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ABSTRACT Today, and possibly for a long time to come, the full driving task is too complex an activity
to be fully formalized as a sensing-acting robotics system that can be explicitly solved through model-
based and learning-based approaches in order to achieve full unconstrained vehicle autonomy. Localization,
mapping, scene perception, vehicle control, trajectory optimization, and higher-level planning decisions
associated with autonomous vehicle development remain full of open challenges. This is especially true
for unconstrained, real-world operation where the margin of allowable error is extremely small and the
number of edge-cases is extremely large. Until these problems are solved, human beings will remain an
integral part of the driving task, monitoring the AI system as it performs anywhere from just over 0% to just
under 100% of the driving. The governing objectives of the MIT Advanced Vehicle Technology (MIT-AVT)
study are to 1) undertake large-scale real-world driving data collection that includes high-definition video
to fuel the development of deep learning-based internal and external perception systems; 2) gain a holistic
understanding of how human beings interact with vehicle automation technology by integrating video data
with vehicle state data, driver characteristics, mental models, and self-reported experiences with technology;
and 3) identify how technology and other factors related to automation adoption and use can be improved
in ways that save lives. In pursuing these objectives, we have instrumented 23 Tesla Model S and Model X
vehicles, 2 Volvo S90 vehicles, 2 Range Rover Evoque, and 2 Cadillac CT6 vehicles for both long-term (over
a year per driver) and medium-term (one month per driver) naturalistic driving data collection. Furthermore,
we are continually developing new methods for the analysis of the massive-scale dataset collected from
the instrumented vehicle fleet. The recorded data streams include IMU, GPS, and CAN messages, and high-
definition video streams of the driver’s face, the driver cabin, the forward roadway, and the instrument cluster
(on select vehicles). The study is on-going and growing. To date, we have 122 participants, 15 610 days of
participation, 511 638 mi, and 7.1 billion video frames. This paper presents the design of the study, the data
collection hardware, the processing of the data, and the computer vision algorithms currently being used to
extract actionable knowledge from the data.

INDEX TERMS Artificial intelligence, automation, human factors, autonomous vehicles, human-robot
interaction, computer vision, machine learning, neural networks.

I. INTRODUCTION
The idea that human beings are poor drivrs is well-
documented in popular culture [1], [2]. While this idea is
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often over-dramatized, there is some truth to it in that we’re
at times distracted, drowsy, drunk, drugged, and irrational
decision makers [3]. However, this does not mean it is easy
to design and build a perception-control system that drives
better than the average human driver. The 2007 DARPA
Urban Challenge [4] was a landmark achievement in robotics,
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when 6 of the 11 autonomous vehicles in the finals success-
fully navigated an urban environment to reach the finish line,
with the first place finisher traveling at an average speed
of 15 mph. The success of this competition led many to
declare the fully autonomous driving task a ‘‘solved prob-
lem’’, one with only a few remaining messy details to be
resolved by automakers as part of delivering a commercial
product. Today, over ten years later, the problems of localiza-
tion, mapping, scene perception, vehicle control, trajectory
optimization, and higher-level planning decisions associated
with autonomous vehicle development remain full of open
challenges that have yet to be fully solved by systems incor-
porated into a production platforms (e.g. offered for sale) for
even a restricted operational space. The testing of prototype
vehicles with a human supervisor responsible for taking con-
trol during periods where the AI system is ‘‘unsure’’ or unable
to safely proceed remains the norm [5], [6].

The belief underlying the MIT Advanced Vehicle Technol-
ogy (MIT-AVT) study is that the DARPA Urban Challenge
was only a first step down a long road toward developing
autonomous vehicle systems. The Urban Challenge had no
people participating in the scenario except the professional
drivers controlling the other 30 cars on the road that day. The
authors believe that the current real-world challenge is one
that has the human being as an integral part of every aspect
of the system. This challenge is made especially difficult due
to the immense variability inherent to the driving task due to
the following factors:
• The underlying uncertainty of human behavior as
represented by every type of social interaction and
conflict resolution between vehicles, pedestrians, and
cyclists.

• The variability between driver styles, experience, and
other characteristics that contribute to their understand-
ing, trust, and use of automation.

• The complexities and edge-cases of the scene perception
and understanding problem.

• The underactuated nature of the control problem [7] for
every human-in-the-loop mechanical system in the car:
from the driver interaction with the steering wheel to the
tires contacting the road surface.

• The expected and unexpected limitation of and imper-
fections in the sensors.

• The reliance on software with all the challenges inherent
to software-based systems: bugs, vulnerabilities, and the
constantly changing feature set from minor and major
version updates.

• The need for a human driver to recognize, acknowledge,
and be prepared to take control and adapt when system
failure necessitates human control of the vehicle in order
to resolve a potentially dangerous situation.

• The environmental conditions (i.e., weather, light con-
ditions) that have a major impact on both the low-level
perception and control tasks, as well as the high-level
interaction dynamics among the people that take part in
the interaction.

• Societal and individual tolerances to human and
machine error.

As human beings, we naturally take for granted how much
intelligence, in the robotics sense of the word, is required
to successfully attain enough situation awareness and under-
standing [8] to navigate through a world full of predictably
irrational human beings moving about in cars, on bikes, and
on foot. It may be decades before the majority of cars on
the road are fully autonomous. During this time, the human
is likely to remain the critical decision maker either as
the driver or as the supervisor of the AI system doing the
driving.

In this context, Human-Centered Artificial Intelli-
gence (HCAI) is an area of computer science, robotics, and
experience design that aims to achieve a deeper integration
between human and artificial intelligence. It is likely that
HCAI will play a critical role in the formation of technologies
(algorithms, sensors, interfaces, and interaction paradigms)
that support the driver’s role in monitoring the AI system as
it performs anywhere from just over 0% to just under 100% of
the basic driving and higher order object and event detection
tasks.

The MIT Advanced Vehicle Technology (MIT-AVT) study
seeks to collect and analyze large-scale naturalistic data
of semi-autonomous driving in order to better character-
ize the state of current technology use, to extract insight
on how automation-enabled technologies impact human-
machine interaction across a range of environments, and to
understand how we design shared autonomy systems that
save lives as we transition from manual control to full auton-
omy in the coming decades. The effort is motivated by
the need to better characterize and understand how drivers
are engaging with advanced vehicle technology [9]. The
goal is to propose, design, and build systems grounded in
this understanding, so that shared autonomy between human
and vehicle AI does not lead to a series of unintended
consequences [10].

‘‘Naturalistic driving’’ refers to driving that is not
constrained by strict experimental design and a ‘‘naturalis-
tic driving study’’ (NDS) is generally a type of study that
systematically collects video, audio, vehicle telemetry, and
other sensor data that captures various aspects of driving
for long periods of time, ranging from multiple days to
multiple months and even years. The term NDS is applied
to studies in which data are acquired under conditions that
closely align with the natural conditions under which drivers
typically drive ‘‘in the wild.’’ Often, a driver’s own vehicle is
instrumented (as unobtrusively as possible) and each driver
is asked to continue using their vehicle as they ordinarily
would. Data is collected throughout periods of use. Further,
use is unconstrained by any structured experimental design.
The purpose is to provide a record of natural behavior that
is as unaffected by the measurement process as possible.
This contrasts with on-road experiments that are conducted in
similarly instrumented vehicles, but in which experimenters
are present in the vehicle, and ask drivers to carry out specific
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tasks at specific times on specific roads using specific tech-
nology systems in the vehicle.

The MIT-AVT study is a new generation of NDS that
aims to discover insights and understanding of real-world
interaction between human drivers and autonomous driving
technology. Our goal is to derive insight from large-scale
naturalistic data being collected through the project to aid in
the design, development and delivery of new vehicle systems,
inform insurance providers of the changing market for safety,
and educate governments and other non-governmental stake-
holders on how automation is being used in the wild.

This paper outlines the methodology and underlying prin-
ciples governing the design and operation of the MIT-AVT
study vehicle instrumentation, data collection, and the use
of deep learning methods for automated analysis of human
behavior. These guiding principles can be summarized as
follows:
• Autonomy at All Levels: We seek to study and under-
stand human behavior and interaction with every form
of advanced vehicle technology that assists the driver
through first sensing the external environment and the
driver cabin, and then either controlling the vehicle or
communicating with the driver based on the perceived
state of the world. These technologies include every-
thing from automated emergency braking systems that
can take control in rare moments of imminent danger
to semi-autonomous driving technology (e.g., Autopilot)
that can help control the lateral and longitudinal move-
ments of the vehicle continuously for long periods of
driving on well-marked roadways (e.g., highways).

• Beyond Epochs and Manual Annotation: Successful
large-scale naturalistic driving studies of the past in
the United States [11]–[15] and in Europe [16] focused
analysis on crash and near-crash epochs. Epochs were
detected using traditional signal processing of vehicle
kinematics. The extraction of driver state from video
was done primarily with manual annotation. These
approaches, by their nature, left the vast remainder of
driving data unprocessed and un-analyzed. In contrast to
this, theMIT-AVT study seeks to analyze the ‘‘long-tail’’
of shared-autonomy from both the human and machine
perspectives. The ‘‘long-tail’’ is the part of data that
is outside of short, easily-detectable epochs. It is, for
example, the data capturing moment-to-moment allo-
cation of glance over long stretches of driving (hun-
dreds of hours in MIT-AVT) when the vehicle is driving
itself. Analyzing the long-tail data requires processing
billions of high-definition video frames with state-of-
the-art computer vision algorithms multiple times as
we learn both what to look for and how to interpret
what we find. At the same time, despite the focus
on deep learning based analysis of large-scale data,
the more traditional NDS analytic approaches remain
valuable, including manual annotation, expert review
of data, insight integration from technology suppliers,
and contextualizing observed naturalistic behavior with

driver characteristics, understanding, and perceptions of
vehicle technology.

• Multiple Study Duration: We seek understanding
human behavior in semi-autonomous systems both from
the long-term perspective of over 1 year in subject-
owned vehicles and from a medium-term perspective
of 1 month in MIT-owned vehicles. The former pro-
vides insights into use of vehicle technology over time
and the latter provides insights about initial interactions
that involve learning the limitations and capabilities of
each subsystem in a fashion more closely aligned with
a driver’s experience after purchasing a new vehicle
equipped with a suite of technology that the driver may
or may not be familiar with.

• Multiple Analysis Modalities:We use computer vision
to extract knowledge from cameras that look at the driver
face, driver body, and the external driving scene, but we
also use GPS, IMU, and CAN bus data to add rich details
about the context and frequency of technology use. This
data is further complemented by detailed questionnaire
and interview data that comprise driver history, expo-
sure to various automated and non-automated technolo-
gies, mental model evaluation, perceptions of safety,
trust, self-reported use, and enjoyment. With this inter-
disciplinary approach, the dataset allows for a holistic
view of real-world advanced technology use, and iden-
tifies potential areas for design, policy, and educational
improvements.

The key statistics about the MIT-AVT study as a whole
and about the individual vehicles in the study are shown in
Fig. 1. The key measures of the data with explanations of the
measures are as follows:
• Study months to-date: 37
(Number of months the study has been actively running
with vehicles on the road.)

• Participant days: 15,610
(Number of days of active data logger recording across
all vehicles in the study.)

• Drivers: 122
(Number of consented drivers across all vehicles in the
study.)

• Vehicles: 29
(Number of vehicles in the study.)

• Miles driven: 511,638
(Number of miles driven.)

• Video frames: 7.1 billion
(Number of video frames recorded and processed across
all cameras and vehicles in the study.)

Latest dataset statistics can be obtained at http://hcai.mit.
edu/avt (see §VII). Data collection is actively on-going. Fig. 3
shows GPS traces for trips in the dataset local to the New
England Area.

A. NATURALISTIC DRIVING STUDIES
The focus of the MIT-AVT study is to gather naturalistic
driving data and to build on the work and lessons-learned of
the earlier generation of NDS studies carried out over the first
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FIGURE 1. Dataset statistics for the MIT-AVT study as a whole and for the individual vehicles in the study.

decade of the 21st century [11]–[15]. These previous studies
aimed to understand human behavior right before and right
after moments of crashes and near-crashes as marked by peri-
ods of sudden deceleration. The second Strategic Highway
Research Program (SHRP2) is the best known and largest
scale of these studies [14].

In contrast to SHRP-2 and other first-generation NDS
efforts, the MIT-AVT study aims to be the standard for the
next generation of NDS programs where the focus is on large-
scale computer vision based analysis of human behavior.
Manually annotating specific epochs of driving, as the prior
studies have done, is no longer sufficient for understand-
ing the complexities of human behavior in the context of
autonomous vehicle technology (i.e., driver glance or body
position over thousands of miles of Autopilot use). For exam-
ple, one of many metrics that are important to understanding
driver behavior is moment-by-moment detection of glance
region [17], [18] (see §I-C). In order to accurately extract this
metric from the 2.2 billion frames of face video without the
use of computer vision would require an immense investment
in manual annotation, assuming the availability of an efficient
annotation tool that is specifically designed for the manual
glance region annotation task and can leverage distributed,
online, crowdsourcing of the annotation task. The develop-
ment of such a tool is a technical challenge that may take
several years of continuous research and development [19],
which may eclipse the cost human annotation hours. If this

was the only metric of interest, perhaps such a significant
investment would be justifiable and feasible. However, glance
region is only one of many metrics of interest, and in terms of
manual annotation cost, is one of the least expensive. Another
example is driving scene segmentation, which for 2.2 billion
frames would require an incredible investment [20]. For this
reason, automatic or semi-automatic extraction of informa-
tion from raw video is of paramount importance and is at
the core of the motivation, design, research, and operation of
MIT-AVT.

The fundamental belief underlying our approach to NDS
is that only by looking at the entirety of the data (with
algorithms that reveal human behavior and situation charac-
teristics) can we begin to learn which parts to ‘‘zoom in’’
on: which triggers and markers will lead to analysis that is
representative of system performance and human behavior in
the data [21]–[25]. Furthermore, each new insight extracted
from the data may completely change our understanding of
where in the data we should look. For this reason, we believe
understanding how humans and autonomous vehicles interact
requires a much larger temporal window than an epoch of
a few seconds or even minutes around a particular event.
It requires looking at the long-tail of naturalistic driving
that has up until now been largely ignored. It requires look-
ing at entire trips and the strategies through which humans
engage the automation: when, where, and for how long it is
turned on, when and where it is turned off, when control is
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exchanged, and many other questions. Processing this huge
volume of data necessitates an entirely different approach
to data analysis. We perform the automated aspect of the
knowledge extraction process by using deep learning based
computer vision approaches for driver state detection, driver
body pose estimation, driving scene segmentation, and vehi-
cle state detection from the instrument cluster video as shown
in Fig. 2 and discussed in §IV. This work describes the
methodology of data collection that enabled the deep learning
analysis. Individual analysis effort are part of future follow-
on work. The result of using deep learning based automated
annotation is that MIT-AVT can analyze the long-tail of
driving in the context of shared autonomy, which in turn,
permits the integration of complex observed interactions with
the human’s perception of their experience. This innovative
interdisciplinary approach to analysis of NDS datasets in
their entirety offers a unique opportunity to evaluate situation
understanding of human-computer interaction in the context
of automated driving.

B. DATASETS FOR APPLICATION OF DEEP LEARNING
Deep learning [26] can be defined in two ways: (1) a branch
of machine learning that uses neural networks that have many
layers or (2) a branch of machine learning that seeks to form
hierarchies of data representation with minimum input from
a human being on the actual composition of the hierarchy.
The latter definition is one that reveals the key characteristic
of deep learning that is important for our work, which is
the ability of automated representation learning to use large-
scale data to generalize robustly over real-world edge cases
that arise in any in-the-wild application of machine learning:
occlusion, lighting, perspective, scale, inter-class variation,
intra-class variation, etc. [27].

In order to leverage the power of deep learning for extract-
ing human behavior from raw video, large-scale annotated
datasets are required. Deep neural networks trained on these
datasets can then be used for their learned representation
and then fine-tuned for the particular application in the driv-
ing context. ImageNet [28] is an image dataset based on
WordNet [29] where 100,000 synonym sets (or ‘‘synsets’’)
each define a unique meaningful concept. The goal for
ImageNet is to have 1000 annotated images for each of
the 100,000 synsets. Currently it has 21,841 synsets with
images and a total of 14,197,122 images. This dataset is
commonly used to train neural network for image classifi-
cation and object detection tasks [30]. The best performing
networks are highlighted as part of the annual ImageNet
Large Scale Visual Recognition Competition (ILSVRC) [31].
In this work, the terms ‘‘machine learning,’’ ‘‘deep learning,’’
‘‘neural networks,’’ and ‘‘computer vision’’ are often used
interchangeably. This is due to the fact that the current state-
of-the-art for most automated knowledge extraction tasks are
dominated by learning-based approaches that rely on one of
many variants of deep neural network architectures. Exam-
ples of other popular datasets leveraged in the development

FIGURE 2. Video frames from MIT-AVT cameras and visualization of
computer vision tasks performed for each.

of algorithms for large-scale analysis of driver behavior in
our dataset include:
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• COCO [32]: Microsoft Common Objects in Con-
text (COCO) dataset is a large-scale dataset that
addresses the object detection task in scene understand-
ing under two perspectives: detecting non-iconic views
of objects, and the precise 2D localization of objects.
The first task usually refers to object localization, which
uses bounding boxes to denote the presence of objects.
The second task refers to instance segmentation, for
which the precise masks of objects are also needed.
The whole dataset features over 200,000 images labeled
within 80 object categories. Successful methods [30],
[33], [34] jointlymodel the two tasks together and simul-
taneously output bounding boxes and masks of objects.

• KITTI [35], [36]: KITTI driving dataset develops chal-
lenging benchmarks for stereo vision, optical flow,
visual odometry/SLAM and 3D object detection, cap-
tured by driving around in both rural areas and highways
of Karlsruhe (a mid-size city in Germany). In total,
there are 6 hours of traffic scenarios recorded at
10-100 Hz using a variety of sensor modalities such
as high-resolution color and grayscale stereo cameras,
a Velodyne 3D laser scanner and a high-precision
GPS/IMU inertial navigation system. In addition, [37]
also propose ground truth for 3D scene flow estimation
by collecting 400 highly dynamic scenes from the raw
dataset and augmenting them with semi-dense scene
flow ground truth.

• Cityscapes [38]: The Cityscapes dataset focuses on
semantic understanding of urban street scenes. It offers
a large, diverse set of stereo video sequences recorded
in streets from 50 different cities with pixel-level and
instance-level semantic labeling. There are 5,000 fully
segmented images with pixel-level annotations and
an additional 20,000 partially segmented images with
coarse annotations. Its two benchmark challenges have
led to the development of many successful approaches
for semantic segmentation [39], [40] and instance seg-
mentation [33], [41].

• CamVid [42]: Cambridge-driving Labeled Video
Database (CamVid) is the first dataset with frame-
wise semantic labels in videos captured from the per-
spective of a driving automobile. The dataset provides
ground truth labels that associate each pixel with one
of 32 semantic classes. Manually specified per-pixel
semantic segmentation of over 700 images total enables
research on topics such as pedestrian detection [43], and
label propagation [44].

C. AUTOMOTIVE APPLICATIONS OF DEEP LEARNING
Design of perception and control systems in the driving
domain have benefited significantly from learning-based
approaches that leverage large-scale data collection and anno-
tation in order to construct models that generalize over the
edge cases of real-world operation. Leveraging the release
large-scale annotated driving datasets [35], [38], automotive
deep learning research aims to address detection, estimation,

prediction, labeling, generation, control, and planning tasks.
As shown in Fig. 2, specific tasks have been defined such as
fine-grained face recognition, body pose estimation, semantic
scene perception, and driving state prediction. Current efforts
are briefly summarized as follows:
• Fine-grained Face Recognition: Beyond classic
face recognition studies, fine-grained face recogni-
tion focuses on understanding human behavior toward
face perception, such as facial expression recognition
[45], [46], eye gaze detection [47], [48]. In the driv-
ing context, [49], [50] explore the predictive power
of driver glances. [51], [52] use facial expression to
detect emotional stress for driving safety and the driving
experience.

• Body Pose Estimation: Work on human body pose
expands the performance, capabilities, and experience
of many real-world applications in robotics and action
recognition. Successful approaches vary from using
depth images [53], via deep neural networks [54],
or with both convolutional networks and graphical mod-
els [55]. Specifically for driving, [56] use driver pose,
which is represented by skeleton data including posi-
tions of wrist, elbow, and shoulder joints, to model
human driving behavior. Reference [57] cast visual anal-
ysis of eye state and head pose for driver alertness
monitoring.

• Semantic Scene Perception: Understanding the scene
from 2D images has long been a challenging task in com-
puter vision, which often refers to semantic image seg-
mentation. By taking advantage of large scale datasets
like Places [58], Cityscapes [38], many approaches
[39], [40] manage to get state-of-the-art results with
powerful deep learning techniques. As a result, precise
driving scene perception [59], [60] for self-driving cars
is now actively studied in both academia and industry.

• Driving State Prediction: Vehicle state is usually
considered as a direct illustration of human decision
in driving, which is also the goal for autonomous
driving. In terms of machine learning, it serves as
the ground truth for various tasks from different per-
spectives such as driving behavior [56] and steering
commands [59], [60].

Many aspects of driver assistance, driver experience, and
vehicle performance are increasingly being automated with
learning-based approaches as representative datasets for these
tasks are released to the broad research community. The
MIT-AVT study aims to be the source of many such datasets
that help train neural network architectures that provide cur-
rent and future robust solutions for many modular and inte-
grated subtasks of semi-autonomous and fully-autonomous
driving.

II. MIT-AVT STUDY STRUCTURE AND GOALS
The governing principle underlying the design of all hard-
ware, low-level software, and higher-level data processing
performed in the MIT-AVT study is: continual, relentless
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innovation, while maintaining backward compatibility. From
the beginning, we chose to operate at the cutting-edge of
data collection, processing, and analysis approaches. This
meant trying a lot of different approaches and developing
completely new ones: from sensor selection and hardware
design described in §III to the robust time-critical recording
system and the highly sophisticated data pipeline described
in §IV. It’s a philosophy that allowed us to scale quickly and
find new solutions at every level of the system stack.

A. PARTICIPATION CONSIDERATIONS AND RECRUITMENT
As previously noted, the medium duration (one month long)
NDS is conducted using MIT-owned vehicles, while the long
duration (over 1 year) NDS is conducted in subject-owned
vehicles. Participants are divided into primary and secondary
drivers, all of whom, in order to take part in the study, must
formally agree to the terms detailed in an informed consent
form approved by an institutional review board (IRB). Pri-
mary drivers in the long NDS (usually the most frequent
driver of the vehicle or the car owner) must be willing
to provide permission to install the data acquisition equip-
ment in the vehicle, warning labels on windows to advise
non-consented passengers and drivers of the ongoing data
collection, and coordinate with project staff for system main-
tenance and data retrieval. Recruitment is conducted through
flyers, social networks, forums, online referrals, and word
of mouth. Primary drivers are compensated for their time
involvement in vehicle instrumentation, system maintenance
appointments, data retrieval, and completing questionnaires.

To be accepted as a primary driver in an MIT-owned
vehicle fleet requires that potential subjects’ daily com-
mutes include time on specific highways, a willingness to
use a study vehicle for a period of approximately four
weeks as the subject’s primary commuting vehicle, signing
an IRB approved informed consent form, passing a Crimi-
nal Offender Record Information (CORI) check and driving
record review by MIT’s Security and Emergency Manage-
ment Office, participating in a training protocol that covers
both basic and advanced vehicle features, and completing a
series of questionnaires and interviews prior to and after their
naturalistic driving experience. High-level overviews of the
training protocol, questionnaire, and interview strategies can
be found in §II-B and §II-C, respectively.

B. TRAINING CONDITIONS FOR ONE MONTH NDS
Participants in the medium duration (one month long) NDS
are provided with introductions to the fleet vehicles in the
form of an approximately 1.5 hour long training session.
This session is intended to introduce drivers to the physical
characteristics of the vehicle, and provide a sufficient under-
standing of vehicle features in order to support safe use of
advanced technologies. Participants are provided with a study
overview by a researcher and presented with manufacturer
produced videos or information packets on one or more of
the basic and advanced features available in the vehicle. After
this initial introduction to systems outside of the vehicle,

participants are seated in the vehicle and given a guided
overview of the vehicle layout and settings (e.g. seat / mirror
adjustments, touchscreen menu layout). Participant’s phones
are paired with the vehicle, and they are given the opportunity
to practice several voice commands (e.g. placing a phone call,
entering a destination). Next, more detailed overviews are
provided on the function, activation, and use of the following
features:
• Adaptive Cruise Control (ACC)
• Pilot Assist (in the Volvo)
• Super Cruice (in the Cadillac)
• Forward Alert Warning / City Safety (in the Volvo)
• Automatic Emergency Braking
• Lane Departure Warning (LDW)
• Lane Keep Assist (LKA)
• Blind Spot Monitor
Following this stationary in-vehicle training, participants

are provided with an on-road training drive on a multi-lane
highway. This highway driving session lasts a minimum
of 30 minutes to allow for practical exposure to the systems
in real world setting. During the training drive participants
are encouraged to utilize the researcher and ask questions
when testing out the systems. Participants are encouraged to
customize vehicle settings to their preferences and to develop
sufficient familiarity to support the ability to choose to use or
not use certain systems for the duration of their one month
period of vehicle use.

C. QUALITATIVE APPROACHES FOR ONE MONTH NDS
Self-report data collection methods are kept as unobtrusive to
participation in the study as possible, while still capturing the
richness of driver’s experience with the vehicle and various
systems, their thoughts on the technology after participat-
ing, and barriers toward their intentions to adopt or discard
automation moving forward. Self-report data in the medium
duration (one month long) NDS is captured using three ques-
tionnaire batteries and one semi-structured interview. Self-
report data is collected prior to and after the naturalistic
portion of the experiment; at no point are participants asked
to complete questionnaires or interviews while they are in
possession of the vehicle.

The questionnaire batteries are deployed in three stages.
The first occurs when a subject signs the consent form and
completes the background check paperwork. The first ques-
tionnaire collects basic demographics and information on
driving history, driving style, exposure to various advanced
and established in-vehicle technologies, and general trust
in technology. A second questionnaire is completed imme-
diately following the training protocol outlined in §II-B,
and captures participants’ high level mental models, initial
impressions, and reported trust in select vehicle technologies.
The third and final questionnaire is completed at the end
of the driver’s one-month naturalistic driving period. This
questionnaire assesses reported trust in select technologies,
perceptions of safety, high- and detailed-level understanding
of systems, and desire for having in their own future vehicles
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such systems as experienced during the NDS period and
with hypothetical improvements. Many questions in the sec-
ond and third questionnaires are identical, allowing anal-
ysis to explore how exposure to systems and experiential
learning impact concepts such as trust and understanding of
technologies.

A semi-structured interview is conducted in person
between a research associate and the study participant at
the end of the one-month naturalistic driving period, and
lasts approximately 30-60 minutes. It consists of predefined
questions focusing on initial reactions to the vehicle, expe-
rience during the training drive, how training affected their
understanding of the technologies, and driver perceptions of
the technologies.

D. COMPETITORS COLLABORATE: CONSORTIUM MODEL
Naturalistic driving data and automated deep learning based
interpretation of that data gives insights, suggestions, and
well-grounded scenarios as to the path forward for safe and
effective integration of artificial intelligence into modern
and future vehicle systems. The raw data and the high-
level understanding of human behavior and system per-
formance in such autonomous vehicle technology is of
interest to:
• Car companies (both established and newly formed)
• Automotive parts suppliers
• Insurance companies
• Technology companies
• Government agencies
• Academic and research organization
When the path forward is full of uncertainty, risks,

potentially costly misaligned investments, and paradigm
shifts, open innovation provides more value than closed
competition. At this moment in time, autonomous vehicle
technology is a space where competitors win by collaborat-
ing, sharing high-level insights and large-scale, real-world
data.

High-level measures such as system use and system per-
formance can be used to inform the design, development and
validation of future vehicle systems. Basic driver behavior
with and without technology use can fuel basic research on
driver understanding, use characteristics, and decision mod-
els while aiding in the actuation of risk in the insurance mar-
ket. Video recording inside and out of the vehicle can be used
to develop perception, control, planning, driver sensing, and
driver assistance systems. As such, the data collected in the
MIT-AVT study can be leveraged for a range of quantitative
and qualitative efforts. Members of the Advanced Vehicle
Technology consortium [61] are collaborating to support the
acquisition of data through the MIT-AVT study, development
of new data processing approaches, and selected analysis.
Full members of the consortia have rights to data access for
proprietary or other internal use purposes. Several members
of the effort are actively involved in independent research
(with and without MIT involvement) using MIT-AVT study
data.

III. HARDWARE: DATA LOGGING AND
REAL-TIME PROCESSING
The backbone of a successful naturalistic driving study is the
hardware and low-level software that performs the data col-
lection. In the MIT-AVT study, that role is served by a system
named RIDER (Real-time Intelligent Driving Environment
Recording system) as shown in Fig. 6. RIDER was designed
and continuously developed to satisfy the following goals and
requirements:

1) Timestamped Asynchronous Sensor Recording:
Record all sensors and data streams in a way that
each sample of data (no matter its frequency or data
source) is timestamped using a centralized, reliable
time-keeper. In other words, data has to be timestamped
in a way that allows perfect synchronization of multiple
data streams in post-processing [62].

2) High-Definition Video: Capture and record 3 to
6 cameras at 720p (2.1 megapixels) resolution. The
selection of camera positions, resolution, and compres-
sion was one of the most essential design decisions of
the entire study. See §III-C for discussion of how this
selection was made.

3) CAN Bus: Collect vehicle telemetry from the Con-
troller Area Network (CAN) bus(es) of the vehicle [63].
Each vehicle has different ports and bus utilization
policies, with little informationmade publicly available
about the mapping of message ID’s and the message
content. Raw CAN messages must be recorded such
that the essential information is contained within those
messages even if at the time of collection those mes-
sages cannot be decoded.

4) Remote Cellular Connectivity: Low-bandwidth,
infrequent communication of system status via a cellu-
lar connection in order to detect when RIDER system
malfunction occurs.

5) Discrete and Elegant Appearance: Parts of the sys-
tem that are visible from inside or outside the car should
have a small form-factor and have visual design charac-
teristics that do not detract from the overall appearance
of the vehicle or have an impact on the overall driving
experience.

6) Camera Mounting is Robust but Removable:
Mounting must be consistent, reliable, and removable
designed specifically for each vehicle’s interior physi-
cal characteristics.

RIDER components include a real-time-clock, GPS, IMU,
and the ability to record up to 6 cameras at 720p resolution,
remote cellular connectivity. The developed system employs
the use of common components tailored to suit its needs
achieving a scalable ultra low cost, accurate, extendable and
robust data recording platform.

To keep the electronics and stored data secure, RIDER
is placed within in the trunk away from the elements and
possible disturbances from passengers. Power and CAN data
cables are run from the OBD-II or diagnostic port to the trunk
into RIDER. USB cables for cameras are also run from each
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FIGURE 3. Visualization of GPS points for trips in the MIT-AVT dataset local to the New England area. The full dataset contains trips that span over the
entire continental United States.

camera location into the trunk. All data and power cables are
secured and hidden beneath interior trim panels.

A. POWER MANAGEMENT SYSTEM
The power systems for RIDER has many constraints: it
demanded flexibility to transfer into different vehicles and
draw minimal power when not in use as to not drain the
primary vehicle battery. The power system consists of a main
smart CAN monitoring section and a buck converter. When
active and logging data, RIDER draws less than 8 watts of
power. When in standby, RIDER’s quiescent current draw is
less than 1/10th of a watt.

The Knights of CANelot (see Fig. 4 and Fig. 5) is a
CAN controlled power board that contains a microchip
MCP2515 CAN controller and MCP2551 CAN transceiver,
along with an Atmega328p microcontroller to monitor CAN
bus traffic. By default when powered this microcontroller
places itself into sleep and does not allow power to enter
the system by way of a switching relay. When the CAN
controller detects a specific predefined CAN message indi-
cating the vehicle CANbus is active, the microcontroller is
sent an interrupt by the CAN controller waking up the micro-
controller from sleep and triggering the relay to power the
primary buck converter. This begins the booting sequence to
the rest of the system. When the vehicle shuts off and the
CANbus within the car enters into a sleep state, a signal is
sent via the Knights of CANelot microcontroller to gracefully
stop all video and data recording, shutdown the compute
system, disconnect main power then enter sleep mode once
again.

FIGURE 4. Knights of CANelot, CAN controlled power board. Power board
mid-assembly showing populated CAN controller, transceiver, and power
regulation. Also shown, unpopulated positions for the power relay,
microcontroller, oscillator and connectors.

B. COMPUTING PLATFORM AND SENSORS
A single board computer was chosen for this application for
its wide variety of I/O options, small form factor and ease of
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FIGURE 5. Fully assembled Knights of CANelot board, showing populated
microcontroller, power relay, CAN and power connections.

development. We chose to work with the Banana Pi Pro with
the follow sensors and specifications:
• 1GHz ARM Cortex-A7 processor, 1GB of RAM
• Expandable GPIO ports for IMU/GPS/CAN
• Native onboard SATA
• Professionally manufactured daughter board for sensor
integration

• ARM processor features onboard CAN controller for
vehicle telemetry data collection

• Maxim Integrated DS3231 real-time clock for accurate
timekeeping/time-stamping +/−2 ppm accuracy

• Texas Instruments SN65HVD230 CAN transceiver
• 9 degrees-of freedom inertial measurement unit
(STMicro L3GD20H(gyro), LSM303D(accelerometer/
compass))

• GlobalTop MTK3339 GPS unit, 6 channel, DGPS
capability accurate within 5 meters

• Huawei E397Bu-501 4G LTE USB module
• USB 3.0 4-port hub, powered
• 1TB/2TB solid state hard drive

C. CAMERAS
Three or four Logitech C920 webcams record at a resolution
of 1280x720 at 30 frames per second within the car. Two
of these cameras have been modified to accept standard CS
type lens mount for adaptability within the car for either face
or body pose orientation. The third camera is the standard
webcam that is mounted on the windshield for a forward road
perspective. Occasionally a fourth camera is placed within

FIGURE 6. Final prototype version of RIDER enclosed by 3D printed case.
From top to bottom, clockwise, attached to the top of the case is external
storage in the form of a 1 terabyte solid state hard drive. The USB
cameras connect via a USB hub shown in the center. To the right of the
USB hub, Banana Pi covered by the black SensorHAT with CAN transceiver,
GPS, IMU, and real time clock. Bottom center, buck converter for stepping
down vehicle battery voltage from 12-13.8 volts to 5 volts for all compute
systems. Lower left, Knights of CANelot CAN controlled power board.

the instrument cluster to capture information unavailable on
the CANbus. These cameras also contain microphones for
audio capture and recording. Custom mounts were designed
for specialty placement within the vehicle.

Most single board computers like our Banana Pi lack the
required computational ability to encode and compress more
than one raw HD video stream. The Logitech C920 camera
provides the ability to off-load compression from the compute
platform and instead takes place directly on the camera. This
configuration allows for possibility of up to 6 cameras in a
single RIDER installation.

IV. SOFTWARE: DATA PIPELINE AND DEEP
LEARNING MODEL TRAINING
Building on the robust, reliable, and flexible hardware archi-
tecture of RIDER is a vast software framework that han-
dles the recording of raw sensory data and takes that data
through many steps across thousands of GPU-enabled com-
pute cores to the extracted knowledge and insights about
human behavior in the context of autonomous vehicle tech-
nologies. Fig. 7 shows the journey from raw timestamped
sensor data to actionable knowledge. The high-level steps
are (1) data cleaning and synchronization, (2) automated
or semi-automated data annotation, context interpretation,
and knowledge extraction, and (3) aggregate analysis and
visualization.

This section will discuss the data pipeline (Fig. 7), which
includes software implemented on RIDER boxes that enables
data streaming and recording. In addition, the software that is
used to offload and process the data on a central server will be
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FIGURE 7. The MIT-AVT data pipeline, showing the process of offloading, cleaning, synchronizing, and extracting knowledge from data. On the left is the
dependency-constrained, asynchronous, distributed computing framework. In the middle is the sequence of high level procedures that perform several
levels of knowledge extraction. On the right are broad categories of data produced by the pipeline, organized by size.

discussed. The operational requirement of software operating
on RIDER boxes are as follows:

1) Power on whenever the vehicle is turned on
2) Create a trip directory on an external solid state drive
3) Redirect all data streams into timestamped trip files
4) Log and transmit metadata to the lab in real time
5) Power down after the vehicle is turned off

A. MICROCONTROLLER
The microcontroller on the Knights of CANelot power man-
agement board runs a small C program that is responsible
for powering the RIDER system in sync with the vehicle.
By default, this microcontroller is in a sleep state, awaiting a
specific CANmessage. By listening to the vehicle’s CANbus,
this program can recognize when CANmessage for a specific
signal begins, which signifies the car has turned on. If this

signal is observed, the C program then connects the vehicle’s
power to the rest of the system, starting the data collection.
When the specified message ends, meaning the car is off,
the microcontroller sends a signal to the Banana Pi to close
all files and shutdown gracefully. It then waits 60 seconds
to finally disconnect power from the rest of the system and
enters its original sleep state.

B. SINGLE BOARD COMPUTER
Our single board computer, the Banana Pi, contains a 32GB
SD card that stores the RIDER filesystem, software and
configuration files. The Banana Pi runs a modified Linux ker-
nel using custom kernel modules and a tweaked Bannanian
operating system with performance and security enhance-
ments. Performance was improved by disabling unnecessary
kernel modules and removing extraneous Linux services.
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Security enhancements included disabling all CAN transmis-
sion, thereby prohibiting malicious or unintentional transmis-
sion of actuating messages to a vehicle’s systems. Additional
security improvements included altering the network settings
to prevent any remote connection from logging in. Specific
MIT machines were white listed to allow configuration files
to be altered through a physical connection. The default
system services were also altered to run a series of locally
installed programs that manage data collection whenever the
system boots.

C. STARTUP SCRIPTS
The Banana Pi runs a series of data recording initialization
bash startup scripts whenever the system boots. First, the on-
board clock on the Pi is synchronized with a real-time clock
that maintains high resolution timing information. Modules
for device communication such as UART, I2C, SPI, UVC,
and CAN are then loaded to allow interaction with incoming
data streams. A monitoring script is started that shuts down
the system if a specified signal is received from the Knights of
CANelot microcontroller, and an additional GSMmonitoring
script helps reconnect to the cellular network after losing
connection. The last initialization steps are to start the python
scripts Dacman and Lighthouse.

D. DACMAN
Dacman represents the central data handler script that man-
ages all data streams. It uses a configuration file called
trip_dacman.json that contains unique device IDs for
all cameras. In addition, it contains a unique RIDER ID asso-
ciated with the RIDER box it is stored in. This configuration
file also contains unique ID values for the subject, vehicle
and study this driver is associated with. Once started, Dac-
man creates a trip directory on the external solid state drive
named according to the date it was created using a unique
naming convention: rider-id_date_timestamp (e.g.
20_20160726_1469546998634990). This trip direc-
tory contains a copy of trip_dacman.json, any data
related CSV (comma-separated values) files reflecting
included subsystems, as well as a specifications file called
trip_specs.json that contains microsecond timestamps
denoting the beginning and end of every subsystem and the
trip itself.

Dacman calls a manager python script for every subsys-
tem (e.g. audio_manager.py or can_manager.py),
which makes the relevant system calls to record data.
Throughout the course of the current vehicle trip, all data is
written to CSV files with timestamping information included
in each row. Dacman calls two other programs written in C
in order to help generate these files: cam2hd for managing
cameras and dump_can for creating CAN files. Audio or
camera data is recorded to RAW and H264 formats respec-
tively, with an accompanying CSV denoting the microsecond
timestamp at which each framewas recorded. If any errors are
encountered while Dacman is running, the system restarts up

to two times in an attempt to resolve them, and shuts down if
unable to resolve them.

E. CAM2HD
Cam2hd is a program written in C that opens and records
all camera data. It relies on V4L (Video4Linux), which is an
open source project containing a collection of camera drivers
in Linux. V4L enables low level access to cameras connected
to RIDER by setting the incoming image resolution to 720p
and allows the writing of raw H264 frames.

F. DUMPCAN
Dump_can is another program written in C that config-
ures and receives data from the Allwinner A20 CAN con-
troller. This program uses the can4linux module to produce
a CSV containing all CAN data received from the connected
CANbus. In addition, it offers low level manipulation of
the CAN controller. This allows dump_can to set listen
only mode on the can controller, which enables a heightened
degree of security. By removing the need to send acknowl-
edgements when listening to messages on the CAN network,
any possible interference with existing systems on the CAN
bus is minimized.

G. LIGHTHOUSE
Lighthouse is a python script that sends information about
each trip to Homebase. Information sent includes timing
information for the trip, GPS data, power consumption, tem-
perature and available external drive space. The interval
between communications is specified in the dacman config-
uration file. All communications are sent in JSON format
and are encrypted using public-key cryptography based on
elliptic curve Curve25519 due to its speed. This means that
each RIDER uses the public key of the server, as well a unique
public/private key to encrypt and transmit data. Lighthouse is
written in Python and depends on libzmq/libsodium.

H. HOMEBASE
Homebase is a script that receives, decrypts and records all
information received from Lighthouse and stores them in the
RIDER database. This allows remote monitoring of drive
space and system health. All RIDER keymanagement is done
here in order to decrypt messages from each unique box.

I. HEARTBEAT
Heartbeat is an engineer facing interface that displays RIDER
system status information in order to validate successful
operation or gain insights as to potential system malfunction.
Heartbeat uses the information committed to the database
from Homebase to keep track of various RIDER logs. This
is useful for analyzing the current state of the vehicle fleet,
and assists in determining which instrumented vehicles are
in need of drive swaps (due to the hard drive running out of
space) or system repairs. It is also useful for verifying that
any repairs made were successful.
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J. RIDER DATABASE
A PostgreSQL database is used to store all incoming trip
information, as well as to house information about all trips
offloaded to a storage server. After additional processing, use-
ful information about each trip can be added to the database.
Queries can then be structured to obtain specific trips or times
in which specific events or conditions occurred. The follow-
ing tables are fundamental to the trip processing pipeline:
• instrumentations: dates and vehicle IDs for the instal-
lation of RIDER boxes

• participations: unique subject and study IDs are com-
bined to identify primary and secondary drivers

• riders: rider IDs paired with notes and IP addresses
• vehicles: vehicle information is paired with vehicle IDs
such as themake andmodel, themanufacture date, color,
and availability of specific technologies

• trips: provides a unique ID for each centrally offloaded
trip as well as the study, vehicle, subject and rider IDs.
Also provides information about synchronization state,
available camera types and subsystem data. Metadata
about the content of the trip itself is included, such as
the presence of sun, gps frequency and the presence of
certain technology uses or acceleration events.

• epochs_epoch-label: tables for each epoch type are
labeled and used to identify trips and video frame ranges
for which they occur (e.g. autopilot use in Teslas would
be in epochs_autopilot)

• homebase_log: contains streamed log information from
the homebase script that keeps track of RIDER system
health and state

K. CLEANING
After raw trip data is offloaded to a storage server, all trips
must be inspected for any inconsistencies. Some trips may
have inconsistencies that can be fixed, as in the case where
timestamping information could be obtained from multiple
files, or when a nonessential subsystem failed during a trip
(e.g. IMU or audio). In unrecoverable cases, like the event
where a camera was unplugged during a trip, that trip is
removed from the dataset. Trips that have valid data files may
also be removed from the dataset if that trip meets some set
of filtering constraints, like when a vehicle is turned on, but
does not move before turning off again.

L. SYNCHRONIZATION
After completing cleaning and filtration, valid trips undergo
a series of synchronization steps. First, the timestamps of
every frame gathered from every camera are aligned in a
single video CSV file at 30 frames per second using the
latest camera start timestamp and the earliest camera end
timestamp. In low lighting conditions the cameras may drop
to recording at 15 frames per second. In these cases, some
frames may be repeated to achieve 30 frames per second in
the synced video.

After all raw videos have been aligned, new synchronized
video files can then be created at 30 frames per second.

CAN data is then decoded by creating a CSVwith all relevant
CAN messages as columns and synced frame IDs as rows.
CANmessage values are then inserted frame-by-frame based
on the closest timestamp to each decoded CAN message.
A final synchronized visualization can then be generated that
shows all video streams and CAN info in separate panels in
the same video. The data is then ready to be processed by
any algorithm running statistics, detection tasks, or manual
annotation tasks.

V. TRIPS AND FILES
This section will define how trip data files may be stored
in a trip directory. A trip directory represents a trip that a
driver took with their vehicle from start to finish. These are
the files that are offloaded from the external storage drive in
a RIDER box onto a central server, where the data can be
cleaned, synchronized, or processed in some other way.

A. TRIP CONFIGURATION FILES
Trip configuration files store specifications and information
about available subsystems are included to manage the data
logging process.
• trip_dacman.json: a configuration file containing sub-
ject and systems information used to record the trip

• trip_diagnostics.log: a text file containing diagnostics
information recorded during the trip: includes exter-
nal temperature, PMU temperature, HDD temperature,
power usage and free disk space

• trip_specs.json: a json file containing start and end
timestamps for all subsystems

B. TRIP DATA FILES
Trip data files are the end point of all recording RIDER
data streams. They include numerous CSV (comma separated
values) files that provide timestamping information, as well
as raw video files in H264 and audio files in RAW formats.
• camera-directory: a directory named by camera type (all
contained files are also named by that camera type)
– camera-name.h264: a raw H264 file
– camera-name.error: contains camera-specific

errors
– camera-name.csv: matches recorded frames with

system timestamps for later synchronization
∗ frame,ts_micro

• data_can.csv: contains CAN data
– ts_micro, arbitration_id,
data_length, packet_data

• data_gps.csv: contains GPS data
– ts_micro, latitude, longitude,
altitude, speed, track, climb

• data_imu.csv: contains IMU data
– ts_micro, x_accel, y_accel,
z_accel, roll, pitch, yaw

• audio.raw: contains raw output from a specified camera
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• can.error, gps.error, imu.error, audio.error: text-
based error files for CAN, GPS, IMU and audio
recordings

C. CLEANING CRITERIA
The following cases represent recoverable errors that a trip
may contain, as well as their implemented solutions:

• Invalid permissions: UNIX permissions of the trip
directory must allow group-only read/write access

• Missing backup: Raw essential files are backed up to
allow a rollback to previous versions

• Missing trip_specs.json: The trip_specs.json file can
sometimes be reconstructed using recorded timestamps

• Missing or invalid ID: Vehicle, camera or subject IDs
may be corrected based on trip context

• Invalid Nonessential Files: If IMU or audio have failed,
they can be removed and the trip can be preserved

• Invalid last CSV line: Interrupted subsystems may
write incomplete lines to their data file, which can be
removed

D. FILTERING CRITERIA
The following cases represent unrecoverable errors or chosen
criteria that result in the removal of a trip from the dataset:
• Nonconsenting driver: When the driver is not a con-
sented participant in the study

• Requested removal: When the subject requests certain
trips, dates or times be removed

• Vehicle doesn’t move: When the kinematics of the vehi-
cle indicate no change in speed

• Trip data files < 15MB: When the total size of a trip’s
files are less than 15MB (faster than duration checks)

• Trip duration < 30 seconds: When the shortest camera
recording is less than 30 seconds in duration

• Missing essential files: When camera files,
trip_dacman.json or data_can.csv are
missing

• Outside volunteer participation range: Indicative of
MIT staff driving the vehicle to be maintained or washed

• Large essential subsystem error files: When there are
many errors for a camera or for CAN

• Mismatches in subsystem timestamps: When one sub-
system ends at least one minute earlier than another

E. SYNCHRONIZED FILES
Synchronized files are created by synchronization scripts that
run after cleaning and filtering has taken place. These scripts
align video frames and CAN messages at a rate of 30 frames
per second. They are created using the same trip naming
convention in a separate, processed directory.
• synced_video.csv: every row contains a video frame
ID and timestamp from every camera at 30 frames per
second

• synced_video_camera-name.mp4: Synchronized with
all other videos at 30 FPS using H264 encoding

• synced_can.csv: each row represents a synced video
frame and the closest CAN values associated with that
timestamp for every CAN message

• synced_vis_panels.mp4: an optional visualization
video file that displays all synced videos in separate
panels where CAN data may be also displayed

VI. ONGOING HARDWARE DEVELOPMENT
AND INNOVATION
RIDER is an instrumentation platform that has been proven
through extensive testing to have adequate data collection
abilities for naturalistic driving research. During the research,
development, and testing process we met some limitations
of the system. While a single board computer is sufficient
for most collection processes, limitations of minimal system
memory could create issues when expanding the system.
Similarly, a Dual-Core ARM processor is very capable when
interfacing with sensors and writing data out to files, but
performance can fluctuate if any preprocessing of the data
is required onboard. From our work we have proposed the
following improvements to some of these common issues.

The largest enhancement for the entire RIDER system
would be to upgrade the single board computing platform.
Use of the NVIDIA Jetson TX2 would provide more expand-
ability both for I/O and processing. With greater process-
ing and GPU bandwidth available, real-time systems could
be implemented using both video and sensor data simulta-
neously for detection and driver warning systems, internal
annotation of data and more. With greater I/O capability,
upgraded sensors packages with higher data bandwidths can
be implemented. Much like the Banana Pi Pro the Jetson
TX2 has not one, but two fully supported CAN controllers
to interface with a secondary CANbus system on the vehicle.
Jetson TX2 has expandability not only for SATA but also
PCIe and mSATA, allowing for even greater expansion of
third party modules. The enhanced processing via CPU and
GPU with 8 times the onboard RAM allows the potential for
preprocessing and integration of real-time driver monitoring
systems. The Jetson also has the major advantage of being
supported for use in multiple configurations for in vehicle
applications.

VII. CONCLUSION
The application of state-of-the-art embedded system pro-
gramming, software engineering, data processing, distributed
computing, computer vision and deep learning techniques to
the collection and analysis of large-scale naturalistic driving
data in the MIT-AVT study seeks to break new ground in
offering insights into how human and autonomous vehicles
interact in the rapidly changing transportation system. This
work presents the methodology behind the MIT-AVT study
which aims to define and inspire the next generation of
naturalistic driving studies. To date, the dataset includes 122
participants, 15,610 days of participation, 511,638 miles,
and 7.1 billion video frames. Statistics about the size and
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scope of the MIT-AVT dataset are updated regularly on
https://hcai.mit.edu/avt.
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