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ABSTRACT As we all know, the Bonferroni mean (BM) operator has the advantage of considering
interrelationships between parameters. In this paper, we combine the generalized weighted BM (GWBM)
operator and generalized weighted Bonferroni geometric mean (GWGBM) operator with interval neutro-
sophic numbers (INNs) to develop the generalized interval neutrosophic number weight BM (GINNWBM)
operator and generalized interval neutrosophic numbers weighted GBM (GINNWGBM) operator which
consider the relationship among three aggregated arguments, then the MADM methods are developed with
these operators. Finally, we use an example for evaluating the technological innovation capability for the
high-tech enterprises to illustrate the proposed methods.

INDEX TERMS Multiple attribute decision making (MADM), interval neutrosophic numbers (INN),
generalized weighted BM (GWBM) operator, generalized weighted geometric Bonferroni mean (GWGBM)

operator, technological innovation capability, high-tech enterprises.

I. INTRODUCTION

Neutrosophic sets (NSs), which were proposed originally by
Smarandache [1], [2], have been attracted the attention of
many scholars, and NSs have been acted as a workspace in
depicting indeterminate and inconsistent information. A NS
has a more potential power than other modeling mathematical
tools, such as fuzzy set [3], IFS [4] and IVIFS [5]. But,
it is difficult to apply NSs in solving of real life problems.
Therefore, Wang et al. [6], [7] defined a single valued neu-
trosophic set (SVNS) and an interval neutrosophic set (INS),
which are characterized by a truth-membership, an inde-
terminacy membership and a falsity membership. Hence,
SVNSs and INSs can express much more information (truth-
membership degree, indeterminacy-membership degree, and
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falsity-membership degree information) than fuzzy sets (only
membership degree information), IFSs and IVIFSs (both
membership degree and non-membership degree informa-
tion). Ye [8] proposed a MADM method with correlation
coefficient of SVNSs. Broumi and Smarandache [9] extended
the correlation coefficient to INSs. Biswas ef al. [10] devel-
oped the TOPSIS method with SVNNs. Liu er al. [11]
defined the generalized neutrosophic number Hamacher
aggregation for SVNSs. Sahin and Liu [12] defined the
maximizing deviation model under neutrosophic environ-
ment. Ye [13] developed some similarity measures of INS.
Zhang et al. [14] defined some interval neutrosophic infor-
mation aggregating operators. Ye [15] proposed a simplified
neutrosophic set (SNS). Peng et al. [16] developed simplified
neutrosophic information aggregation operators. Addition-
ally, Peng et al. [17] studied an outranking approach for
handling SNS, and then Zhang et al. [18] gave an extended
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version of Peng’s approach. Liu and Xi [19] proposed gen-
eralized weighted power averaging operator with SVNNs.
Deli and Subas [20] discussed a method to rank single
valued neutrosophic numbers. Peng er al. [21] proposed
multi-valued neutrosophic sets. Zhang et al. [22] gave the
improved weighted correlation coefficient for interval neu-
trosophic sets. Chen and Ye [23] proposed Dombi opera-
tions for neutrosophic sets. Liu and Wang [24] proposed
the MADM method based on SVN normalized weighted
Bonferroni mean. Wu et al. [25] proposed cross-entropy
and prioritized aggregation operator with SNSs in MADM
problems. Li et al. [26] developed the some SVNN Hero-
nian mean operators in MADM problems. Wei and Wei [27]
proposed some single-valued neutrosophic dombi prioritized
weighted aggregation operators in MADM. Broumi and
Smarandache [9] proposed the correlation coefficient of INS.
Zhang et al. [22] defined the improved weighted correlation
coefficient of INNs for MADM. Zhang et al. [18] defined
an outranking approach for INN MADM. Tian et al. [28]
developed a cross-entropy in INN MADM. Some other oper-
ators are defined in [29]-[33]. Ye [13] defined two similarity
measures between INNSs.

Obviously, these established INN aggregation oper-
ators cannot be utilized to aggregate the arguments
which are correlated [34]. Meanwhile, the Bonferroni
mean (BM) [35]-[42] is a very useful tool to deal with
the arguments which are correlated. How to effectively
expand the traditional generalized weighted BM (GWBM)
operator and generalized weighted Bonferroni geometric
mean (GWGBM) operator to INN environment is a signif-
icant research task which the focus of this paper.

The organization of this manuscript is given as follows.
Section 2 reviews INSs and some other basic definitions.
Section 3 introduces the extended GWBM and GWGBM
which can be used to fuse the INNs which consider the
relationship among three aggregated arguments, and gives
some properties of these operators. Section 4 illustrates the
effectiveness of the proposed operators with an application
for evaluating the technological innovation capability for the
high-tech enterprises. Section 5 concludes the paper.

Il. BASIC CONCEPTS
A. NSs AND INSs
Smarandache [1], [2] proposed Neutrosophic sets (NSs).
Wang et al. [7] further proposed the interval neutrosophic
sets (INSs).

Definition 1 [7]: Let X be a space of points (objects) with
a generic element in fix set X, denoted by x. An interval
neutrosophic sets (INSs) A in X is characterized as following:

A:{(X’TA(X)JA(X%FA(X))IXeX} )

where the truth-membership function 75 (x), indeterminacy-
membership /3 (x) and falsity-membership function Fj (x)
are interval values, that is, T; (x) : X — [0,1], IZ x) :
X — [0,1]and F3 (x) : X — [0, 1].
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and 0 < sup (T (x)) + sup (Iz (x)) + sup (F5 (x)) < 3.
Then a simplification of A is denoted by A = (TA’ I, FA) =
L R L R L R : :
([TA , TA] , [IA,IA] , [FA,FA]), which is a INN, where
L R L jR L R
[TE. 78] < 0.1, [1 18] < 10,1, [FE FE] < 10, 1)
and 0 < T§+1§+F§ <3.
Definition 2 [43]: Let A = (T5. I3, FA) =
L R L R L R
([T/1 , TAJ , [IA’IA] , [FZ\’FAD be an INN, a score func-

tion is defined:

L L _ L R _ iR _ R
(2+T/1 1t FA)+(2+TA 15— )

S(A) - 6

s (A) cl0,1], ()

Definition 3 [43]: Let A = (T;,1;,F;) =
L 7R L 7R L R
([TA’TA] , [IA’IA] , [FA’FAD be an INN, an accuracy

function H (A) is proposed:

i <T£+TB)_<F§ +F{?> )

H(A): A4 ; A__A) H(A)e[—l,l]
(3)

v . 1 L TR L IR
Definition 4 [43]: Let A = (TA’TA , IA’IA ,
[F.L,F!*]) and B = ([TP,TR], L IR F.L,FB>

AT A B> B B’ B B’ B
- 24TE—[E_FL)4Q+TR_[R_FR)
be two INNS, s(A) _ (e A)6 i
- - 24TE—JL_FL) 4 Q+TR_[R_FR)
s(4 6[0,1],ands<B)=< il el i 1

s (f? € [0, 1] be the scores, and

L R\ _ (rL R
TA—i-TA) (FA+FA)
2

H(A)z(

, H(A) cl-1,1],

L (TETE) = (FE4FE) )
H(B) =22 T H(B)el-1.1]
be the accuracy function, then if S (A) < S (B) A < B;
if s (4) =5 (B). then

() if H A) =H(B ,A=B;

Q) if H A) <H(1§ A<B

L ) i _ L TR L IR

Definition 5 [7], [13]: Let A = ([TA,TA] : [IA,IA],
[F.L,F!;]) and B = ([TP,T!*] , [1#,18],[1@,178]) be

A’ A B’ B BB BB
two INNs and A be a positive real number. The basic
operations of INNs are:

A®B
L L __ pLyL TR R _ 7RTR
[TA—i—Té TETE TR + TS TATE],

LyL 7RJR R R R R
[IAIB,IAIB],[FAFB,FAFB]
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Agh
AA

[1 ,1—(1—T§>A:|,
[ty <IR>A] (L, (7]
(GG
[1

,1—(1—F§)/\]

FL + FL — FLFL FR 4 FR FgFg]

},[1-(1-1§)A,1—

LrL RR L 7L _gLyL 7R 7R _ JRTR
TT TRTE [I-+I~ ILIE IR 418 IATB],

(-]

A > 0.

B. GBM OPERATORS

Beliakov et al. [35] further extended the BM operator by con-
sidering the correlations of any three aggregated arguments
instead of any two.

Definition 6 [35]: Letp,q,r > 0and a;(i = 1,2, ...,n)
be a set of nonnegative crisp numbers. The generalized
BM (GBM) is defined as follows:

GBM”?"(ay, ay, ..., ay)

1/(p+q+r)

1 . -
TSy i’j’;:]a’,"ajak )

i#j#k
Xia et al. [37] also introduced the generalized geometric
Bonferroni mean (GGBM) operator.

GINNBM*"(ay, az, - - , ay)
1/(s+t+7)
Y PR ® (af°®a’~®a,’;)
nin—1)m—=2)ijk=1\" " "/
ik
B 1f(s+t+r) ]
= T ) ()
- —\5) k) ;
ijk=1
iAjk
1/(s+1+4r) ’
“ s t P\ T
=TT (- () (1) (1))
i,j,k=1
i ik _
B 1/(s+t+r) 7]
" I\ L\ N DD
-{1-T] 1—(1—1,.)(1—1].)(1—1k) ,
ijk=1
i
_ | 160p1] . Ysti+r) | )
n 1
R N R t R r\ n(n—1)(n-2)
- [1- ] (1-(1-@) (1-1f) (1—1k)>
ij k=1
i ijk i
r 1/(s+t4r) T
" I\ I\ N Ty
t— 1= IT (1= (1-FF) (1=FF) (1-F) ,
ijk=1
ik
1/(s+t4r)
n R\ R\ R\ D
- 1= ] 1—(1—F,.) (1-1«“].) <I—Fk)
ijk=1
i ik i
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Definition 7 [37]: Letp,q,r > 0and a;(i = 1,2,...,n)
be a set of nonnegative crisp numbers, if

GGBMP %" (ay, ay, ..., a,)

1 n L

= l_[ (pai + q(lj =+ rak)n(n—l)(n_z) (5)
pratr ij,k=1
i#jF#k

Ill. GINNBM AND GINNWBM OPERATORS
A. GINNBM OPERATOR
This section expands GBM to fuse the INNs and develops
some generalized interval neutrosophic number BM opera-
tors (GINNBM).

Definition 8: Lets, t,r > Oandag; = ([TiL, TiR] [IIL, IIR],
[FE,FR])(i=1,2,...,n) be asetof INNs. If

GINNBM*"'" (a1, az, - - - , ay)

Thereafter, (10), as shown at the bottom of the next page.
Furthermore, (11), as shown at the top of the next page.
Therefore, (12), as shown at the top of the next page.
Hence, (7) is maintained.
Thereafter, (13)—(15), as shown at the top of the page 6.
Thereafter, (16), as shown at the top of the page 6.
Thereby the (7) is also an INN.
Moreover, GINNBM has the following properties.
Property 1 (Idempotency): Ifa; (i = 1, 2, ..., n) are equal,
thatis, a; = a = ([T*, TX], [1X, %], [F*, FR]), then
GINNBM*""" (ay,az,--- ,a,) = a a7
Proof: Let Ty, Tz, 11, I, F1, F>, as shown at the top of
the page 7.
Given that TL TL, then

TL Tt =

1 " 1/(s+1+r) . 1/(s+t+r)
== & (a‘Y®a€ ®a’)) 6 1 s t A\ n=Dn=2)
(5 (@edea) o [ (e 6 6
We can obtain the following theorem 1 according to ’i;élffk]
definition 5. . | Histeen
Theorem 1: Lets,t,r > 0and a; = ([TZL, T[.R] [IIL,IIR], . l_[ <1 _ (TL)S+'+r> nn=Dn=2)
[FE,FR]) (i=1,2,...,n) beasetof INNs. The aggregated e
value by GINNBM is also an INN and (7), as shown at the i##k Lsti4r)
bottom of the previous page. N\SHAT DD n=1)(n=2)
Proof: According to definition 5, we can obtain (8), as = |1-{({1- (T )
shown at the bottom of this page.
Thus, (9), as shown at the bottom of this page. =7t (18)
N N
@ = ([(Tf) ,(T,.R) ] [1 — (=11 -1 —15)S],[1 —(1-Fly,1-q —FiR)S]);
r L\’ R\’ Lt Ryt Lt R .
af = ([(T,) (R [ i-a—ab—a—idy ] [1-a - - a - efy]):
.
g =([(rF) . (8) . [1-a-tbra-a-gy] . i-a-fya-a-y]). ®
i t
L\S (7L L\ (TR R R\"
ry (1) by iy (1) |
Geded=||1-0-1F) (1-1F) (=15 1= (=15 (1-1¥) (1—1R)} ©)
L= (1= FE) (1= FE) (L= FE) 1= (1= FR) (1= FF) (1= FR) }
® (@ ®ded)
ijk=1 ' 7 k
ik
B n 5 n
L L L R R R
= 1 (-0 68 68 1= 11 (-6 ) )|
ijk=1 ijk=1
. L\’ L\ L) - R\’ R\ R\
| T (= Oy =) (=) TT (0= 0=t (=) (-2)) | | 0
1

ij,k=
n

| ijk=1
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i.j.k=1

n

ijk=1
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n

- - SQRd ®d
nn—1)(n-2) i,j,?:l(al ® a4 ® a)

ik
n ; DD n t DD
L S L L r nin— n—. R S R R r nn— n—.
=TT (=) () (1) )™= T (0 () () (1)) ’
ijk=1 ijk=1
ik ijk
n S N N ey R R\ A N D
o D Al o I (B O M
ijk=1 ij k=1
L iik ik
n S N N P n R\ A R\ P
I1 (1—<I—F[> (1—Fj) (l—Fk>> T (l—(l—Fi) (I—Fj> (1—Fk)> .
ijk=1 ijk=1
| ik ik
(11
r 1/(s+t+r) 7
1 s t P\ D
T () (1) () |
ijk=1
itk
1/(s+1+r) ’
n N t r n(nfll)(nf2)
= T (1= () () (1))
ijk=1
L ik
B (s+t+r) ]
n 1
L N L t L r\ nn—1)(n-2)
- 1-]‘[(1—(1—1i)(1—1j)(1—1k)) :
ij k=1
i
= i 1/(s+t+4r) ’ (12)
n 1
R N R t R r\ n(n—1)(n—2)
1—{1- 1] <1—(1—1i) (1—1j) (1—1k))
ijk=1
L ik |
r 1/(s+14+r) T
n 1
L s L t L r\ n(n—1)(n-2)
- 1—1_[<1—(1—Fi)<1—Fj)<l—Fk>> :
ijk=1
ik
1/(s+t+r)
n 1
R s R t R r\ n(n—1)(n—2)
-[1- ] <1—(1—F,.) (1-FF) (1—Fk>>
ij k=1
L ik _
Similarly, we can get T, = ™1 =151, = I, F§ > Flfi holds for all i, then
F| = FL and F, = FR. that means
GINNBM*"" (a1, a2, -+ ,ay) = a (19)  GINNBM*"“'(ay,ay, -, ap)
< GINNBM*""(by, by, --- , by). (20)
Property 2 (Monotonicity): Leta; = ([TaL[, Tf] , [IaLi, I(f_] ,

[Fi,,Ff;])(i:1,2,...,n)andb,»=([TbLi,T1§ ,[zbg,zg],
[Flfl_,F{i])(iz 1,2,...,m) be two sets of INNs. If T- <
TL TR < TR and 1L > 1) 18 >, and FL > Fp,

b’ “a;

VOLUME 7, 2019

Proof: Let GINNBM**" (), a3, -+ - , ay) = ([TE, TR],
[15,15],[F5,F§,1) and GINNBM*"" (b, by, -+, by) =
(7. TF] 15 18] [Ff FR])- Given that TS < T, we
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r 1/(s+t+r) T
n L s L t L r n(n—ll)(n—2)
= T (= () () (1) ’
ijk=1
i#j#k
Ysran | € 1011 (13)
n R\ (RN (R\ DD
= T (0= () (1) ()
ijk=1
i ik i
r 1/(s+t+r) ]
n L\ L\ N\ DD
1 1—]‘[(1—(1—4)(1—1/.)(1—1,()) ,
ijk=1
L
e Vissien | €10.1] (14)
" ' DD
e (- ) (-a))
ijk=1
L i#j#k i
r 1/(s+t+r) ]
" ' DG
-11- 1 (1-(1-1})S<1—1].L) (1—1,5)r> :
ijk=1
L
e s | € 101] (1)
n s t r n(n—ll)(n—Z)
1-[1- ] <1—(1—1{?) (1-1F) (1—1,5))
ijk=1
L i#jF#k i
1/(s+t+r)
n s t P\ AT
o=<|1-1T]] <1_(T1R> (Tf) (T,f))
ijk=1
ik
1/(s+t+r)
n 1
R s R t R r\ n(n—1)(n—2)
+1- 1= ] <1—(1—1i) (1-15) (1—1k))
ijk=1
itk
1/(s+t+r)
n 1
R N R t R r\ n(n—1)(n-2)
+1-— 1—“(1—(1—Fi)(1—Fj><1—Fk>> <3 (16)
ijk=1
itk
can obtain Therefore,
t
(i) (r) (i)
s t r n ﬁ
< () (i) (7£) ey ] <1—(TaL)S (Tj)t(r(fk)r> e
1 l J
NS Lo\ (r =) l:;;;kl
(1- () 12 () n

1
L s L t L r\ n(n—1)(n-2)

NS (N (g P\ T Z._l_[ <1_(Tbi) (Tbi) (Tbk)> @3)
= (1= () () () @ it

86478 VOLUME 7, 2019



G. Wei et al.: Methods for Evaluating the Technological Innovation Capability for the High-Tech Enterprises

IEEE Access

L6 6 )

Ih=|1- ﬁ <1 _ (Tf)s (Tf)t (Tlf)r>n(n_1;(n_2)
1

1/(s+t+r)

1/(s+t+r)

ijk=
ik
1/(s+i+r)
1 s ' = =)
=== IT (1= (=) (=) (1= 2t))
ij.k=1
i##k
1/(s+t+r)
" s ' N ==
h=1-|1-1T] (1—(1—1{?) (1—1;?) (1-1,5))
i,j,k=1
ik
1/(s+t+r)
n s t P\ "D
Fi=1-|1- ] (1—(1—F,.L) (1-7) (1—F,§))
ij k=1
ik
1/(s+t+r)
u s i P\ e
Fa=1-|1- ] (1-(1—F,R) (1-FF) (1—F,§))
ijk=1
ik
Thus, then
1 o
. T GINNBMY (@ an)
s t r\ n(n=1n-2) r
- ] (1 _ (T,fi) (Tj/) (TaLk) ) < GINNBM*"" (by, ba, - - - , by);
ijk=1 '
i£j#k If
Vistttr) L L R R L L R R
n NN er TE =T TR = TR ana 1F = I, IR = I
< -T1 <1— (Tb,-) (Tb]) (Tbk) > (24) and FL = FF FR = FR.
ijk=1
i#i7k then

Which means TaL < TaL .Similarly, we can obtain
TR <TR IE > 1f, IR > IR FL > F} and F® > FR.
If

TE < 1L TR < TR and 1F > 1F 1R > IR

a’-a

and F£ > FE FR > FR.
then

GINNBM*""(ay, a, - - - , ay)
< GINNBM®*"7(by, by, - - - , by);

If

TE =1L TR = TR and IF > 1F IR > IR
and FE > FE,FR > FR.

VOLUME 7, 2019

GINNBM*"" (a1, a, - - , ay)
= GINNBM*"" (b1, by, - - - , by).

Therefore, the proof of Property 2 is completed.
Property 3 (Boundedness): Leta; = ( [TiL, TI.R] , [I.L, I.R] R

1 1

[FE.FR])G@=1,2,....n) be a set of INNS. If
at = (max;(T;), min;(/;), min;(F;)) and a~ = (miny(T}),
max;(l;), max;(F;)), then

a” < GINNBM*"“"(ai, as, - ,ay) <a™ (25)
Proof: From property 2, we can obtain

GINNBM*" (¢~ ,a™,...,a ) =a",
GINNBM*""(a*,a",...,a") = a*.
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From property 3, we can obtain

GINNBM*""(a,a™,...,a")
< GINNBM*""(ay, as, . .., ay
< GINNBM*""(a™,a™, ..., a").

Jap) < at.

Therefore, a— < GINNBM*""(ay, az, - - -
B. GINNWBM OPERATOR

In actual MADM, it’s important to consider attribute weights.
This section will propose the generalized INN weighted
BM (GINNWBM) operator as follows.

Definition 9: Lets, t,r > Oanda; = ([TF, TR], [1F. IF].
[FE,FR])(i=1,2,...,n) be a set of INNs with their
weight vector being w; = (wy, wa, ..., w)l, thereby sat-
isfying w; € [0, 1]and Y7, w; = 1. If

GINNWBMS" (ay, az, -+ , an)
n 1/(s+t+r)
= ( D wiwjw (af ® a;- ® a,ﬁ)) (26)
i,j,k=1

then GINNWBMS,"" is called the generalized interval
neutrosophic number weight Bonferroni mean (GINNWBM)
operator.

We can obtain the following theorem 2 according to
definition 5.

Theorem 2: Lets, t,r > 0and a; = ([TiL, TiR] , [II.L, ]l.R] ,
[FF.FR]) (i =1,2,...,n) beaset of INNs. The aggregated
value by GINNWBM is also an INN and (27), as shown at the
top of the next page.

Proof: According to definition 5, we can obtain (28), as
shown at the top of the next page.

Thus, (29), as shown at the top of the next page.

Thereafter, (30), as shown at the top of the next page.

Furthermore, (31), as shown at the top of page 10.

Therefore, (32), as shown at the top of page 10.

Hence, (27) is maintained.

Thereafter, (33)-(35), as shown at the top of page 10.

Thereafter, (36), as shown at the top of page 11.

Thereby the (27) is also an INN.

Moreover, GINNWBM has the following properties.

Property 4 (Idempotency): If a; (i = 1, 2, ..., n) are equal,
thatis, a; = a = ([T, TX], [I*, I%], [F", F]), then

GINNWBM"" (a1, a2, -+ ,an) = a (37)

Proof: Let Ty, T2, 11, I, F1, F1, as shown at the top of
the page 11
Given that TiL = TjL = TkL = TL, then

1/(s+147)
- A A A A S
= (- (-6 )
ijk=1
n WiW;w, Vsti+n)
st Wik
(1= 11 (- (™)
ijk=1
86480

n n n 1/(S+T+r)
( L\SHr lewizl:W./Zl:Wk
= [1- 1—<T ) )
=Tt (38)
Similarly, we can get T, = TR I, = I, L, = IR,
F) = FL and F, = FR. that means
GINNWBM (a1, ap, - ap) = a (39)

Property 5 (Monotonicity): Leta; = ([Tal;, Ta_] , [IaLI_, Ig] ,
[FEFR]) G=1.2,....m and by = ([T, ng] ik aE]
[Flf’_, Flﬁ] ) (i=1,2,...,n) be two sets of INNs.
If 7L < TE TR < TF and 1}, > I} IX >F and FL >
FbLi, Féf > Flfi holds for all i, then
GINNWBM""(ay, az, - -+ , ay)

< GINNWBMS,"" (b1, by, - -+, by).  (40)

Proof: Let GINNWBMS (aj, az, -+, ay) =
([TE, TR, [1E, 18], [FE,FR]) and GSVNNWBMS"”
(it by = (15, T [1F. 1], [FE. Ff]). Given

that TaLi < TbLi, we can obtain

(r2) (r8) (i)
: (TbL) (r4) (ThL) | (1)

s ¢ #\ WiWiWk
= (1= () (rt) (%)) @
Therefore,
n N ' 7\ WiWiWk
[T (1= () () (r2) )
ijk=1
n s t r Wl'WjWk
= 11 (@) @) () e
ijk=1
Thus,
. - 1/(s+t+r)
s t r Lae)
= (- () () (r2))
ij.k=1
1/(s+t+r)
n s P #\ WiWiwk
= (0= T (- () () (1))
ij.k=1
(44)

Which means TaL < TaL . Similarly, we can obtain
TR < TR I > 1F, IR > IR FL > F} and FR > FR.

If 7L < 7L TR < TRand 1F > 1F, IR > IR and
FL > FE FR > FR. then
GINNWBM:""(ay, az, - - -, an)

< GINNWBMS(by, by, -+ , by):;
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GINNWBM',"" (ay, az, -+ , ay)

1/(s+t+r)
n ( N\’ . ‘ N WiWjWi
T (- () (1) (1)) ’
ij k=1
1/(s+t+r) ’
n ( 2\ R\ N Wiwjw
=TT (- () (1) (1))
L i,j,k=1
- 1/(s+t+r)
- L\* L\’ AYA R
1—|1- (1—(1—11.)(1—5)(1—,()) ,
k=1
= ”n V(sti+r) | 27)
R\’ RY R
1—[1- 1—(1—1i)(1—(,)(1—k)
L i,j,k=1
— 1/(s+t+r)
n s . ¢ N\ WiWjWwi
L
== TT (- (=) (=) (- ) ) ,
ijk=1
n 1/(s+t+r)
R\’ R\ R\ WiWjWi
1—[1- 1—(1—Fi)<1—Fj)(l—k)
L i,j,k=1
N

Q
Il

1) (TFY ] [L-a =it —a = iRy ] [r-a - Fhyon - a - FRY)

(7). (Y}R)t:| Jr-a—pa—a-ify ] i-a - -a- Fﬁ)’]) :
]
t

)
>~
I
| —|
1./
ﬂ
e
N—
Z
ﬂ
b=

7. [1 S g 1,5)’] : [1 —(A—=Fky 1 - F,f)r]) . (28)
oy (1) @y oy (1) gy )
dodod=| 1=y (-1) -y -0y (=) -], )

L= (=) (1= B (=) = =B (=) - .

(- ) ) () an)
| [(=a=my =g a-m) (e (- o) ] [ eo

If th = Tff‘, T(f = Tf and Ié‘ > Ilf‘, Ilf > Ilf and Property 6 (Boundedness): Let a; = ([TiL, TiR], [IZ-L,IZ.R],
FE > FE FR > FR. then [FF,FR])(@=1,2,....,n) be a set of SVNNS.
Str If at = (maxi(T)), min;(I;), min;(F;)) and a~ =
GINNWBM,;™" (@1, a2, -+~ » &) (miny(T}), max;(F;), max;(Fy)), then
.07 “ .. i
< GINNWBM, (b1 ba. - bu): a~ < GINNWBMS" (a1, a3, -+, @) <a (45
If TaL = TaL ) th = Tzf and IaL > IbL ) 15 > 115 and Proof: From property4, we can obtain
FL > FL FR 5 FR then
a bt a b S, 0, — — -\ —
GINNWBM,"""(a”,a™,...,a ) =a
GINNWBM;," (a1, a2, - - - , an) GINNWBM: " (at,at,...,a") = a*.

— A,
= GINNWBM;"" (b1, by, -+, by). From property5, we can obtain

Therefore, the proof of Property 2 is completed. GINNWBM;""(a",a”,...,a")
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n
k
& wiwwi(a; ® ai ® ay)

ijk=1

GINNWBM, (a1, az, - - , a,)

_ Iﬁl L INE o\ Ve
=TT (- () (1) (1)) ,
ijk=1 ’
i o Mt |
( ® ® ¢ TR #\ WiWjwi
= T (=) () (#)
L i,j,k=1
— ; - 1/(s+t+r)
s t r Lee)
1—[1- <1—(1—1iL) (1-1) (1—,5)) :
i,j,k=1
1/(s+t+r) ’
. R\’ R A R
== T (- (=) (=) (-t
L i,j,k=1
— ) - 1/(s+t+r)
L\* L\ AV N
= (1= TT (- (=) (=) (- ) ,
i,j,k=1
1/(s+t+r)
n R s R t R 7\ WiWiwk
. <1—(1—F,.)(1—Fj)<1—Fk))
L i,j,k=1
n s ! #\ WiWiwk Visti4n)
(- ) (1) (1)) »
i.j, k=1
tjn /(547 e [0, 1]
( R\* R\ TR r\ Wivivk
=T (1= () () (#)
ijk=1
1/(s+t+r)
. L\’ L A T
- T (- () (=) (- 8)) ,
k=1
N s+ | €10,1]
n s ® R\ WiWjWwk
R
1—|1- (1-(1-@)(1 1])(1—1k)>
i,j,k=1
1/(s+t+r)
n s . N WiWjWwi
L
= (=TT (- (=) (=) (-5t ,
Jok=1
Y 1/(s+1+r) €[0,1]
n s 7\ WiWiwk
1—[1- (1—(1—F,.R) (1—FjR) (1—F,§))

i n s ' #\ WiWiwk n s ' 7\ WiWiWk

() ) @)) o T )|
i,j,k=1 i,j,k=1

n s t r\ Wivivk n s t

[ (=) (=) (-)) ™ 1T (= (=) (=) (-

_i,j,k:l i,j,k=1

n 3 t WiWjWi n 3 P ,
1 (= () () (o)) TL (= O (=) (1-r2)')

_i,j,k:l i,j,k=1

€1V

(32)

(33)

(34)

(35)
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0<|1- ]l[1 <1 - (Tl_R)‘ (Tf)t (T,f)r>

1/(s+t+r)

WiWjWi

WiWjWi

i,j,k=
1/(s+t+r)
n s t 7\ WiWiWk
+1- (1= ] <1-(1-1ﬁ) (1-15) (1—1,5))
ij,k=1
1/(s+t+r)
n R ‘ N\ Wiwiwk
+1-[1- <1—(1—F,.R) (1-FF) (1—F,§)> <3 (36)
i,j,k=1
1/(s+t+r)
n L s L t L r W,‘WjWk
= (1 T (-0 (1) ()
i,j,k=1
1/(s+t+r)
() (%))

n s
Ty=|1- <1 - (TI-R>
Ll

ijk=
n s ; N\ Wiliwk Vsti+n)
h=1-|1- (1-(1-1}) (1-1}) (1-1,5))
ijk=1
n s ‘ N\ WiWiwk V(s+itr)
L=1-|1- (1—(1—1}?) (1_1]!?) (1—1,5))
ijk=1
n . ) N\ 1/(s+t+r)
Fr=1-|1- (1—(1—F,.L) (1_F].L) (l—FkL)> _
i,j,k=1
n . . N 1/(s+t+r)
Fr=1-[1- (1—(1—F,.R) (]—F]R) (1—F,§)> _

< GINNWBMS, (a1, az, . . . , ay
< GINNWBMS" (at,a™, ..., a").

Therefore, a~ < GINNWBMS,""(ay, az, - -+ ,ay) < a™.

C. GINNGBM OPERATOR
Thereafter, we extend GGBM to INNS and introduce the gen-
eralized interval neutrosophic numbers geometric Bonferroni
mean (GINNGBM) operator.

Definition 10: Lets, t,r > Oanda; = ([TiL,TiR], [IiL, II.R] ,
[FF,FR]) G =1,2,...,n) be asetof INNs. If

GINNGBM*"" (a1, az, - - - ap)

1 n I B
=—— ® (sa; ®taj ® ray)"n-Ha-2 46
s+t4r i,j,k=1( ! 1 ©) (46)
ik

Then GINNGBM?*"" is called GINNGBM.

Theorem 3: Lets,t,r > 0and a; = ([TiL, T[.R] , [IiL, II.R] ,
[FF.FR]) G =1,2,...,n) beaset of INNs. The aggregated
value by GINNGBM is also an INN and (47), as shown at the

top of the next page.
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Proof: Though definition 3, we can obtain (48)-(49), as
shown at the top of the next page.
Thereafter, (50), as shown at the top of the next page.
Therefore, (51), as shown at the top of the page 13.
Thus, (52), as shown at the top of the page 13.
Hence, (47) is maintained.
Thereafter, (53)—(55), as shown at the top of the page 14.
Therefore, (56), as shown at the top of the page 14.
Thereby completing the proof.
The GINNGBM has the following properties.
Property 7: Let s, t,r > 0 and ag; = ( [TiL, TiR] , [IZ.L, Il.R] s
[FF,FR])(i=1,2,...,n) be asetof INNs. Then
(1) (Idempotency). If a;(i = 1.2, ..., n) are equal, that is
ai=a= ([T*, TR], [I1*.1%].[F*. FR]), then
GINNGBM*""(ay,az,--- ,ap,) = a (57
(2) (Monotonicity). Leta; = ([T, TX] . IL.18]. [FL. FX])
(=1,2,...,nyandb; = ([TbLi, T,fj], IbLi,Ig] , [ng,Fgf,])
(i=1,2,....n) be two sets of INNs. If T2 < T}, TX <

TR and 1L = 1E. 18 =R and FL = FE,FR = F{ holds
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GINNGBM*""(ay, az, - - - ay)

1 n 1
— . ta; n(n—1)(n—2)
s+t+r i,j,(%:l(sal 14 © ra)
i#j#k
- L\* L\
- [1- ] (1—<I—Tl-) (I—Tj) (1—
ijk=1
i#jF#k
n R\ R\ R\ m
1—-11- 1—(1-T; 1-T; 1-T,
i Jj k
ijk=1
L i#jFk
1 ﬁ <1 (L SN £\ n(n—llw
- T1 (-0 () (1))
i,j,k=1
_ i#j#k
1 ﬁ (1 (IR)X(IRI 7y e
(- ) )
i,j,k=1
L i#j#k
- L (- ) )
- - i j k)
ij,k=1
i#j#k
n R\ R t R\ n(nflﬁ(n72)
=TT (0= () (5 (r2))
i,j,k=1
i#j#k

ray =

sa; @ ta; ® rai

1
(Sa[ @ taj @ rak)n(nfl)(an)

1
(1 —(-1h (1-TE) (1 - T,g)r> e

1
(I]L)t (Ilg)r> n(n—1)(n—2) ’ 1 . (1 _

= 1-(1-(1})s

1/(s+t+r) 7]

1
r\ n(n—1)(n-2)
L
T ) ) ,

1/(s+t+r)

1/(s+t+r) T

1/(s+t4r)

1/(s4t4r) ]

1/(s+t+r)

<1 —(1-TR) (1 - TJ.R)[ (1- T,f)’)m} :
oy ) o),

1 1
‘ ‘ TG ‘ ‘ TG
- (1 — (rty (#2) (F,g)’) - (1 — (r2y (FF) (F,f)r> }

(47)

(48)

(49)

(50)
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n 1
® (sa; @ taj ® rag)"@-D0=2

ijk=1
n t oy B t =
N r n(n—1)(n— N r np— —
[1 (=) ) (omt) )™ TL (=) () ) )
i k=1 ijk=1
Lij7k i#j#k
n NS (N (N D n R\ R\ R\ T
S| Ty ey @) T (e e )T
ijk=1 ijk=1
i#jk ik
n Lster n Rster
T (G ) ) ) T (- ) () )
i,j,k=1 ij.k=1
L i#j#k i#j#k
(51
GINNGBM*"" (a1, az, - - - ap)
n 1
= —— ® (sa; ® taj @ ray)"»-DHe-2
s+t+ri,j,k:1( ' / k)
i#j#k
B 1/(s+t+r)
" s ' P\ e
1 - 1-]‘[(1-(1-#) (1-77) (1—T,£)) :
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1/(s+t+r) |
" s t P\ e
- 1= ] (1—(1—T1.R) (I—TJ-R) (1—T,§)>
ij.k=1
L i#j#k _
r 1/(s+t+r) ]
n 1
L s L t L r\ nn—1)(n-2)
T (0 @) () |
ij.k=1
oy
= #E 1/(s+t+r) ’ (52)
n 1
R s R t R r\ nn—1)(n-2)
=TT (1= () () (1))
ij k=1
| i#j#k .
B 1/(s+t4+r)
7 NS LN (or\ oD
=TT (1= () (1) (7)) 7
ij k=1
i#j#k
1/(s+1+7)
n 1
R s R t R r\ n(n—1)(n-2)
=TT (1= () () (1))
ijk=1
i ik i
for all i, then max;(F;)), then
GINNGBM*""(ay, az, - - - , ay) - sbr +
. a~ < GINNGBM*""(ay,ap,--- ,a,) <a™. (59)
< GINNGBM®*"" (b, by, --- ,b,). (58)
(3) (Boundedness). Let a; = ([TF.TF].[1F.1f].  D. GINNWGBM OPERATOR

[FF,FR]) i=1,2,...,n) be a set of INNS. If a*

(max;(7T;), min;(/;), min;(F;)) and a~ = (min;(7;), max;(/;),
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In actual MADM, it’s important to consider attribute weights.
Thereafter, we extend GWGBM to INNS and introduce the
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i (s+t4r) 7
n 1
L N L t L r\ n(n—1)(n—2)
[ (e ey () |
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7 Vesrn | €10.1] (53)
n 1
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ijk=1
i#j#k

generalized interval neutrosophic numbers weighted geomet-
ric Bonferroni mean (GINNWGBM) operator.

Definition 11: Lets, t,r > 0and a; ([Tl.L, TiR] , [Il.L, II.R] ,
[FF.FR])G=1,2,....,n) be a set of INNs with their
weight vector being w; wi,wo, ..., w,,)T, thereby satis-
fying w; € [0, 1]and 7, w; = 1. If

GINNWGBva” T(ay, ap, -+ - ay)
1 n

—  ®
S+t4+71ijk=

Then GINNWGBM?;"" is called GINNWGBM.
Theorem 4: Let s, t, r > 0 and a; ([TiL, TiR] , [I.L IR

l’l]’

[FiL, FIR] ) (i=1,2,...,n)beasetof INNs. The aggregated

1(sa,- ® ta; ® rai)"™"* (60)

86486

value by GINNWGBM is also an INN and (61), as shown at
the top of the next page.
Proof: Though definition 5, we can obtain (62), (63), as

shown at the top of the next page.

Thereafter, (64), as shown at the top of the next page.

Therefore, (65), as shown at the top of the next page.

Thus, (66), as shown at the top of the page 16.

Hence, (61) is maintained.

Thereafter, (67)—-(69), as shown at the top of the page 16.

Therefore, (70), as shown at the top of the page 16.

The GINNWGBM has the following properties.

Property 8: Let s, t, r > 0 and a; ( [Tl.L, TiR] , [II.L, II.R
[FF.FR]) (@ =1,2,...,n) beasetof INNs. Then

1.
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(1) (Idempotency). If ¢;(i = 1.2, ..., n) are equal, that is (2) (Monotonicity). Leta; = ([TL TR Ik, IR] [FL, FE])
L TR [rL IR L R
ai=a= ([T, TR], [I*,IR], [FE, FR]), then (i=lﬂzw-’”)a“dbi:([TbLi’Tlff]’[]é’lg]’[Ftﬁ’Fgl)
GINNWGBMS;" (a1, az, - - - , a,) = a (71) (i=1,2,....n) be two sets of INNs. If T} < Ty,
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TABLE 1. INN decision making.

G G,

G, G,

[06,0.8],[0.7,0.8],[03,04])
[0.8,09],[05,0.7],[0.1,0.3])
,[04,06

(

(
([0.6,07],]05,0.7],[0.3,04
( [0.5,0.7],[04,0.5],[0.5,0.6]
(

)
[06,08],[03,04],[0.5,06])
)

Al
AZ
A3
A4
A, ([07.08][0506],[0403]

(
(
([05,0.6],[0.8,09]
(
(

[0.7,0.8,[04,0.5],[0.2,03]
[0.7,0.8,[0.4,0.6],[0.2,03]

[03,04],[0.7,08],[03,04]

)
)
)
)
)

[04,05],[0.7,0.8],[03,04

[06,0.7),[05,0.8],[03,05))

[0.7,08],[0.1,02],[0.6,0.7

[0.6,08],[0.4,05],[03,05]

[0.4,06],[05,0.7],[03,0.5

[ [06,07],[05,07],[02,03])
[0.7,08],[05,0.6],[0.,02

[03,04]

( )
( )
([04,0.5],[0.6,0.7],[0.3,04])
( )
( ) ,[07,08],[02,0.3]

(
( )
([0.7,08],[04,05],[03,05])
(
( )

TABLE 2. The calculating results of the high-tech enterprises by the GINNWBM and GINNWGBM (s =t =r = 1).

GINNWGBM

GINNWBM
Al ([0.6073,0.7348],[ 0.5428,0.6937],[ 0.2639,0.3885])
A2 ([0.7019,0.82661,] 0.3751,0.5362], 0.2475,0.4048])
A3 ([0.5621,0.66341,] 0.5922,0.7187],[ 0.3343,0.4939])
A4 ([0.5359,0.7116],[ 0.4136,0.5531],] 0.3902,0.5075])
A5 ([0.4660,0.5698].[ 0.6192,0.7196],[ 0.2650,0.3671])

(10.5009,0.62491,[ 0.6373,0.76791,[ 0.3694,0.4940])
([0.5944,0.72941,[ 0.4853,0.6341],[ 0.3655,0.5146])
([0.4587,0.55411,[ 0.6836,0.79131,[ 0.4405,0.5911])
([0.4363,0.60461,] 0.5176,0.6458],] 0.4998,0.6058])
([0.3630,0.45501,] 0.7008,0.78501,] 0.3750,0.4752])

TR < TR and If; >

holds for all i, then

and Fy > Ff, F§ > F§

GINNWGBMS(ay, ay, - - , a)

< GINNWGBMS,"" (by, by, - -+ ,by).  (72)

(3) (Boundedness). Leta; = ([T[L, Tl.RJ [IlL IlR] [FlL FiR])
(i=1,2,...,n)beasetof INNS.Ifa™ = (max;(T;), min;(,),

min;(F;)) and a~ = (min;(7;), max;(l;), max;(F;)), then

a~ < GINNWGBMS;""(ay, az, -+ ,ay) <a*. (73)

IV. NUMERICAL EXAMPLE AND COMPARATIVE
ANALYSIS
A. NUMERICAL EXAMPLE

As the knowledge-based economy emergence and innovation
country building presentation, High-tech enterprises increase
the innovation activities, so innovation capability become
very important and innovation management should be put
emphasis on. Although many companies have developed the
standard of innovation management in practice, the level
of innovation management capability and innovation perfor-
mance should be improved. High-tech enterprise allocation
resources rationally for improving innovation management
capability attract people’s attention from both theoretical and
practical perspective. For innovation research, technology
innovation is rich, but innovation management is still scarcity,
while the theory of innovation management is lacking of
empirical support, lacking of concerning on how to build
and update it. Meanwhile, application modern project man-
agement theory on R&D management and innovative man-
agement practice and theory have been focused on. With the
modern project management developing, it needs to combine
with innovation management theory from both organizational
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TABLE 3. The score functions of the high-tech enterprises.

GINNWBM GINNWGBM
Al 0.5755 0.4762
A2 0.6608 0.5541
A3 0.5144 0.4177
A4 0.5639 0.4620
A5 0.5108 0.4137

strategy management theory and project management theory
for in-depth studying on independence innovation manage-
ment capacity. Thus, we give an example for evaluating the
technological innovation capability for the high-tech enter-
prises with INNs. There are five possible high-tech enter-
prises A; (i = 1,2, 3, 4, 5) to assess. The experts use the four
attributes to assess the five high-tech enterprises: @G is the
innovative culture; @Gy is the infrastructure and support for
industry development; ®Gg is the knowledge management
& organizational learning; @Gy is the funding on techno-
logical innovation. The five possible high-tech enterprises
Ai(i=1,2,3,4,5) are to be evaluated with the INNs by
the DMs under the above four attributes (whose weight-
ing vector w (0.3, 0.20, 0.10, 0.40)T), as listed in the
Table 1.

In the following, we use the approach developed to select
the best high-tech enterprises.

Step 1: According to w and INNs
A (i=1,2,3,4,5,j=1,2,3,4), we can fuse all SVNNs
Aj; by using the GINNWBM (GINNWGBM) operator to
get the overall INNs A; (i = 1,2, 3,4,5) of the high-tech
enterprise A;. The calculating results are shown in Table 2.

Step 2: According to the calculating results in Table 2,
the score values of the high-tech enterprises are shown
in Table 3.
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TABLE 4. Ordering of the high-tech enterprises.

Ordering
GINNWBM A2>A1>A4>A3>A5
GINNWGBM Ay >A1> Ay > Ay > As

TABLE 5. Ranking results for different operational parameters of the GINNWBM operator.

(s,t,r) S(Al) S(Az) S(A3) S(A4) S(As) Ordering

(LL1) 0.5755 0.6608 0.5144 0.5639  0.5108 Ay > A1 > AL >A3> As
(2,2,2) 0.7965 0.8593 0.7542 0.7930  0.7430 Ay > A1 > AL >A3> As
3,3,3) 0.8556 0.9023 0.8252 0.8487  0.8156 Ay > A1 > AL > A3 > As
(4,4,4) 0.8772 0.9154 0.8529 0.8666  0.8472 Ay > A1 > Ay > Ay > As
(5,5,9) 0.8872 0.9206 0.8664 0.8739  0.8643 Ay > A1 > A > Ay > As
(6,6,6) 0.8927 0.9232 0.8742 0.8775  0.8749 Ay >A1> A > As> Aj
(7,7,7) 0.8961 0.9247 0.8794 0.8796  0.8820 Ay >A1>As>AL> A,
(8,8,8) 0.8985 0.9258 0.8831 0.8810  0.8870 Ay >A 1> As>A3> Ay

(9,9,9) 0.9002  0.9267 0.8860 0.8821  0.8907 Ay > A1 >As>A3> Ay
(10,10,10) 0.9016  0.9275 0.8884 0.8830  0.8936 Ary>A;>As> A3 > Ay

TABLE 6. Ranking results for different operational parameters of the GINNWGBM operator.

(s..r)  S(4) S(4) S(4) S(4,)  S(4) Ordering

(LL1) 04762  0.5541 0.4177 0.4620 04137  A2>A1>A;>A3>As
(2,2,2) 0.3522  0.4121 0.2984 0.3395 03092  Ax>A;1>As>As>Aj
(3,3,3) 0.3091  0.3497 0.2599 0.2985  0.2795 Ay > A1 >AL> As> As
(4,4,4) 0.2893  0.3162 0.2424 0.2799 02665  Ay>A;>A;>As> Ag
(5,5,5) 0.2780  0.2953 0.2322 0.2696 02590 Ax>A;>As>As> A
(6,6,6) 0.2707  0.2810 0.2252 0.2629 02537  As>A1>A4>As> A
(7,7,7) 0.2655  0.2706 0.2198 0.2582 02497  Ax>A1>A>As> A
(8,8,8) 0.2615  0.2627 0.2156 0.2546  0.2465 Ay > A1 >Ay> As > Aj
(9,9,9) 0.2584  0.2564 0.2120 0.2519  0.2438 Ar>Ar>Ay> As > Aj
(10,10,10) Al > Ay > Ay> As> Aj

0.3214  0.2513 0.2090 0.2496  0.2416

Step 3: According to the score functions shown TABLE 7. Ordering of the high-tech enterprises.
in Table 3 and the comparison formula of score functions,

the ordering is shown in Table 4. As we can see, the ordering Ordering

of the high-tech enterprises is the same, and the best high-tech INWA[14] A > A1 > Ay > Az > As

enterprises is Aj. INWG[14] Ay > AL > Ay > As> A
Similarity degree[49] Ay > Al > AL > As> Ay

B. INFLUENCE OF THE PARAMETER ON THE FINAL

RESULT

In order to show the effects on the ranking results by C. COMPARATIVE ANALYSIS

changing parameters of (s,z,r) € [1,10] in the GIN- Then, we compare our methods with INWA operator, INWG
NWBM (GINNWGBM) operators, all the results are shown operator [14] and similarity degree [44]. The results are
in Tables 5 and 6. shown in Table 7.
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From above, we can that we get the same results to show
the practicality and effectiveness of the proposed approaches.
However, INWA and INWG operators, do not consider the
interrelationship between aggregated arguments, and thus
cannot eliminate the influence of unfair arguments on deci-
sion result. The GINNWBM and GINNWGBM operators
consider the relationship among three aggregated arguments.

V. CONCLUSION

In this paper, we investigate the aggregation operators with
INN and their application in MADM. In order to fuse the
INNs, the GINNWBM and GINNWGBM operators which
consider the relationship among three aggregated arguments
have been developed. We have studied these two opera-
tor’s desirable properties. Furthermore, we also show the
effectiveness of the GINNWBM and GINNWGBM opera-
tors with practical MADM problems. Finally, we give an
example for evaluating the technological innovation capa-
bility for the high-tech enterprises to show applicability
of these two operators, meanwhile, the comparison analy-
sis and influence analysis have been studied. In the future
works, we shall expand the proposed methods to other
fuzzy MADM problems [45]-[58] and uncertain MADM
problems [59]-[73].
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