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ABSTRACT As we all know, the Bonferroni mean (BM) operator has the advantage of considering
interrelationships between parameters. In this paper, we combine the generalized weighted BM (GWBM)
operator and generalized weighted Bonferroni geometric mean (GWGBM) operator with interval neutro-
sophic numbers (INNs) to develop the generalized interval neutrosophic number weight BM (GINNWBM)
operator and generalized interval neutrosophic numbers weighted GBM (GINNWGBM) operator which
consider the relationship among three aggregated arguments, then the MADM methods are developed with
these operators. Finally, we use an example for evaluating the technological innovation capability for the
high-tech enterprises to illustrate the proposed methods.

INDEX TERMS Multiple attribute decision making (MADM), interval neutrosophic numbers (INNs),
generalized weighted BM (GWBM) operator, generalized weighted geometric Bonferroni mean (GWGBM)
operator, technological innovation capability, high-tech enterprises.

I. INTRODUCTION
Neutrosophic sets (NSs), which were proposed originally by
Smarandache [1], [2], have been attracted the attention of
many scholars, and NSs have been acted as a workspace in
depicting indeterminate and inconsistent information. A NS
has amore potential power than other modelingmathematical
tools, such as fuzzy set [3], IFS [4] and IVIFS [5]. But,
it is difficult to apply NSs in solving of real life problems.
Therefore, Wang et al. [6], [7] defined a single valued neu-
trosophic set (SVNS) and an interval neutrosophic set (INS),
which are characterized by a truth-membership, an inde-
terminacy membership and a falsity membership. Hence,
SVNSs and INSs can express much more information (truth-
membership degree, indeterminacy-membership degree, and
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falsity-membership degree information) than fuzzy sets (only
membership degree information), IFSs and IVIFSs (both
membership degree and non-membership degree informa-
tion). Ye [8] proposed a MADM method with correlation
coefficient of SVNSs. Broumi and Smarandache [9] extended
the correlation coefficient to INSs. Biswas et al. [10] devel-
oped the TOPSIS method with SVNNs. Liu et al. [11]
defined the generalized neutrosophic number Hamacher
aggregation for SVNSs. Sahin and Liu [12] defined the
maximizing deviation model under neutrosophic environ-
ment. Ye [13] developed some similarity measures of INS.
Zhang et al. [14] defined some interval neutrosophic infor-
mation aggregating operators. Ye [15] proposed a simplified
neutrosophic set (SNS). Peng et al. [16] developed simplified
neutrosophic information aggregation operators. Addition-
ally, Peng et al. [17] studied an outranking approach for
handling SNS, and then Zhang et al. [18] gave an extended
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version of Peng’s approach. Liu and Xi [19] proposed gen-
eralized weighted power averaging operator with SVNNs.
Deli and Subas [20] discussed a method to rank single
valued neutrosophic numbers. Peng et al. [21] proposed
multi-valued neutrosophic sets. Zhang et al. [22] gave the
improved weighted correlation coefficient for interval neu-
trosophic sets. Chen and Ye [23] proposed Dombi opera-
tions for neutrosophic sets. Liu and Wang [24] proposed
the MADM method based on SVN normalized weighted
Bonferroni mean. Wu et al. [25] proposed cross-entropy
and prioritized aggregation operator with SNSs in MADM
problems. Li et al. [26] developed the some SVNN Hero-
nian mean operators in MADM problems. Wei and Wei [27]
proposed some single-valued neutrosophic dombi prioritized
weighted aggregation operators in MADM. Broumi and
Smarandache [9] proposed the correlation coefficient of INS.
Zhang et al. [22] defined the improved weighted correlation
coefficient of INNs for MADM. Zhang et al. [18] defined
an outranking approach for INN MADM. Tian et al. [28]
developed a cross-entropy in INNMADM. Some other oper-
ators are defined in [29]–[33]. Ye [13] defined two similarity
measures between INNs.

Obviously, these established INN aggregation oper-
ators cannot be utilized to aggregate the arguments
which are correlated [34]. Meanwhile, the Bonferroni
mean (BM) [35]–[42] is a very useful tool to deal with
the arguments which are correlated. How to effectively
expand the traditional generalized weighted BM (GWBM)
operator and generalized weighted Bonferroni geometric
mean (GWGBM) operator to INN environment is a signif-
icant research task which the focus of this paper.

The organization of this manuscript is given as follows.
Section 2 reviews INSs and some other basic definitions.
Section 3 introduces the extended GWBM and GWGBM
which can be used to fuse the INNs which consider the
relationship among three aggregated arguments, and gives
some properties of these operators. Section 4 illustrates the
effectiveness of the proposed operators with an application
for evaluating the technological innovation capability for the
high-tech enterprises. Section 5 concludes the paper.

II. BASIC CONCEPTS
A. NSs AND INSs
Smarandache [1], [2] proposed Neutrosophic sets (NSs).
Wang et al. [7] further proposed the interval neutrosophic
sets (INSs).
Definition 1 [7]: Let X be a space of points (objects) with

a generic element in fix set X , denoted by x. An interval
neutrosophic sets (INSs) A in X is characterized as following:

Ã =
{(
x,TÃ (x) , IÃ (x) ,FÃ (x)

)
|x ∈ X

}
(1)

where the truth-membership function TÃ (x), indeterminacy-
membership IÃ (x) and falsity-membership function FÃ (x)
are interval values, that is, TÃ (x) : X → [0, 1] , I_

A
(x) :

X → [0, 1] and FÃ (x) : X → [0, 1] .

and 0 ≤ sup
(
TÃ (x)

)
+ sup

(
IÃ (x)

)
+ sup

(
FÃ (x)

)
≤ 3.

Then a simplification of A is denoted by Ã =
(
TÃ, IÃ,FÃ

)
=([

T L
Ã
,T R

Ã

]
,
[
IL
Ã
, IR
Ã

]
,
[
FL
Ã
,FR

Ã

])
, which is a INN, where[

T L
Ã
,T R

Ã

]
⊆ [0, 1] ,

[
IL
Ã
, IR
Ã

]
⊆ [0, 1] ,

[
FL
Ã
,FR

Ã

]
⊆ [0, 1]

and 0 ≤ T R
Ã
+ IR

Ã
+ FR

Ã
≤ 3.

Definition 2 [43]: Let Ã =
(
TÃ, IÃ,FÃ

)
=([

T L
Ã
,T R

Ã

]
,
[
IL
Ã
, IR
Ã

]
,
[
FL
Ã
,FR

Ã

])
be an INN, a score func-

tion is defined:

s
(
Ã
)
=

(
2+ T L

Ã
− IL

Ã
− FL

Ã

)
+ (2+ T R

Ã
− IR

Ã
− FR

Ã
)

6

s
(
Ã
)
∈ [0, 1] , (2)

Definition 3 [43]: Let Ã =
(
TÃ, IÃ,FÃ

)
=([

T L
Ã
,T R

Ã

]
,
[
IL
Ã
, IR
Ã

]
,
[
FL
Ã
,FR

Ã

])
be an INN, an accuracy

function H
(
Ã
)
is proposed:

H
(
Ã
)
=

(
T L
Ã
+ T R

Ã

)
−

(
FL
Ã
+ FR

Ã

)
2

, H
(
Ã
)
∈ [−1, 1]

(3)

Definition 4 [43]: Let Ã =

([
T L
Ã
,T R

Ã

]
,
[
IL
Ã
, IR
Ã

]
,[

FL
Ã
,FR

Ã

])
and B̃ =

([
T L
B̃
,T R

B̃

]
,
[
IL
B̃
, IR
B̃

]
,
[
FL
B̃
,FR

B̃

])
be two INNs, s

(
Ã
)
=

(
2+T L

Ã
−IL

Ã
−FL

Ã

)
+(2+TR

Ã
−IR

Ã
−FR

Ã
)

6 ,

s
(
Ã
)
∈ [0, 1] , and s

(
B̃
)
=

(
2+T L

B̃
−IL

B̃
−FL

B̃

)
+(2+TR

B̃
−IR

B̃
−FR

B̃
)

6 ,

s
(
B̃
)
∈ [0, 1] be the scores, and

H
(
Ã
)
=

(
T L
Ã
+ T R

Ã

)
−

(
FL
Ã
+ FR

Ã

)
2

, H
(
Ã
)
∈ [−1, 1] ,

H
(
B̃
)
=

(
T L
B̃
+ T R

B̃

)
−

(
FL
B̃
+ FR

B̃

)
2

, H
(
B̃
)
∈ [−1, 1]

be the accuracy function, then if S
(
Ã
)
< S

(
B̃
)
, Ã < B̃;

if S
(
Ã
)
= S

(
B̃
)
, then

(1) if H
(
Ã
)
= H

(
B̃
)
, Ã = B̃;

(2) if H
(
Ã
)
< H

(
B̃
)
, Ã < B̃.

Definition 5 [7], [13]: Let Ã =
([
T L
Ã
,T R

Ã

]
,
[
IL
Ã
, IR
Ã

]
,[

FL
Ã
,FR

Ã

])
and B̃ =

([
T L
B̃
,T R

B̃

]
,
[
IL
B̃
, IR
B̃

]
,
[
FL
B̃
,FR

B̃

])
be

two INNs and λ be a positive real number. The basic
operations of INNs are:

Ã⊕ B̃

=


[
T L
Ã
+ T L

B̃
− T L

Ã
T L
B̃
,T R

Ã
+ T R

B̃
− T R

Ã
T R
B̃

]
,[

IL
Ã
IL
B̃
, IR
Ã
IR
B̃

]
,
[
FR
Ã
FR
B̃
,FR

Ã
FR
B̃

]
 ;
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Ã⊗ B̃

=


[
T L
Ã
T L
B̃
,T R

Ã
T R
B̃

]
,
[
IL
Ã
+ IL

B̃
− IL

Ã
IL
B̃
, IR
Ã
+IR

B̃
− IR

Ã
T R
B̃

]
,[

FL
Ã
+ FL

B̃
− FL

Ã
FL
B̃
,FR

Ã
+ FR

B̃
− FR

Ã
FR
B̃

]
;

λÃ

=


[
1−

(
1− T L

Ã

)λ
, 1−

(
1− T R

Ã

)λ]
,[

(IL
Ã
)λ, (IR

Ã
)λ
]
,
[
(FL

Ã
)λ, (FR

Ã
)λ
]

 , λ > 0;

(Ã)λ

=


[(
T L
Ã

)λ
,
(
T R
Ã

)λ]
,

[
1−

(
1− IL

Ã

)λ
, 1−

(
1− IL

Ã

)λ]
,[

1−
(
1− FL

Ã

)λ
, 1−

(
1− FL

Ã

)λ]
 ,

λ > 0.

B. GBM OPERATORS

Beliakov et al. [35] further extended the BM operator by con-
sidering the correlations of any three aggregated arguments
instead of any two.
Definition 6 [35]: Let p, q, r ≥ 0 and ai(i = 1, 2, . . . , n)

be a set of nonnegative crisp numbers. The generalized
BM (GBM) is defined as follows:

GBMp,q,r (a1, a2, . . . , an)

=

 1
n (n− 1) (n− 2)

n∑
i,j,k=1
i 6=j6=k

api a
q
j a
r
k


1/(p+q+r)

(4)

Xia et al. [37] also introduced the generalized geometric
Bonferroni mean (GGBM) operator.

GINNBMs,t,r (a1, a2, · · · , an)

=

 1
n (n− 1) (n− 2)

n
⊕

i,j,k=1
i 6=j 6=k

(
asi ⊗ a

t
j ⊗ a

r
k

)
1/(s+t+r)

=





1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
T Li
)s (

T Lj
)t (

T Lk
)r) 1

n(n−1)(n−2)


1/(s+t+r)

,

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
T Ri
)s (

T Rj
)t (

T Rk
)r) 1

n(n−1)(n−2)


1/(s+t+r)


,

[60pt]



1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− ILi

)s (
1− ILj

)t (
1− ILk

)r) 1
n(n−1)(n−2)


1/(s+t+r)

,

1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− IRi

)s (
1− IRj

)t (
1− IRk

)r) 1
n(n−1)(n−2)


1/(s+t+r)


,



1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− FLi

)s (
1− FLj

)t (
1− FLk

)r) 1
n(n−1)(n−2)


1/(s+t+r)

,

1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− FRi

)s (
1− FRj

)t (
1− FRk

)r) 1
n(n−1)(n−2)


1/(s+t+r)


.



(7)
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Definition 7 [37]: Let p, q, r ≥ 0 and ai(i = 1, 2, . . . , n)
be a set of nonnegative crisp numbers, if

GGBMp,q,r (a1, a2, . . . , an)

=
1

p+ q+ r

n∏
i,j,k=1
i 6=j 6=k

(
pai + qaj + rak

) 1
n(n−1)(n−2) (5)

III. GINNBM AND GINNWBM OPERATORS
A. GINNBM OPERATOR
This section expands GBM to fuse the INNs and develops
some generalized interval neutrosophic number BM opera-
tors (GINNBM).
Definition 8:Let s, t, r > 0 and ai =

( [
T Li ,T

R
i

]
,
[
ILi , I

R
i

]
,[

FLi ,F
R
i

] )
(i = 1, 2, . . . , n) be a set of INNs. If

GINNBMs,t,r (a1, a2, · · · , an)

=

(
1
n3

n
⊕

i,j,k=1

(
asi ⊗ a

t
j ⊗ a

r
k

))1/(s+t+r)

(6)

We can obtain the following theorem 1 according to
definition 5.
Theorem 1: Let s, t, r > 0 and ai =

( [
T Li ,T

R
i

]
,
[
ILi , I

R
i

]
,[

FLi ,F
R
i

] )
(i = 1, 2, . . . , n) be a set of INNs. The aggregated

value by GINNBM is also an INN and (7), as shown at the
bottom of the previous page.

Proof: According to definition 5, we can obtain (8), as
shown at the bottom of this page.

Thus, (9), as shown at the bottom of this page.

Thereafter, (10), as shown at the bottom of the next page.
Furthermore, (11), as shown at the top of the next page.
Therefore, (12), as shown at the top of the next page.
Hence, (7) is maintained.
Thereafter, (13)–(15), as shown at the top of the page 6.
Thereafter, (16), as shown at the top of the page 6.
Thereby the (7) is also an INN.
Moreover, GINNBM has the following properties.
Property 1 (Idempotency): If ai (i = 1, 2, . . . , n) are equal,

that is, ai = a =
([
T L ,T R

]
,
[
IL , IR

]
,
[
FL ,FR

])
, then

GINNBMs,t,r (a1, a2, · · · , an) = a (17)

Proof: Let T1,T2, I1, I2,F1,F2, as shown at the top of
the page 7.

Given that T Li = T Lj = T Lk = T L , then

T1 =

1− n∏
i,j,k=1
i 6=j 6=k

(
1−

(
T Li
)s (

T Lj
)t (

T Lk
)r) 1

n(n−1)(n−2)


1/(s+t+r)

=

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
T L
)s+t+r) 1

n(n−1)(n−2)


1/(s+t+r)

=

1−((1−(T L)s+t+r) 1
n(n−1)(n−2)

)n(n−1)(n−2)1/(s+t+r)

= T L (18)

asi =
([(

T Li
)s
,
(
T Ri
)s]

,
[
1− (1− ILi )

s, 1− (1− IRi )
s
]
,
[
1− (1− FLi )

s, 1− (1− FRi )
s
])
;

atj =
([(

T Lj
)t
,
(
T Rj
)t]

,
[
1− (1− ILj )

t , 1− (1− IRj )
t
]
,
[
1− (1− FLj )

t , 1− (1− FRj )
t
])
;

ark =
([(

T Lk
)r
,
(
T Rk
)r]

,
[
1− (1− ILk )

r , 1− (1− IRk )
r
]
,
[
1− (1− FLk )

r , 1− (1− FRk )
r
])
. (8)

asi ⊗ a
t
j ⊗ a

r
k =



[(
T Li
)s (

T Lj
)t (

T Lk
)r
,
(
T Ri
)s (

T Rj
)t (

T Rk
)r]

,[
1−

(
1− ILi

)s (1− ILj )t (1− ILk )r , 1− (1− IRi )s (1− IRj )t (1− IRk )r] ,[
1−

(
1− FLi

)s (1− FLj )t (1− FLk )r , 1− (1− FRi )s (1− FRj )t (1− FRk )r] .


(9)

n
⊕

i,j,k=1
i 6=j 6=k

(asi ⊗ a
k
j ⊗ a

r
k )

=



1− n∏
i,j,k=1

(
1−

(
T Li
)s (

T Lj
)t (

T Lk
)r)

, 1−
n∏

i,j,k=1

(
1−

(
T Ri
)s (

T Rj
)t (

T Rk
)r) , n∏

i,j,k=1

(
1−

(
1− ILi

)s (
1− ILj

)t (
1− ILk

)r)
,

n∏
i,j,k=1

(
1−

(
1− IRi

)s (
1− IRj

)t (
1− IRk

)r) , n∏
i,j,k=1

(
1−

(
1− FLi

)s (
1− FLj

)t (
1− FLk

)r)
,

n∏
i,j,k=1

(
1−

(
1− FRi

)s (
1− FRj

)t (
1− FRk

)r) .


(10)
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1
n (n− 1) (n− 2)

n
⊕

i,j,k=1
i 6=j6=k

(asi ⊗ a
k
j ⊗ a

r
k )

=



1− n∏
i,j,k=1
i 6=j 6=k

(
1−

(
T Li
)s (

T Lj
)t (

T Lk
)r) 1

n(n−1)(n−2)

, 1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
T Ri
)s (

T Rj
)t (

T Rk
)r) 1

n(n−1)(n−2)

 ,
 n∏
i,j,k=1
i 6=j 6=k

(
1−

(
1−ILi

)s (
1− ILj

)t (
1− ILk

)r) 1
n(n−1)(n−2)

,

n∏
i,j,k=1
i6=j 6=k

(
1−

(
1−IRi

)s (
1− IRj

)t (
1− IRk

)r) 1
n(n−1)(n−2)

 ,
 n∏
i,j,k=1
i 6=j 6=k

(
1−

(
1− FLi

)s (
1− FLj

)t (
1− FLk

)r) 1
n(n−1)(n−2)

,

n∏
i,j,k=1
i 6=j 6=k

(
1−

(
1−FRi

)s (
1−FRj

)t (
1−FRk

)r) 1
n(n−1)(n−2)

 .


(11)

=





1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
T Li
)s (

T Lj
)t (

T Lk
)r) 1

n(n−1)(n−2)


1/(s+t+r)

,

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
T Ri
)s (

T Rj
)t (

T Rk
)r) 1

n(n−1)(n−2)


1/(s+t+r)


,



1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− ILi

)s (
1− ILj

)t (
1− ILk

)r) 1
n(n−1)(n−2)


1/(s+t+r)

,

1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− IRi

)s (
1− IRj

)t (
1− IRk

)r) 1
n(n−1)(n−2)


1/(s+t+r)


,



1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− FLi

)s (
1− FLj

)t (
1− FLk

)r) 1
n(n−1)(n−2)


1/(s+t+r)

,

1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− FRi

)s (
1− FRj

)t (
1− FRk

)r) 1
n(n−1)(n−2)


1/(s+t+r)


.



(12)

Similarly, we can get T2 = T R, I1 = IL , I2 = IR,
F1 = FL and F2 = FR. that means

GINNBMs,t,r (a1, a2, · · · , an) = a (19)

Property 2 (Monotonicity): Let ai =
( [
T Lai ,T

R
ai

]
,
[
ILai , I

R
ai

]
,[

FLai ,F
R
ai

] )
(i = 1, 2, . . . , n) and bi =

( [
T Lbi ,T

R
bi

]
,
[
ILbi , I

R
bi

]
,[

FLbi ,F
R
bi

] )
(i = 1, 2, . . . , n) be two sets of INNs. If T Lai ≤

T Lbi ,T
R
ai ≤ T Rbi and ILai ≥ ILbi , I

R
ai ≥

R
bi , and FLai ≥ FLbi ,

FRai ≥ F
R
bi holds for all i, then

GINNBMs,t,r (a1, a2, · · · , an)

≤ GINNBMs,t,r (b1, b2, · · · , bn). (20)

Proof:LetGINNBMs,t,r (a1, a2, · · · , an) =
( [
T La ,T

R
a
]
,[

ILa , I
R
a
]
,
[
FLa ,F

R
a
] )

and GINNBMs,t,r (b1, b2, · · · , bn) =([
T Lb ,T

R
b

]
,
[
ILb , I

R
b

]
,
[
FLb ,F

R
b

])
. Given that T Lai ≤ T Lbi ,we
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1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
T Li
)s (

T Lj
)t (

T Lk
)r) 1

n(n−1)(n−2)


1/(s+t+r)

,

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
T Ri
)s (

T Rj
)t (

T Rk
)r) 1

n(n−1)(n−2)


1/(s+t+r)


∈ [0, 1] (13)



1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− ILi

)s (
1− ILj

)t (
1− ILk

)r) 1
n(n−1)(n−2)


1/(s+t+r)

,

1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− IRi

)s (
1− IRj

)t (
1− IRk

)r) 1
n(n−1)(n−2)


1/(s+t+r)


∈ [0, 1] (14)



1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− ILi

)s (
1− ILj

)t (
1− ILk

)r) 1
n(n−1)(n−2)


1/(s+t+r)

,

1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− IRi

)s (
1− IRj

)t (
1− IRk

)r) 1
n(n−1)(n−2)


1/(s+t+r)


∈ [0, 1] (15)

0 ≤

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
T Ri
)s (

T Rj
)t (

T Rk
)r) 1

n(n−1)(n−2)


1/(s+t+r)

+ 1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− IRi

)s (
1− IRj

)t (
1− IRk

)r) 1
n(n−1)(n−2)


1/(s+t+r)

+ 1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− FRi

)s (
1− FRj

)t (
1− FRk

)r) 1
n(n−1)(n−2)


1/(s+t+r)

≤ 3 (16)

can obtain(
T Lai

)s (
T Laj

)t (
T Lak

)r
≤

(
T Lbi

)s (
T Lbj

)t (
T Lbk

)r
(21)(

1−
(
T Lai

)s (
T Laj

)t (
T Lak

)r) 1
n(n−1)(n−2)

≥

(
1−

(
T Lbi

)s (
T Lbj

)t (
T Lbk

)r) 1
n(n−1)(n−2)

(22)

Therefore,

n∏
i,j,k=1
i 6=j 6=k

(
1−

(
T Lai

)s (
T Laj

)t (
T Lak

)r) 1
n(n−1)(n−2)

≥

n∏
i,j,k=1
i 6=j 6=k

(
1−

(
T Lbi

)s (
T Lbj

)t (
T Lbk

)r) 1
n(n−1)(n−2)

(23)
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T1 =

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
T Li
)s (

T Lj
)t (

T Lk
)r) 1

n(n−1)(n−2)


1/(s+t+r)

T2 =

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
T Ri
)s (

T Rj
)t (

T Rk
)r) 1

n(n−1)(n−2)


1/(s+t+r)

I1 = 1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− ILi

)s (
1− ILj

)t (
1− ILk

)r) 1
n(n−1)(n−2)


1/(s+t+r)

I2 = 1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− IRi

)s (
1− IRj

)t (
1− IRk

)r) 1
n(n−1)(n−2)


1/(s+t+r)

F1 = 1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− FLi

)s (
1− FLj

)t (
1− FLk

)r) 1
n(n−1)(n−2)


1/(s+t+r)

F2 = 1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− FRi

)s (
1− FRj

)t (
1− FRk

)r) 1
n(n−1)(n−2)


1/(s+t+r)

Thus,1− n∏
i,j,k=1
i 6=j 6=k

(
1−

(
T Lai

)s (
T Laj

)t (
T Lak

)r) 1
n(n−1)(n−2)


1/(s+t+r)

≤

1− n∏
i,j,k=1
i 6=j 6=k

(
1−

(
T Lbi

)s (
T Lbj

)t (
T Lbk

)r) 1
n(n−1)(n−2)


1/(s+t+r)

(24)

Which means T La ≤ T La .Similarly, we can obtain
T Ra ≤ T

R
b , I

L
a ≥ I

L
b , I

R
a ≥ I

R
b ,F

L
a ≥ F

L
b and FRa ≥ F

R
b .

If

T La < T La ,T
R
a < T Rb and ILa ≥ I

L
b , I

R
a ≥ I

R
b

and FLa ≥ F
L
b ,F

R
a ≥ F

R
b .

then

GINNBMs,t,r (a1, a2, · · · , an)

< GINNBMs,t,r (b1, b2, · · · , bn);

If

T La = T La ,T
R
a = T Rb and ILa > ILb , I

R
a > IRb

and FLa > FLb ,F
R
a > FRb .

then

GINNBMs,t,r (a1, a2, · · · , an)

< GINNBMs,t,r (b1, b2, · · · , bn);

If

T La = T La ,T
R
a = T Rb and ILa = ILb , I

R
a = IRb

and FLa = FLb ,F
R
a = FRb .

then

GINNBMs,t,r (a1, a2, · · · , an)

= GINNBMs,t,r (b1, b2, · · · , bn).

Therefore, the proof of Property 2 is completed.
Property 3 (Boundedness): Let ai =

( [
T Li ,T

R
i

]
,
[
ILi , I

R
i

]
,[

FLi ,F
R
i

] )
(i = 1, 2, . . . , n) be a set of INNS. If

a+ = (maxi(Ti),mini(Ii),mini(Fi)) and a− = (mini(Ti),
maxi(Ii),maxi(Fi)), then

a− ≤ GINNBMs,t,r (a1, a2, · · · , an) ≤ a+ (25)

Proof: From property 2, we can obtain

GINNBMs,t,r (a−, a−, . . . , a−) = a−,

GINNBMs,t,r (a+, a+, . . . , a+) = a+.

VOLUME 7, 2019 86479



G. Wei et al.: Methods for Evaluating the Technological Innovation Capability for the High-Tech Enterprises

From property 3, we can obtain

GINNBMs,t,r (a−, a−, . . . , a−)

≤ GINNBMs,t,r (a1, a2, . . . , an
≤ GINNBMs,t,r (a+, a+, . . . , a+).

Therefore, a− ≤ GINNBMs,t,r (a1, a2, · · · , an) ≤ a+.

B. GINNWBM OPERATOR
In actual MADM, it’s important to consider attribute weights.
This section will propose the generalized INN weighted
BM (GINNWBM) operator as follows.
Definition 9:Let s, t, r > 0 and ai =

([
T Li ,T

R
i

]
,
[
ILi , I

R
i

]
,[

FLi ,F
R
i

])
(i = 1, 2, . . . , n) be a set of INNs with their

weight vector being wi = (w1,w2, . . . ,wn)T , thereby sat-
isfying wi ∈ [0, 1] and

∑n
i=1 wi = 1. If

GINNWBMs,t,r
w (a1, a2, · · · , an)

=

(
n
⊕

i,j,k=1
wiwjwk

(
asi ⊗ a

t
j ⊗ a

r
k

))1/(s+t+r)

(26)

then GINNWBMs,t,r
w is called the generalized interval

neutrosophic number weight Bonferroni mean (GINNWBM)
operator.

We can obtain the following theorem 2 according to
definition 5.
Theorem 2: Let s, t, r > 0 and ai =

( [
T Li ,T

R
i

]
,
[
ILi , I

R
i

]
,[

FLi ,F
R
i

] )
(i = 1, 2, . . . , n) be a set of INNs. The aggregated

value by GINNWBM is also an INN and (27), as shown at the
top of the next page.

Proof: According to definition 5, we can obtain (28), as
shown at the top of the next page.

Thus, (29), as shown at the top of the next page.
Thereafter, (30), as shown at the top of the next page.
Furthermore, (31), as shown at the top of page 10.
Therefore, (32), as shown at the top of page 10.
Hence, (27) is maintained.
Thereafter, (33)–(35), as shown at the top of page 10.
Thereafter, (36), as shown at the top of page 11.
Thereby the (27) is also an INN.
Moreover, GINNWBM has the following properties.
Property 4 (Idempotency): If ai (i = 1, 2, . . . , n) are equal,

that is, ai = a =
([
T L ,T R

]
,
[
IL , IR

]
,
[
FL ,FR

])
, then

GINNWBMs,t,r
w (a1, a2, · · · , an) = a (37)

Proof: Let T1,T2, I1, I1,F1,F1, as shown at the top of
the page 11

Given that T Li = T Lj = T Lk = T L , then

T1 =

1− n∏
i,j,k=1

(
1−

(
T Li
)s (

T Lj
)t (

T Lk
)r)wiwjwk1/(s+t+r)

=

1−
n∏

i,j,k=1

(
1−

(
T L
)s+t+r)wiwjwk1/(s+t+r)

=

1−(1− (T L)s+t+r)
n∑
1
wi

n∑
1
wj

n∑
1
wk
1/(s+t+r)

= T L (38)

Similarly, we can get T2 = T R, I1 = IL , I2 = IR,
F1 = FL and F2 = FR. that means

GINNWBMs,t,r
w (a1, a2, · · · , an) = a (39)

Property 5 (Monotonicity): Let ai =
( [
T Lai ,T

R
ai

]
,
[
ILai , I

R
ai

]
,[

FLai ,F
R
ai

] )
(i = 1, 2, . . . , n) and bi =

( [
T Lbi ,T

R
bi

]
,
[
ILbi , I

R
bi

]
,[

FLbi ,F
R
bi

] )
(i = 1, 2, . . . , n) be two sets of INNs.

If T Lai ≤ T Lbi ,T
R
ai ≤ T Rbi and ILai ≥ ILbi , I

R
ai ≥

R
bi and FLai ≥

FLbi ,F
R
ai ≥ F

R
bi holds for all i, then

GINNWBMs,t,r
w (a1, a2, · · · , an)

≤ GINNWBMs,t,r
w (b1, b2, · · · , bn). (40)

Proof: Let GINNWBMs,t,r
w (a1, a2, · · · , an) =([

T La ,T
R
a
]
,
[
ILa , I

R
a
]
,
[
FLa ,F

R
a
])

and GSVNNWBMs,t,r
w

(b1, b2, · · · , bn) =
([
T Lb ,T

R
b

]
,
[
ILb , I

R
b

]
,
[
FLb ,F

R
b

])
. Given

that T Lai ≤ T
L
bi , we can obtain(

T Lai

)s (
T Laj

)t (
T Lak

)r
≤

(
T Lbi

)s (
T Lbj

)t (
T Lbk

)r
(41)(

1−
(
T Lai

)s (
T Laj

)t (
T Lak

)r)wiwjwk
≥

(
1−

(
T Lbi

)s (
T Lbj

)t (
T Lbk

)r)wiwjwk
(42)

Therefore,
n∏

i,j,k=1

(
1−

(
T Lai

)s (
T Laj

)t (
T Lak

)r)wiwjwk
≥

n∏
i,j,k=1

(
1−

(
T Lbi

)s (
T Lbj

)t (
T Lbk

)r)wiwjwk
(43)

Thus,1−
n∏

i,j,k=1

(
1−

(
T Lai

)s (
T Laj

)t (
T Lak

)r)wiwjwk1/(s+t+r)

≤

1− n∏
i,j,k=1

(
1−

(
T Lbi

)s (
T Lbj

)t (
T Lbk

)r)wiwjwk1/(s+t+r)

(44)

Which means T La ≤ T La . Similarly, we can obtain
T Ra ≤ T

R
b , I

L
a ≥ I

L
b , I

R
a ≥ I

R
b ,F

L
a ≥ F

L
b and FRa ≥ F

R
b .

If T La < T La ,T
R
a < T Rb and ILa ≥ ILb , IRa ≥ IRb and

FLa ≥ F
L
b ,F

R
a ≥ F

R
b . then

GINNWBMs,t,r
w (a1, a2, · · · , an)

< GINNWBMs,t,r
w (b1, b2, · · · , bn);
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GINNWBMs,t,r
w (a1, a2, · · · , an)

=





1−
n∏

i,j,k=1

(
1−

(
T Li
)s (

T Lj
)t (

T Lk
)r)wiwjwk1/(s+t+r)

,1−
n∏

i,j,k=1

(
1−

(
T Ri
)s (

T Rj
)t (

T Rk
)r)wiwjwk1/(s+t+r)

 ,

1−

1−
n∏

i,j,k=1

(
1−

(
1− ILi

)s (
1− ILj

)t (
1− ILk

)r)wiwjwk1/(s+t+r)

,

1−

1−
n∏

i,j,k=1

(
1−

(
1− IRi

)s (
1− IRj

)t (
1− IRk

)r)wiwjwk1/(s+t+r)

 ,

1−

1−
n∏

i,j,k=1

(
1−

(
1− FLi

)s (
1− FLj

)t (
1− FLk

)r)wiwjwk1/(s+t+r)

,

1−

1−
n∏

i,j,k=1

(
1−

(
1− FRi

)s (
1− FRj

)t (
1− FRk

)r)wiwjwk1/(s+t+r)

 .



(27)

asi =
([(

T Li
)s
,
(
T Ri
)s]

,
[
1− (1− ILi )

s, 1− (1− IRi )
s
]
,
[
1− (1− FLi )

s, 1− (1− FRi )
s
])
;

atj =
([(

T Lj
)t
,
(
T Rj
)t]

,
[
1− (1− ILj )

t , 1− (1− IRj )
t
]
,
[
1− (1− FLj )

t , 1− (1− FRj )
t
])
;

ark =
([(

T Lk
)r
,
(
T Rk
)r]

,
[
1− (1− ILk )

r , 1− (1− IRk )
r
]
,
[
1− (1− FLk )

r , 1− (1− FRk )
r
])
. (28)

asi ⊗ a
t
j ⊗ a

r
k =



[(
T Li
)s (

T Lj
)t (

T Lk
)r
,
(
T Ri
)s (

T Rj
)t (

T Rk
)r]

,[
1−

(
1− ILi

)s (1− ILj )t (1− ILk )r , 1− (1− IRi )s (1− IRj )t (1− IRk )r] ,[
1−

(
1− FLi

)s (1− FLj )t (1− FLk )r , 1− (1− FRi )s (1− FRj )t (1− FRk )r] .

 (29)

wiwjwk (asi ⊗ a
k
j ⊗ a

r
k )

=



[(
1−

(
T Li
)s (

T Lj
)t (

T Lk
)r)wiwjwk

,

(
1−

(
T Ri
)s (

T Rj
)t (

T Rk
)r)wiwjwk]

,[(
1−

(
1− ILi

)s (1− ILj )t (1− ILk )r)wiwjwk ,(1− (1− IRi )s (1− IRj )t (1− IRk )r)wiwjwk] ,[(
1−

(
1− FLi

)s (1− FLj )t (1− FLk )r)wiwjwk ,(1− (1− FRi )s (1− FRj )t (1− FRk )r)wiwjwk] .

 (30)

If T La = T La ,T
R
a = T Rb and ILa > ILb , IRa > IRb and

FLa > FLb ,F
R
a > FRb . then

GINNWBMs,t,r
w (a1, a2, · · · , an)

< GINNWBMs,t,r
w (b1, b2, · · · , bn);

If T La = T La ,T
R
a = T Rb and ILa > ILb , IRa > IRb and

FLa > FLb ,F
R
a > FRb . then

GINNWBMs,t,r
w (a1, a2, · · · , an)

= GINNWBMs,t,r
w (b1, b2, · · · , bn).

Therefore, the proof of Property 2 is completed.

Property 6 (Boundedness): Let ai =
( [
T Li ,T

R
i

]
,
[
ILi , I

R
i

]
,[

FLi ,F
R
i

] )
(i = 1, 2, . . . , n) be a set of SVNNS.

If a+ = (maxi(Ti),mini(Ii),mini(Fi)) and a− =

(mini(Ti),maxi(Ii),maxi(Fi)), then

a− ≤ GINNWBMs,t,r
w (a1, a2, · · · , an) ≤ a+ (45)

Proof: From property4, we can obtain

GINNWBMs,t,r
w (a−, a−, . . . , a−) = a−,

GINNWBMs,t,r
w (a+, a+, . . . , a+) = a+.

From property5, we can obtain

GINNWBMs,t,r
w (a−, a−, . . . , a−)
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n
⊕

i,j,k=1
wiwjwk (asi ⊗ a

k
j ⊗ a

r
k )

=



1− n∏
i,j,k=1

(
1−

(
T Li
)s (

T Lj
)t (

T Lk
)r)wiwjwk

, 1−
n∏

i,j,k=1

(
1−

(
T Ri
)s (

T Rj
)t (

T Rk
)r)wiwjwk , n∏

i,j,k=1

(
1−

(
1− ILi

)s (
1− ILj

)t (
1− ILk

)r)wiwjwk
,

n∏
i,j,k=1

(
1−

(
1− IRi

)s (
1− IRj

)t (
1− IRk

)r)wiwjwk , n∏
i,j,k=1

(
1−

(
1− FLi

)s (
1− FLj

)t (
1− FLk

)r)wiwjwk
,

n∏
i,j,k=1

(
1−

(
1− FRi

)s (
1− FRj

)t (
1− FRk

)r)wiwjwk .


(31)

GINNWBMs,t,r
w (a1, a2, · · · , an)

=





1−
n∏

i,j,k=1

(
1−

(
T Li
)s (

T Lj
)t (

T Lk
)r)wiwjwk1/(s+t+r)

,1−
n∏

i,j,k=1

(
1−

(
T Ri
)s (

T Rj
)t (

T Rk
)r)wiwjwk1/(s+t+r)

 ,

1−

1−
n∏

i,j,k=1

(
1−

(
1− ILi

)s (
1− ILj

)t (
1− ILk

)r)wiwjwk1/(s+t+r)

,

1−

1−
n∏

i,j,k=1

(
1−

(
1− IRi

)s (
1− IRj

)t (
1− IRk

)r)wiwjwk1/(s+t+r)

 ,

1−

1−
n∏

i,j,k=1

(
1−

(
1− FLi

)s (
1− FLj

)t (
1− FLk

)r)wiwjwk1/(s+t+r)

,

1−

1−
n∏

i,j,k=1

(
1−

(
1− FRi

)s (
1− FRj

)t (
1− FRk

)r)wiwjwk1/(s+t+r)

 .



(32)



1−
n∏

i,j,k=1

(
1−

(
T Li
)s (

T Lj
)t (

T Lk
)r)wiwjwk1/(s+t+r)

,1−
n∏

i,j,k=1

(
1−

(
T Ri
)s (

T Rj
)t (

T Rk
)r)wiwjwk1/(s+t+r)

 ∈ [0, 1] (33)


1−

1−
n∏

i,j,k=1

(
1−

(
1− ILi

)s (
1− ILj

)t (
1− ILk

)r)wiwjwk1/(s+t+r)

,

1−

1−
n∏

i,j,k=1

(
1−

(
1− IRi

)s (
1− IRj

)t (
1− IRk

)r)wiwjwk1/(s+t+r)

 ∈ [0, 1] (34)


1−

1−
n∏

i,j,k=1

(
1−

(
1− FLi

)s (
1− FLj

)t (
1− FLk

)r)wiwjwk1/(s+t+r)

,

1−

1−
n∏

i,j,k=1

(
1−

(
1− FRi

)s (
1− FRj

)t (
1− FRk

)r)wiwjwk1/(s+t+r)

 ∈ [0, 1] (35)
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0 ≤

1−
n∏

i,j,k=1

(
1−

(
T Ri
)s (

T Rj
)t (

T Rk
)r)wiwjwk1/(s+t+r)

+ 1−

1−
n∏

i,j,k=1

(
1−

(
1− IRi

)s (
1− IRj

)t (
1− IRk

)r)wiwjwk1/(s+t+r)

+ 1−

1−
n∏

i,j,k=1

(
1−

(
1− FRi

)s (
1− FRj

)t (
1− FRk

)r)wiwjwk1/(s+t+r)

≤ 3 (36)

T1 =

1−
n∏

i,j,k=1

(
1−

(
T Li
)s (

T Lj
)t (

T Lk
)r)wiwjwk1/(s+t+r)

T2 =

1−
n∏

i,j,k=1

(
1−

(
T Ri
)s (

T Rj
)t (

T Rk
)r)wiwjwk1/(s+t+r)

I1 = 1−

1−
n∏

i,j,k=1

(
1−

(
1− ILi

)s (
1− ILj

)t (
1− ILk

)r)wiwjwk1/(s+t+r)

I2 = 1−

1−
n∏

i,j,k=1

(
1−

(
1− IRi

)s (
1− IRj

)t (
1− IRk

)r)wiwjwk1/(s+t+r)

F1 = 1−

1−
n∏

i,j,k=1

(
1−

(
1− FLi

)s (
1− FLj

)t (
1− FLk

)r)wiwjwk1/(s+t+r)

F2 = 1−

1−
n∏

i,j,k=1

(
1−

(
1− FRi

)s (
1− FRj

)t (
1− FRk

)r)wiwjwk1/(s+t+r)

≤ GINNWBMs,t,r
w (a1, a2, . . . , an

≤ GINNWBMs,t,r
w (a+, a+, . . . , a+).

Therefore, a− ≤ GINNWBMs,t,r
w (a1, a2, · · · , an) ≤ a+.

C. GINNGBM OPERATOR
Thereafter, we extend GGBM to INNS and introduce the gen-
eralized interval neutrosophic numbers geometric Bonferroni
mean (GINNGBM) operator.
Definition 10:Let s, t, r > 0 and ai =

([
T Li ,T

R
i

]
,
[
ILi , I

R
i

]
,[

FLi ,F
R
i

] )
(i = 1, 2, . . . , n) be a set of INNs. If

GINNGBMs,t,r (a1, a2, · · · an)

=
1

s+ t + r

n
⊗

i,j,k=1
i 6=j 6=k

(sai ⊕ taj ⊕ rak )
1

n(n−1)(n−2) (46)

Then GINNGBMs,t,r is called GINNGBM.
Theorem 3: Let s, t, r > 0 and ai =

( [
T Li ,T

R
i

]
,
[
ILi , I

R
i

]
,[

FLi ,F
R
i

] )
(i = 1, 2, . . . , n) be a set of INNs. The aggregated

value by GINNGBM is also an INN and (47), as shown at the
top of the next page.

Proof: Though definition 3, we can obtain (48)-(49), as
shown at the top of the next page.

Thereafter, (50), as shown at the top of the next page.
Therefore, (51), as shown at the top of the page 13.
Thus, (52), as shown at the top of the page 13.
Hence, (47) is maintained.
Thereafter, (53)–(55), as shown at the top of the page 14.
Therefore, (56), as shown at the top of the page 14.
Thereby completing the proof.
The GINNGBM has the following properties.
Property 7: Let s, t, r > 0 and ai =

( [
T Li ,T

R
i

]
,
[
ILi , I

R
i

]
,[

FLi ,F
R
i

] )
(i = 1, 2, . . . , n) be a set of INNs. Then

(1) (Idempotency). If ai(i = 1.2, . . . , n) are equal, that is
ai = a =

([
T L ,T R

]
,
[
IL , IR

]
,
[
FL ,FR

])
, then

GINNGBMs,t,r (a1, a2, · · · , an) = a (57)

(2) (Monotonicity). Let ai =
( [
T Lai ,T

R
ai

]
,
[
ILai ,I

R
ai

]
,
[
FLai ,F

R
ai

] )
(i = 1, 2, . . . , n) and bi =

([
T Lbi ,T

R
bi

]
,
[
ILbi , I

R
bi

]
,
[
FLbi ,F

R
bi

])
(i = 1, 2, . . . , n) be two sets of INNs. If T Lai ≤ T Lbi ,T

R
ai ≤

T Rbi and ILai ≥ ILbi , I
R
ai ≥

R
bi and FLai ≥ FLbi ,F

R
ai ≥ FRbi holds
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GINNGBMs,t,r (a1, a2, · · · an)

=
1

s+ t + r

n
⊗

i,j,k=1
i 6=j 6=k

(sai ⊕ taj ⊕ rak )
1

n(n−1)(n−2)

=





1−

1−
n∏

i,j,k=1
i6=j 6=k

(
1−

(
1− T Li

)s (
1− T Lj

)t (
1− T Lk

)r) 1
n(n−1)(n−2)


1/(s+t+r)

,

1−

1−
n∏

i,j,k=1
i6=j 6=k

(
1−

(
1− T Ri

)s (
1− T Rj

)t (
1− T Rk

)r) 1
n(n−1)(n−2)


1/(s+t+r)


,



1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
ILi
)s (

ILj
)t (

ILk
)r) 1

n(n−1)(n−2)


1/(s+t+r)

,

1−
n∏

i,j,k=1
i 6=j6=k

(
1−

(
IRi
)s (

IRj
)t (

IRk
)r) 1

n(n−1)(n−2)


1/(s+t+r)


,



1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
FLi
)s (

FLj
)t (

FLk
)r) 1

n(n−1)(n−2)


1/(s+t+r)

,

1−
n∏

i,j,k=1
i 6=j6=k

(
1−

(
FRi
)s (

FRj
)t (

FRk
)r) 1

n(n−1)(n−2)


1/(s+t+r)


.



(47)

sai =
([

1−
(
1− T Li

)s
, 1−

(
1− T Ri

)s]
,
[(
ILi
)s
,
(
IRi
)s]

,
[(
FLi
)s
,
(
FRi
)s])

,

taj =
([

1−
(
1− T Lj

)t
, 1−

(
1− T Rj

)t]
,

[(
ILj
)t
,
(
IRj
)t]

,

[(
FLj
)t
,
(
FRj
)t])

,

rak =
([

1−
(
1− T Lk

)r
, 1−

(
1− T Rk

)r]
,
[(
ILk
)r
,
(
IRk
)r]

,
[(
FLk
)r
,
(
FRk
)r])

. (48)

sai ⊕ taj ⊕ rak

=



[
1−

(
1− T Li

)s (1− T Lj )t (1− T Lk )r , 1− (1− T Ri )s (1− T Rj )t (1− T Rk )r] ,[(
ILi
)s (

ILj
)t (

ILk
)r
,
(
IRi
)s (

IRj
)t (

IRk
)r]

,[(
FLi
)s (

FLj
)t (

FLk
)r
,
(
FRi
)s (

FRj
)t (

FRk
)r]

 (49)

(sai ⊕ taj ⊕ rak )
1

n(n−1)(n−2)

=



[(
1−

(
1− T Li

)s (1− T Lj )t (1− T Lk )r) 1
n(n−1)(n−2)

,

(
1−

(
1− T Ri

)s (1− T Rj )t (1− T Rk )r) 1
n(n−1)(n−2)

]
,[

1−
(
1−

(
ILi
)s (

ILj
)t (

ILk
)r) 1

n(n−1)(n−2)

, 1−
(
1−

(
IRi
)s (

IRj
)t (

IRk
)r) 1

n(n−1)(n−2)
]
,[

1−
(
1−

(
FLi
)s (

FLj
)t (

FLk
)r) 1

n(n−1)(n−2)

, 1−
(
1−

(
FRi
)s (

FRj
)t (

FRk
)r) 1

n(n−1)(n−2)
]
.


(50)
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n
⊗

i,j,k=1
(sai ⊕ taj ⊕ rak )

1
n(n−1)(n−2)

=



 n∏
i,j,k=1
i 6=j 6=k

(
1−

(
1− T Li

)s (
1− T Lj

)t (
1− T Lk

)r) 1
n(n−1)(n−2)

,

n∏
i,j,k=1
i 6=j 6=k

(
1−

(
1− T Ri

)s (
1− T Rj

)t (
1− T Rk

)r) 1
n(n−1)(n−2)

 ,
1− n∏

i,j,k=1
i 6=j6=k

(
1−

(
ILi
)s (

ILj
)t (

ILk
)r) 1

n(n−1)(n−2)

, 1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
IRi
)s (

IRj
)t (

IRk
)r) 1

n(n−1)(n−2)

 ,
1− n∏

i,j,k=1
i 6=j 6=k

(
1−

(
FLi
)s (

FLj
)t (

FLk
)r) 1

n(n−1)(n−2)

, 1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
FRi
)s (

FRj
)t (

FRk
)r) 1

n(n−1)(n−2)

 .


(51)

GINNGBMs,t,r (a1, a2, · · · an)

=
1

s+ t + r

n
⊗

i,j,k=1
i 6=j 6=k

(sai ⊕ taj ⊕ rak )
1

n(n−1)(n−2)

=





1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− T Li

)s (
1− T Lj

)t (
1− T Lk

)r) 1
n(n−1)(n−2)


1/(s+t+r)

,

1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− T Ri

)s (
1− T Rj

)t (
1− T Rk

)r) 1
n(n−1)(n−2)


1/(s+t+r)


,



1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
ILi
)s (

ILj
)t (

ILk
)r) 1

n(n−1)(n−2)


1/(s+t+r)

,

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
IRi
)s (

IRj
)t (

IRk
)r) 1

n(n−1)(n−2)


1/(s+t+r)


,



1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
FLi
)s (

FLj
)t (

FLk
)r) 1

n(n−1)(n−2)


1/(s+t+r)

,

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
FRi
)s (

FRj
)t (

FRk
)r) 1

n(n−1)(n−2)


1/(s+t+r)


.



(52)

for all i, then

GINNGBMs,t,r (a1, a2, · · · , an)

≤ GINNGBMs,t,r (b1, b2, · · · , bn). (58)

(3) (Boundedness). Let ai =
( [
T Li ,T

R
i

]
,
[
ILi , I

R
i

]
,[

FLi ,F
R
i

] )
(i = 1, 2, . . . , n) be a set of INNS. If a+ =

(maxi(Ti),mini(Ii),mini(Fi)) and a− = (mini(Ti),maxi(Ii),

maxi(Fi)), then

a− ≤ GINNGBMs,t,r (a1, a2, · · · , an) ≤ a+. (59)

D. GINNWGBM OPERATOR
In actual MADM, it’s important to consider attribute weights.
Thereafter, we extend GWGBM to INNS and introduce the
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1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− T Li

)s (
1− T Lj

)t (
1− T Lk

)r) 1
n(n−1)(n−2)


1/(s+t+r)

,

1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− T Ri

)s (
1− T Rj

)t (
1− T Rk

)r) 1
n(n−1)(n−2)


1/(s+t+r)


∈ [0, 1] (53)



1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
ILi
)s (

ILj
)t (

ILk
)r) 1

n(n−1)(n−2)


1/(s+t+r)

,

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
IRi
)s (

IRj
)t (

IRk
)r) 1

n(n−1)(n−2)


1/(s+t+r)


∈ [0, 1] (54)



1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
FLi
)s (

FLj
)t (

FLk
)r) 1

n(n−1)(n−2)


1/(s+t+r)

,

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
FRi
)s (

FRj
)t (

FRk
)r) 1

n(n−1)(n−2)


1/(s+t+r)


∈ [0, 1] (55)

0 ≤ 1−

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
1− T Ri

)s (
1− T Rj

)t (
1− T Rk

)r) 1
n(n−1)(n−2)


1/(s+t+r)

+

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
IRi
)s (

IRj
)t (

IRk
)r) 1

n(n−1)(n−2)


1/(s+t+r)

+

1−
n∏

i,j,k=1
i 6=j 6=k

(
1−

(
FRi
)s (

FRj
)t (

FRk
)r) 1

n(n−1)(n−2)


1/(s+t+r)

≤ 3 (56)

generalized interval neutrosophic numbers weighted geomet-
ric Bonferroni mean (GINNWGBM) operator.
Definition 11:Let s, t, r > 0 and ai =

([
T Li ,T

R
i

]
,
[
ILi , I

R
i

]
,[

FLi ,F
R
i

] )
(i = 1, 2, . . . , n) be a set of INNs with their

weight vector being wi = (w1,w2, . . . ,wn)T , thereby satis-
fying wi ∈ [0, 1] and

∑n
i=1 wi = 1. If

GINNWGBMs,t,r
w (a1, a2, · · · an)

=
1

s+ t + r

n
⊗

i,j,k=1
(sai ⊕ taj ⊕ rak )wiwjwk (60)

Then GINNWGBMs,t,r
w is called GINNWGBM.

Theorem 4: Let s, t, r > 0 and ai =
( [
T Li ,T

R
i

]
,
[
ILi , I

R
i

]
,[

FLi ,F
R
i

] )
(i = 1, 2, . . . , n) be a set of INNs. The aggregated

value by GINNWGBM is also an INN and (61), as shown at
the top of the next page.

Proof: Though definition 5, we can obtain (62), (63), as
shown at the top of the next page.

Thereafter, (64), as shown at the top of the next page.
Therefore, (65), as shown at the top of the next page.
Thus, (66), as shown at the top of the page 16.
Hence, (61) is maintained.
Thereafter, (67)–(69), as shown at the top of the page 16.
Therefore, (70), as shown at the top of the page 16.
The GINNWGBM has the following properties.
Property 8: Let s, t, r > 0 and ai =

( [
T Li ,T

R
i

]
,
[
ILi , I

R
i

]
,[

FLi ,F
R
i

] )
(i = 1, 2, . . . , n) be a set of INNs. Then
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GINNWGBMs,t,r
w (a1, a2, · · · an)

=
1

s+ t + r

n
⊗

i,j,k=1
(sai ⊕ taj ⊕ rak )wiwjwk

=




1−

1−
n∏

i,j,k=1

(
1−

(
1− T Li

)s (
1− T Lj

)t (
1− T Lk

)r)wiwjwk1/(s+t+r)

,

1−

1−
n∏

i,j,k=1

(
1−

(
1− T Ri

)s (
1− T Rj

)t (
1− T Rk

)r)wiwjwk1/(s+t+r)

 ,

1−
n∏

i,j,k=1

(
1−

(
ILi
)s (

ILj
)t (

ILk
)r)wiwjwk1/(s+t+r)

,1−
n∏

i,j,k=1

(
1−

(
IRi
)s (

IRj
)t (

IRk
)r)wiwjwk1/(s+t+r)

 ,

1−
n∏

i,j,k=1

(
1−

(
FLi
)s (

FLj
)t (

FLk
)r)wiwjwk1/(s+t+r)

,1−
n∏

i,j,k=1

(
1−

(
FRi
)s (

FRj
)t (

FRk
)r)wiwjwk1/(s+t+r)

 .


(61)

sai =
([

1−
(
1− T Li

)s
, 1−

(
1− T Ri

)s]
,
[(
ILi
)s
,
(
IRi
)s]

,
[(
FLi
)s
,
(
FRi
)s])

,

taj =
([

1−
(
1− T Lj

)t
, 1−

(
1− T Rj

)t]
,

[(
ILj
)t
,
(
IRj
)t]

,

[(
FLj
)t
,
(
FRj
)t])

,

rak =
([

1−
(
1− T Lk

)r
, 1−

(
1− T Rk

)r]
,
[(
ILk
)r
,
(
IRk
)r]

,
[(
FLk
)r
,
(
FRk
)r])

. (62)
sai ⊕ taj ⊕ rak

=


[
1−

(
1− T Li

)s (1− T Lj )t (1− T Lk )r , 1− (1− T Ri )s (1− T Rj )t (1− T Rk )r] ,[(
ILi
)s (

ILj
)t (

ILk
)r
,
(
IRi
)s (

IRj
)t (

IRk
)r]

,

[(
FLi
)s (

FLj
)t (

FLk
)r
,
(
FRi
)s (

FRj
)t (

FRk
)r]

 (63)

(sai ⊕ taj ⊕ rak )wiwjwk

=



[(
1−

(
1− T Li

)s (1− T Lj )t (1− T Lk )r)wiwjwk ,(1− (1− T Ri )s (1− T Rj )t (1− T Rk )r)wiwjwk] ,[
1−

(
1−

(
ILi
)s (

ILj
)t (

ILk
)r)wiwjwk

, 1−
(
1−

(
IRi
)s (

IRj
)t (

IRk
)r)wiwjwk]

,[
1−

(
1−

(
FLi
)s (

FLj
)t (

FLk
)r)wiwjwk

, 1−
(
1−

(
FRi
)s (

FRj
)t (

FRk
)r)wiwjwk]

.

 (64)

n
⊗

i,j,k=1
(sai ⊕ taj ⊕ rak )wiwjwk

=



 n∏
i,j,k=1

(
1−

(
1− T Li

)s (
1− T Lj

)t (
1− T Lk

)r)wiwjwk
,

n∏
i,j,k=1

(
1−

(
1− T Ri

)s (
1− T Rj

)t (
1− T Rk

)r)wiwjwk ,1− n∏
i,j,k=1

(
1−

(
ILi
)s (

ILj
)t (

ILk
)r)wiwjwk

, 1−
n∏

i,j,k=1

(
1−

(
IRi
)s (

IRj
)t (

IRk
)r)wiwjwk ,1− n∏

i,j,k=1

(
1−

(
FLi
)s (

FLj
)t (

FLk
)r)wiwjwk

, 1−
n∏

i,j,k=1

(
1−

(
FRi
)s (

FRj
)t (

FRk
)r)wiwjwk .


(65)

(1) (Idempotency). If ai(i = 1.2, . . . , n) are equal, that is
ai = a =

([
T L ,T R

]
,
[
IL , IR

]
,
[
FL ,FR

])
, then

GINNWGBMs,t,r
w (a1, a2, · · · , an) = a (71)

(2) (Monotonicity). Let ai =
([
T Lai ,T

R
ai

]
,
[
ILai ,I

R
ai

]
,
[
FLai ,F

R
ai

])
(i = 1, 2, . . . , n) and bi =

([
T Lbi ,T

R
bi

]
,
[
ILbi , I

R
bi

]
,
[
FLbi ,F

R
bi

])
(i = 1, 2, . . . , n) be two sets of INNs. If T Lai ≤ T Lbi ,
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GINNWGBMs,t,r
w (a1, a2, · · · an)

=
1

s+ t + r

n
⊗

i,j,k=1
(sai ⊕ taj ⊕ rak )wiwjwk

=




1−

1−
n∏

i,j,k=1

(
1−

(
1− T Li

)s (
1− T Lj

)t (
1− T Lk

)r)wiwjwk1/(s+t+r)

,

1−

1−
n∏

i,j,k=1

(
1−

(
1− T Ri

)s (
1− T Rj

)t (
1− T Rk

)r)wiwjwk1/(s+t+r)

 ,


1−
n∏

i,j,k=1

(
1−

(
ILi
)s (

ILj
)t (

ILk
)r)wiwjwk1/(s+t+r)

,1−
n∏

i,j,k=1

(
1−

(
IRi
)s (

IRj
)t (

IRk
)r)wiwjwk1/(s+t+r)

 ,


1−
n∏

i,j,k=1

(
1−

(
FLi
)s (

FLj
)t (

FLk
)r)wiwjwk1/(s+t+r)

,1−
n∏

i,j,k=1

(
1−

(
FRi
)s (

FRj
)t (

FRk
)r)wiwjwk1/(s+t+r)

 .



(66)


1−

1−
n∏

i,j,k=1

(
1−

(
1− T Li

)s (
1− T Lj

)t (
1− T Lk

)r)wiwjwk1/(s+t+r)

,

1−

1−
n∏

i,j,k=1

(
1−

(
1− T Ri

)s (
1− T Rj

)t (
1− T Rk

)r)wiwjwk1/(s+t+r)

 ∈ [0, 1] (67)



1−
n∏

i,j,k=1

(
1−

(
ILi
)s (

ILj
)t (

ILk
)r)wiwjwk1/(s+t+r)

,1−
n∏

i,j,k=1

(
1−

(
IRi
)s (

IRj
)t (

IRk
)r)wiwjwk1/(s+t+r)

 ∈ [0, 1] (68)



1−
n∏

i,j,k=1

(
1−

(
FLi
)s (

FLj
)t (

FLk
)r)wiwjwk1/(s+t+r)

,1−
n∏

i,j,k=1

(
1−

(
FRi
)s (

FRj
)t (

FRk
)r)wiwjwk1/(s+t+r)

 ∈ [0, 1] (69)

0 ≤ 1−

1−
n∏

i,j,k=1

(
1−

(
1− T Ri

)s (
1− T Rj

)t (
1− T Rk

)r)wiwjwk1/(s+t+r)

+

1−
n∏

i,j,k=1

(
1−

(
IRi
)s (

IRj
)t (

IRk
)r)wiwjwk1/(s+t+r)

+

1−
n∏

i,j,k=1

(
1−

(
FRi
)s (

FRj
)t (

FRk
)r)wiwjwk1/(s+t+r)

≤ 3 (70)
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TABLE 1. INN decision making.

TABLE 2. The calculating results of the high-tech enterprises by the GINNWBM and GINNWGBM (s = t = r = 1).

T Rai ≤ T Rbi and I
L
ai ≥ ILbi , I

R
ai ≥

R
bi and FLai ≥ FLbi ,F

R
ai ≥ FRbi

holds for all i, then

GINNWGBMs,t,r
w (a1, a2, · · · , an)

≤ GINNWGBMs,t,r
w (b1, b2, · · · , bn). (72)

(3) (Boundedness). Let ai =
([
T Li ,T

R
i

]
,
[
ILi , I

R
i

]
,
[
FLi ,F

R
i

])
(i = 1, 2, . . . , n) be a set of INNS. If a+= (maxi(Ti),mini(Ii),
mini(Fi)) and a− = (mini(Ti),maxi(Ii),maxi(Fi)), then

a− ≤ GINNWGBMs,t,r
w (a1, a2, · · · , an) ≤ a+. (73)

IV. NUMERICAL EXAMPLE AND COMPARATIVE
ANALYSIS
A. NUMERICAL EXAMPLE
As the knowledge-based economy emergence and innovation
country building presentation, High-tech enterprises increase
the innovation activities, so innovation capability become
very important and innovation management should be put
emphasis on. Although many companies have developed the
standard of innovation management in practice, the level
of innovation management capability and innovation perfor-
mance should be improved. High-tech enterprise allocation
resources rationally for improving innovation management
capability attract people’s attention from both theoretical and
practical perspective. For innovation research, technology
innovation is rich, but innovationmanagement is still scarcity,
while the theory of innovation management is lacking of
empirical support, lacking of concerning on how to build
and update it. Meanwhile, application modern project man-
agement theory on R&D management and innovative man-
agement practice and theory have been focused on. With the
modern project management developing, it needs to combine
with innovationmanagement theory from both organizational

TABLE 3. The score functions of the high-tech enterprises.

strategy management theory and project management theory
for in-depth studying on independence innovation manage-
ment capacity. Thus, we give an example for evaluating the
technological innovation capability for the high-tech enter-
prises with INNs. There are five possible high-tech enter-
prises Ai (i = 1, 2, 3, 4, 5) to assess. The experts use the four
attributes to assess the five high-tech enterprises: ¬G1 is the
innovative culture; G2 is the infrastructure and support for
industry development; ®G3 is the knowledge management
& organizational learning; ¯G4 is the funding on techno-
logical innovation. The five possible high-tech enterprises
Ai (i = 1, 2, 3, 4, 5) are to be evaluated with the INNs by
the DMs under the above four attributes (whose weight-
ing vector ω = (0.3, 0.20, 0.10, 0.40)T ), as listed in the
Table 1.

In the following, we use the approach developed to select
the best high-tech enterprises.
Step 1: According to w and INNs

Aij (i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4), we can fuse all SVNNs
Aij by using the GINNWBM (GINNWGBM) operator to
get the overall INNs Ai (i = 1, 2, 3, 4, 5) of the high-tech
enterprise Ai. The calculating results are shown in Table 2.
Step 2: According to the calculating results in Table 2,

the score values of the high-tech enterprises are shown
in Table 3.
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TABLE 4. Ordering of the high-tech enterprises.

TABLE 5. Ranking results for different operational parameters of the GINNWBM operator.

TABLE 6. Ranking results for different operational parameters of the GINNWGBM operator.

Step 3: According to the score functions shown
in Table 3 and the comparison formula of score functions,
the ordering is shown in Table 4. As we can see, the ordering
of the high-tech enterprises is the same, and the best high-tech
enterprises is A2.

B. INFLUENCE OF THE PARAMETER ON THE FINAL
RESULT
In order to show the effects on the ranking results by
changing parameters of (s, t, r) ∈ [1, 10] in the GIN-
NWBM (GINNWGBM) operators, all the results are shown
in Tables 5 and 6.

TABLE 7. Ordering of the high-tech enterprises.

C. COMPARATIVE ANALYSIS
Then, we compare our methods with INWA operator, INWG
operator [14] and similarity degree [44]. The results are
shown in Table 7.
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From above, we can that we get the same results to show
the practicality and effectiveness of the proposed approaches.
However, INWA and INWG operators, do not consider the
interrelationship between aggregated arguments, and thus
cannot eliminate the influence of unfair arguments on deci-
sion result. The GINNWBM and GINNWGBM operators
consider the relationship among three aggregated arguments.

V. CONCLUSION
In this paper, we investigate the aggregation operators with
INN and their application in MADM. In order to fuse the
INNs, the GINNWBM and GINNWGBM operators which
consider the relationship among three aggregated arguments
have been developed. We have studied these two opera-
tor’s desirable properties. Furthermore, we also show the
effectiveness of the GINNWBM and GINNWGBM opera-
tors with practical MADM problems. Finally, we give an
example for evaluating the technological innovation capa-
bility for the high-tech enterprises to show applicability
of these two operators, meanwhile, the comparison analy-
sis and influence analysis have been studied. In the future
works, we shall expand the proposed methods to other
fuzzy MADM problems [45]–[58] and uncertain MADM
problems [59]–[73].
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