The results of the five speaker recognition systems were
shown in Fig. 3. Clearly, the proposed LTA features can
achieve as high an accuracy rate as 92.39%. The best ACA
of the speaker recognition system based the TDKLT was the
89.32%. The proposed method is more effective for speaker
recognition task. In comparison with the static MFCCs fea-
tures, the performances of the others features added the
dynamic information have been improved. The MFCCs +
1 + 12 features did not achieve good recognition results
in this experiment, and the average ACA across the four
databases was 78.01% during the test. The super MFCCs
features can yield better results than that of the LTFA features,
and the average result of the super MFCCs features was
81.57%, and the LTFA features was 80.42%. Experimental
results indicate that the super MFCCs features can offer a
higher discriminability than the other two dynamic features.
By the analysis sparse representation, the average recognition
rate of the proposed LTA features across the four databases
was increased to 91.37%.

B. THE ROBUSTNESS OF THE LTA FEATURES IN
WHITE NOISE CORRUPTION
For evaluating the robustness of this speaker recognition
system, we will now examine the recognition accuracy of
the proposed features under white noise conditions. In this
experiment, the training speech was still the 8s clean speech
signal, while the test speech was the noisy speech signal
which was generated by adding Gaussian white noise to the
2s clean speech with a specified signal-to-noise ratio (SNR).
The noise series were generated by the Gaussian white noise
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FIGURE 4. ACA(%) of the speaker recognition system as a function of l
and s on MFCCsmap.

FIGURE 5. ACA(%) of speaker recognition based on the ASR with
different dictionary dimensions.

function of Matlab, and the signal noise ratio (SNR) was set
at values of 5, 10, 20 and 30 dB. The results of the experiment
were shown in Fig. 3.

As shown in Fig. 3, the ACAs of using LTA features had
some reduction with the decrease of the SNR, while the
accuracy of speaker recognition systems using the MFCCs
features or the others dynamic features were diminished
rapidly by the white noise. As shown in Fig.3, the speaker
recognition system with LTA features performed better than
the MFCCs features and the others features. At 30 dB,
the average ACA of using the LTA feature across the four
databases was 81.05%. In the same condition, the ACA of
the MFCCs feature was 60.17%, and the best performance of
the other dynamic features was the super MFCCs features,
with an average ACA of 69.50% across the four databases.
From what had been mentioned above, it was clear that the
robustness of LTA features was better than the super MFCCs
features. It is probably because that the analysis sparse model
has robustness.

C. SELECTION OF THE PARAMETERS
In the proposed speaker recognition system, the parameters of
constructing the MFCCsmap and the OIHT-ADL algorithm
should be selected. Firstly, the parameters of constructing the
MFCCsmap were selected. The ACA of the proposed speaker
recognition was used to show their performance. To build
the MFCCsmap of the speaker, the l MFCCs frames were

FIGURE 6. (a) Convergence rate of ASR for solving its proposed objective
function with α = 1× 10−3 and τ = 1; (b) ACA(%) of the speaker
recognition on different databases with different parameters for ASR.

stacked to construct a super MFCCs frame, and each super
MFCCs frame had s MFCCs frame(s) which were different
from each other. The influences of the parameters l and s
were examined, where the parameter l was selected from
the range of 1 ≤ l ≤ 8, and the range of s was less than or
equal to l, but never less than 1. Thus, the range of the super
MFCCs frame’s dimension was from 12 to 96, and all the
super MFCCs frames were combined into the MFCCsmap.
The speaker model � was built by the method described in
section II-B, where the dimension of the dictionary was ten
times the superMFCCs frame’ dimension, and the parameters
were set with α = 1× 10−3, τ = 1, and γ = 1× 10−3. The
experimental results on the VoxForge database were shown
in the Fig. 4, from which we could infer that increasing l
improves the recognition accuracy of the system, but when
l was more than 6, the rate does not increase. In addition,
increasing s degrades the recognition accuracy of system. For
all databases, l = 6 and s = 1 were set for constructing
MFCCsmap.

Next, the parameters of the OIHT-ADL algorithm were
selected. The convergence curves of the objective function
in (7) and the ACA of the proposed speaker recognition
system were used to show their performance, and the param-
eters of the algorithm were set empirically by experimental
tests. The dimension of dictionary � was first considered
in the experiment. We tested the dimension of dictionary
with different values in the ranges of 144 ≤ P ≤ 936.
The results were shown in Fig. 5. With the increasing the
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dimension of dictionary, the performance of the classification
became better. The dictionary with a bigger size may lead to
a sparser representation of the signal but may have a higher
computational cost. For obtaining stable classification perfor-
mance, the size of dictionary � was set as 792× 72. Then,
the convergence rate of ASR was calculated on the objective
function values, and the parameters of the objective function
were selected for the algorithm. We tested the parameters γ
with different values in the ranges of 1 × 10−3 ≤ γ ≤ 100,
and set γ = 1 × 10−3. The parameters were tested with
different values in the ranges of 1 × 10−4 ≤ α ≤ 1 and
1 × 10−2 ≤ τ ≤ 10; the results were shown in Fig. 6.
As shown in Fig. 6(a), the objective function values of the
algorithms with α = 1 × 10−3 and τ = 1 rapidly decreased
and became stable after about 30 iterations on the VoxForge
database. Then, the sensitivities of the parameters α and τ
were studied and shown in Fig. 6(b) with the ACA on the
VoxForge database. According to the results shown in Fig. 6,
α = 1 × 10−3, τ = 1, were set for the VoxForge database.
The experiments were repeated for the other three databases,
and it was found that the parameters could be applied to the
other databases.

IV. CONCLUSION
In this paper, the speaker model is built based on the analysis
sparse representation, and LTA features were extracted from
the MFCCsmap of the speaker’s speech with the speaker
model. Both static and dynamic information of the speech
signal could be included in the LTA feature. The four types of
the features (MFCCs features, theMFCCs+1+12 features,
the super-vector MFCCs features, and the LTFA features)
with DNN classifier, and the TDKL method were used as
baselinemethods for experimental comparison. The proposed
LTA features were found to be robust and outperformed
all baseline conditions. In this paper, some small speaker
databases were used to test the speaker recognition system.
Larger speaker database can be covered by increasing the
complexity of DNN, increasing the number of hidden layers
or the node number of hidden layers. However, along with the
increase of the DNN’s complexity, the requirement of compu-
tational resources will greatly increase. Due to the restriction
of the available computational resources, the experimental
verification of using large database has not been completed.
This problem should be addressed by finding an even more
effective DNN classifier in the future.
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