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ABSTRACT In pull-based software development, anyone who wants to contribute to a project can request
integration of the code changes to the public repository by sending a pull request to the development team.
Upon receiving a pull request, a team member will review the changes and decide on merging it or not
in the repository. Finding the appropriate reviewer for a pull request is a crucial step. To support reviewer
recommendation, this paper introduces an adaptive ranking model to rank all the reviewer candidates for a
pull request. The ranking model leverages 14 features to measure the relationships between a pull request
and the reviewer candidates. The weight parameters of the ranking model are trained automatically based
on previously resolved pull requests by using a learning-to-rank technique. The experimental evaluations
on 12 open-source projects show that the proposed approach outperforms the baseline and a state-of-the-art
approach. It can recommend the suitable reviewers within top-1 recommendation for over 80% of the pull
requests in the opencv and jekyll projects. The feature selection experiments show that the most important
feature is the feature that counts the number of previous pull requests sent by the requester and reviewed by
a developer. The feature that measures the file path similarity between files changed in the pull request and

files previously modified by a developer is another important feature.

INDEX TERMS Learning to rank, pull request, reviewer recommendation.

I. INTRODUCTION
Github is a widely used code hosting site that supports collab-
orative development. According to the official statistics, as of
June 2018, Github has over 28 million users and 57 million
repositories. It is the largest host of code in the world. Github
leverages the pull-based development model [1], which is an
emerging software development paradigm [1], [2], to support
distributed development. In pull-based development, the code
development effort is decoupled from the decision of inte-
grating the code changes. In Github, any developers can
clone any public repositories. For a public repository, external
developers that do not belong to the development team (the
core team) have only read access to it. In order to make
contributions to the project, external developers can fork the
repository to obtain a local copy with write privileges. After
making changes to the cloned repository, external developers
can request an integration of the code changes to the public
repository by sending a pull request to the core team, which
will make a decision whether to integrate the changes or not.
A pull request consists of code commits and tells the
core team about changes that wait to be merged to the
base branch. Upon receiving a pull request, the core team

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

85382

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

will review the changes, discuss potential modifications, and
decide whether to merge it or not. A pull request may be
assigned to one or more reviewers who are core team mem-
bers. Reviewers may request clarifications and modifications
in review comments. During the review process, there are two
types of comments: review comments and normal conversa-
tion comments. Review comments are initiated by reviewers
to raise review questions and request more changes. Normal
conversation comments may be initiated by core team mem-
bers or external developers to discuss any issues about the
pull request. Github allows external developers to join the
discussion about a pull request through normal conversation
comments. The requester may response to both types of
comments and may produce more changes in the following
commits. If the changes are deemed to be satisfactory, one
reviewer will approve the changes. Then a core team member
will merge the changes to the base branch and close the pull
request. It is noteworthy that the reviewer who approve the
changes and the core team member who merge the changes
may not be the same person. If the changes are considered to
be problematic, the pull request will be rejected and closed.
Gousios et al. [3] conducted a survey with 749 core mem-
bers and found that they feel overwhelmed in managing pull
requests. Integrators are struggling to maintain the quality
of the code and are spending a lot of time to review pull
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requests [3]. Because it is the core members’ responsibility
to assue quality, it is crucial to find the appropriate core
member with solid knowledge to lead the review process of
pull request [4]. However, the process of assigning a reviewer
to initiate the review process is commonly based on core
members’ interest in the pull request [5]. In some cases, it is
time consuming to find the appropriate reviewer that takes
the responsibility of approving or rejecting a pull request.
Therefore, a key challenge of pull-development is to auto-
matically and efficiently find the suitable reviewer that has
the knowledge to review the pull request [4].

Currently there are two research areas about assigning
developers to pull requests. One research area focuses on
finding commenters to comment on pull requests. Such com-
ments include review comments and normal conversation
comments. Because Github allows any users comment on
a pull request, a commenter may not be a core member
with write access. A commenter may not be the reviewer,
who finally approve or reject the changes. In this research
area, Yu et al. [6] proposed a Vector Space Model (VSM)-
based machine learning (ML) approach and a comment net-
work (CN) approach to recommend developers to comment
on pull requests. Later, they [7] used an information retrieval
(IR)-based approach and a file location technique proposed
by Thongtanunam et al. to improve the performance. Rah-
man et al. [8] also adapted the file location technique.
Jiang et al. [9] analyzed previous pull requests to predict
commenters for new pull requests.

Another research area aims at assigning core members
to integrate the changes. Such integrators are reviewers,
who review the changes and make the final decision to
either approve or reject a pull request. In this research
area, Moreira et al. [5], de Lima Junior et al. [10], and
Jiang et al. [11] proposed to use classification methods to
recommend reviewers for pull requests. Instead of treating
this problem as a classification problem, this paper considers
it as a ranking problem.

To recommend reviewers for pull requests, this paper pro-
poses a ranking approach. If a pull request is construed as
a query, then the problem of recommending reviewers for a
given pull request can be modeled as a ranking task in infor-
mation retrieval (IR) [12]. Therefore, we propose to approach
the reviewer recommendation problem as a ranking problem,
in which the reviewer candidates are ranked according to their
relevance to a given pull request. In this context, we equate
relevance with the likelihood that a particular candidate has
solid knowledge to review the pull request. We define the
ranking function as a weighted sum of different features,
where the weight parameters can be trained on previously
resolved pull requests automatically using a learning-to-rank
technique.

The main contributions of this paper include: approaching
the reviewer recommendation problem as a ranking problem;
a ranking model that leverages fourteen features to measure
the relationships between a pull request and the reviewer
candidates; exploiting a learning-to-rank technique to train
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the ranking model based on previously resolved pull requests;
extensive evaluations and comparisons with the baseline and
a state-of-the-art approach; a feature selection experiment
that evaluates the importance of different features.

The rest of the paper is structured as follows. Section II
discusses the related work. Section III introduces the
ranking model. Section IV describes fourteen features in
detail. Section V discusses experimental evaluations. Finally,
the paper ends with conclusion in Section VI.

Il. RELATED WORK

To the best of our knowledge, only Moreira et al. [5],
de Lima Junior et al. [10], and Jiang et al. [11] have pro-
posed approaches to recommend core members to review pull
requests. Some other approaches [6]-[9] were proposed to
predict developers to comment on pull requests.

A. RECOMMENDATION APPROACHES TO ASSIGN CORE
MEMBERS TO REVIEW (APPROVE OR REJECT)

PULL REQUESTS

Moreira et al. [5] proposed to use three sets of attributes (fea-
tures), among which one attribute set (set A) with 14 attributes
are from their prior work [10] and one attribute set (set B)
with 11 attributes are from the work of Jiang ef al. [11]. These
three attribute sets (set A, B and C) contain 36 attributes
totally to measure the expertise of requesters, the social rela-
tionship between developers, the properties of pull requests
and the expertise of integrators. They then employed differ-
ent classification algorithms to classify pull requests to core
members based on these attribute sets. They performed eval-
uations on 32 open-source projects collected from GitHub.
They also performed feature selection in evaluation to select
a more suitable set of attributes. They reported that their
recommendation outperformed the state-of-the-art. They also
evaluated the importance of different attributes and found that
the most important attribute is the requester’s login name.

Jiang et al. [11] proposed CoreDevRec. It is based on
11 attributes including attributes about the social relationship,
attributes about file location, and attributes about the active-
ness of core members. In their approach, the more active
of a core member the more likely he/she will review a pull
request. Based on these attributes, they used Support Vector
Machine (SVM) to classify pull requests to core members.
They conducted experiments over five projects and reported
that CoreDevRec achieved an accuracy of 72.3% for the
Top-1 recommendation.

Both de Lima Junior et al. and Jiang er al. model the
training task as a classification problem in which pull requests
are assigned to core members. We approach it as a ranking
problem and directly train our model for ranking.

B. RECOMMENDATION APPROACHES TO PREDICT
DEVELOPERS TO COMMENT ON PULL REQUESTS

Yu et al. [6] proposed to use VSM to convert a pull request
(title and description) to a weighted vector, then use SVM to
classify it to a label (developer). In the same work [6], they
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proposed a comment network (CN) that depicts the comment
relationship between developers. When a new pull request is
received, CN will assign it to the developer that has com-
mented on the requester frequently. Later, they [7] proposed
to use an IR-based technique and a file location technique
to improve the performance. The IR-based technique com-
putes the cosine similarity between a new pull request and
a resolved pull request. It then calculates a expertise score
of a candidate develop by summing up the similarity scores
of pull requests that he/she has commented. Developers with
larger expertise scores are recommended as commenters. The
file location technique was proposed by Thongtanunam et al.
It computes file-path similarity scores between file names
in a new pull request and file names in the solved pull
requests. The file-path similarity scores are propagated to
the developers who has commented the corresponding pull-
requests. Developers are then ranked based on their expertise
scores. The top-ranked developers are recommended to com-
ment on the new pull request. They performed experiments
over 84 open-source projects and reported that the IR+CN
approach achieved the best result: the top-10 recommenda-
tion achieved 79.0% of recall and 33.8% of precision.

Rahman et al. [8] extract external libraries and specific
technologies, a bag of tokens, from the source code attached
to the pull requests. They compare an open pull request and
a resolved pull request, i.e. two sets of tokens, using cosine
similarity. They compute the expertise score of a developer
by summing up the similarity values of resolved pull requests
commented by him or her. Developers are ranked and recom-
mended as commenters based on their expertise scores.

Jiang et al. [9] proposed attributes about the number of
reviewed pull requests of every developer with consideration
of a time window, the similarity between the title of an
open pull request and the title of a resolved pull request,
the similarity between files changes in an open pull request
and files changed in a resolved pull request, and the social
relationship between different developers.

Ill. RANKING MODEL

We defined a ranking model, which is a weighted sum of
k features, to assign a matching score for any pull request
r and reviewer candidate d combination. Equation 1 shows
the scoring function s(r, d), where each feature ¢;(r, d) rep-
resents a specific type of relationship between the reviewer
candidate d and the received pull request r:

k
strod)y=w (r.d) =" w;x ¢ir. d) (1)

i=1

When an arbitrary pull request r is received at test time as
input, the model computes the score s(r, d) for each reviewer
candidate c. It uses this score to rank all the reviewer can-
didates in descending order. Then a ranked list of reviewer
candidates is presented to the user. We expect that reviewer
candidates in higher positions of the ranked list have larger
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chance to be suitable for the pull request i.e., more likely to
have the knowledge to review the pull request.

The model parameters w; can be trained by using a
learning-to-rank technique based on previously resolved pull
requests. The optimization procedure of this learning tech-
nique tries to optimize the model parameters so that the
scoring function can rank the candidates that are known to be
the actual reviewers of a pull request at the top of the ranked
list for that pull request.

IV. FEATURE ENGINEERING
This section discusses features proposed for measuring the
relationship between pull requests and core members.

A. FILE PATH SIMILARITY

If files changed in a pull request have been previously mod-
ified by a developer, this developer should have the knowl-
edge to review this pull request. Similarly, if a developer
has recently modified files that are located at similar file
system paths with the changed files in a pull request, this
developer may also has similar experience to review these
changes. Thus, we extend a state-of-the-art approach [13] to
compute the similarity scores between file paths involved in
a pull request and file paths that are modified by a developer
recently.

Given two files f; and f;, we use a slash character as a delim-
iter to split their file paths into components. Each component
is a word. Then their file path similarity filePathSim(f;, f;) is
computed as in Equation 2, where LCP(f;, f;) is the longest
common prefix of f; and f;, and Len(f;) is the number of
components in f;. LCP calculates the number of common
components that appear in both file paths from the beginning
to the last. The intuition is that files locate at the same
directory may have similar functionality [13].

filePathSim(f;, f;)
_LCP¢f)
~ max(Len(f;), Len(f;))

Z Z filePathSim(f;.f;)
fi€Fr £«fjeFa — [F/|x|Fql
0

@)

if|Fy] > 0
. 3
if|Fy] =0

$1(r.d) =

We let F, denotes the set of files changed in pull request r.
We let F; denotes the set of files that are modified by devel-
oper d recently (i.e., within one week). It is straightforward to
get F, from a pull request r. To get F;, we look at the recent
commits committed by developer d.

We then compute feature 1 ¢1(r,d) using Equation 3.
If developer d did not modify any files recently (i.e., |F¢| =
0), ¢1(r,d) is set to 0. Otherwise, ¢;(r,d) is the sum of
file path similarity values between files changed in the pull
request and files modified by the developer recently normal-
ized by |F,| x |Fg].

Similarly, we let Fy denotes the set of files in the pull
requests reviewed by developer d, then we compute feature 2
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using Equation 4 [7], [13].

filePathSim(f; f)) .
2 fer, Lper, TR i1Fsl >0
0

“4)
if|F,| = 0

$o(r,d) =
B. TITLE SIMILARITY
When a new pull request is received, if a developer has
reviewed similar pull requests before, this developer might
have similar experience to review the new pull request.

Given the title of a pull request, we remove the stop words,
punctuations and numerical numbers. We perform stemming
using the Porter stemmer. Then we use a standard informa-
tion retrieval model, the classic Vector Space Model (VSM),
to represent it as a vector of term weights. For a document
d (a pull request title), for each term ¢ in the vocabulary,
we compute the term weights w; 4. We use the classical
tf.idf weighting scheme to compute the term weights. In this
weighting scheme, the term frequency factor #fis normalized
as follows:

Wid = Rft g X idfy
Hhag =054 22X d e N (s
max;ed ift.d dfs

tf; q refers to the term frequency factor that counts the number
of times a given term ¢ appears in document d. df; refers to the
document frequency factor counting how many documents
contain term 7. The total number of documents is represented
by N. Using a logarithm, the inverse document frequency idf;
is computed to alleviate the impact of the document frequency
in the term weight.

The vocabulary of all words from all pull requests is
denoted by V. Let rnew = [Wirp,lt € V] and roa =
[Wr,r,ult € V1 be the VSM vector representations of a new
pull request 74, and an old pull request r,,; respectively.
As shown in Equation 5, we use the #.idf formula to compute
term weights wy ,, . and wy ,,,. After computing the vector
space representations, we use the standard cosine similarity
to compute the textual similarity between a new pull request
and an old pull request as follows:

T
; I'new Fold
SIM(Fnew, Toid) = COS(Tnew, Told) = —————  (6)
I*new Il I Tolal

Given a core member d, let pr(d) be the set of pull requests
that were reviewed by d. Feature 3 is then defined as follows:

$a(r,dy="Y_  sim(r, rou) @)
Told €pr(d)
The feature computes the textual similarity between the title
of the new pull request r and the titles of all the pull requests
in pr(d).

C. SOCIAL RELATIONS

If a developer has reviewed many pull requests sent by a
requester, then this developer is likely to review a new pull
request sent by the same requester. As such, we design
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feature 4 to measure the social relations between a requester
and a developer.

When a new pull request r is received, we let ¢ denote
the requester and let pulls_reviewed(q, d) denote the set of
pull requests that were sent by requester g and reviewed by
developer d. As shown in Equation 8, we compute feature
4 by counting the amount of such pull requests.

¢4(r, d) = |pulls_reviewed(q, d)| ®)

If a developer has reviewed a requester’s pull requests
frequently and recently, this developer is likely to review this
requester’s new pull request again. Thus, we consider a time
window and let pulls_reviewedso(q, d) denote the set of pull
requests sent by requester ¢ and reviewed by developer d in
the last 30 days, we computer feature 5 in Equation 9 as the
total number of such pull requests.

¢5(r, d) = |pulls_reviewedsp(q, d)| )

Similarly, if a developer has commented on a requester’s
pull requests frequently, this developer may has the experi-
ence to review this requester’s new pull request. As discussed
in Section I, reviews and normal conversation comments are
different. While any users can leave normal conversation
comments on a pull request, only the core members can
review it. A reviewer is a core member who has the knowl-
edge to approve or reject a pull request. A commenter can be
any user that leaves a normal conversation comment.

d6(r, d) = |pulls_commented(q, d)| (10)
¢7(r, d) = |pulls_commentedso(q, d)| )

If a core member has left normal conversation com-
ments on a requester’s pull requests frequently, this core
member may share common interest with the requester and
may be a candidate to review this requester’s new pull
request. As such, we design feature 6 in Equation 10, where
pulls_commented(q, d) refers to the set of pull requests sent
by requester ¢ and commented by developer d.

We let pulls_commentedso(q, d) denote the set of pull
requests sent by requester ¢ and commented by developer d
in the last 30 days and design feature 7 in Equation 11.

D. ACTIVENESS

Active members may have the knowledge to review a new
pull request. We let pulls_reviewed(d) denote the set of pull
requests reviewed by developer d and pulls_reviewedso(d) be
the set of pull requests reviewed by d in the last 30 days.
We then compute feature 8 and feature 9 in Equation 12 and
Equation 13 respectively.

¢s(r,d) = |pulls_reviewed(d)| (12)
Po(r, d) = |pulls_reviewedsn(d)| (13)

Similarly, we let pulls_commented(d) denote the set
of pull requests commented by developer d and
pulls_commentedso(d) be the set of pull requests commented
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by c in the last 30 days, then we compute feature 10 and
feature 11 in Equation 14 and Equation 15 respectively.

¢10(r, d) = |pulls_commented(d)| (14)
¢11(r, d) = |pulls_commentedso(d)| (15)

Next, we let last(d) denote the most recent review activity
of developer d and last(d).day be the most recent day when
developer d reviewed or commented a pull request. We let
r.day denote the day when the new pull request r was sent.
Then we design feature 12 in Equation 16 as the inverse of
the distance in days between r and last(d).

¢12(r, d) = (r.day — last(d).day + 1)_1 (16)

Thus, if r was sent in the same day that d reviewed another
pull request, ¢12(r,d) is 1. If d last reviewed another pull
request one day before r was sent, ¢12(r, d) is 0.5.

E. DAYS OF THE WEEK

Some developers temp to review pull requests during the
weekdays (Monday to Friday) but not the weekend [14].
Some developers can review pull requests in the weekend
(Saturday and Sunday). Developers’ availability has an effect
on the review activity. As such, we design feature 13 in
Equation 17, where pullsyqy(r, d) refers to the set of pull
requests reviewed by developer d on the day of the week
when the pull request r was sent.

¢13(r, d) = |pullsgay(r, d)| (a7

For example, if r was sent on Friday, feature ¢13(r, d)
computes the total number of pull requests reviewed by d on
Friday.

F. NUMBER OF FILES CHANGED IN A PULL REQUEST

We let files(r) denote the number of files changed in pull
request . We let avg(files(d)) be the average number of files
changed per pull request for all pull requests reviewed by d.
Then we design feature 14 in Equation 18.

$1a(r, d) = (files(r) — avg(files@)| + ™" (18)

Thus, if the number of files changed in r equals the average
number of files changed per pull request reviewed by d,
14(r,d)is 1.

G. FEATURE SCALING

Features with a wide range of values can be detrimental
when training machine learning models. Many models tend
to perform better when there is not a wide variation in the
range of values for a given feature. To make different features
be comparable to each other, we perform feature scaling to
normalize all features to the same scale. Given some feature
¢, we let ¢.min denote the minimum observed value and let
¢.max be the maximum for that feature in the training set.
A feature may also have values present in the testing set that
are larger than the observed maximum or smaller than the
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observed minimum found in the training set. To accommo-
date these scenarios, we scale the features in the testing and
training dataset as follows:

0 if ¢ < ¢p.min

g =) _PTOMIn ik min < & < ¢.max (19)
¢.max — ¢.min
1 if ¢ > ¢p.max

V. EMPIRICAL EVALUATION
This section discusses our empirical evaluation of the pro-
posed reviewer recommendation approach.

A. DATA COLLECTION

We evaluate the proposed reviewer recommendation
approach over 12 open-source projects collected from
GitHub using GitHub API'. These projects are the most
forked projects. They have 3,235 watches, 56,629 stars and
19,989 forks on average in GitHub. They are popular and
widely used. Each contains more than 1,000 closed pull
requests. Then we discard pull requests without reviews.
Some pull requests have normal conversation comments
but do not have reviews. Some pull requests have neither
comments nor reviews. These pull requests are discarded.
Because core members who submit pull requests temp to
have other developers review their requests, self-reviewed
pull requests do not represent such normal behavior [4]. Thus,
pull requests that are reviewed by the same developers who
make the requests are also discarded. Finally we collect
a total number of 43,986 pull requests. For each project,
those developers who have reviewed others’ pull requests are
identified as the reviewer candidates.

The statistics of our data are shown in Table 1. Column
“Project” contains the project names. Column ‘“Language”
shows to the programming language that each project was
written in. Column ‘“Time Range” shows the time range
when the pull requests were sent. Column “Pull Request
Selected” shows the total number of selected pull requests
for each project. Column “Top-1" shows the percentage of
pull requests that are reviewed by the most active devel-
oper (i.e., the developer who review the most times). The
most active developer represents the majority class for each
project. Column “Top-3” contains the percentage of pull
requests reviewed by the three developers who most reviewed
pull requests in the project. Column ‘“Top-5" shows the
percentage of pull requests reviewed by the five developers
who most reviewed pull requests in the project. Column
“Commits” shows the number of commits for each project.
Column “Reviewers” shows the number of reviewers who
have reviewed others’ pull requests in the project. These
reviewers are also contributors to the project.

These 12 projects have 204 reviewer candidates on aver-
age. This number is relative large. For example, we need to
identify the appropriate reviewers out of 370 candidates in

1 https://developer.github.com/v3/
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TABLE 1. Benchmark datasets.

Project Language Time Range Pull Requests Majority Classes Commits | Reviewers
Selected Top-1 Top-3 Top-5

tensorflow C++ 2015-11-2019-03 6,335 13.12% | 27.36% | 39.51% 51,974 370
opencv C++ 2012-07 — 2019-03 1,603 69.49% | 84.96% | 90.19% 26,395 70
bitcoin C++ 2010-12 - 2019-03 2,652 22.74% | 46.52% | 62.84% 20,117 233
electron C++ 2013-06 — 2019-03 3,279 33.88% | 68.62% | 79.04% 21,631 128
swift C++ 2015-11 -2019-03 6,843 18.35% | 38.37% | 48.17% 85,615 228
node JavaScript | 2015-11 —2019-03 11,039 39.88% | 55.31% | 65.76% 26,762 447
react JavaScript | 2013-06 —2019-03 2,292 35.56% | 69.90% | 77.72% 10,856 261
keras Python 2015-03 — 2019-03 1,416 60.78% | 91.68% | 96.02% 5,104 139
pandas Python 2015-03 —2019-03 3,774 70.48% | 80.14% | 87.38% 19,218 138
scikit-learn Python 2010-09 —2019-03 1,973 59.91% | 80.01% | 89.24% 23,898 121
jekyll Ruby 2010-11 - 2019-03 918 57.84% | 78.22% | 85.50% 10,448 50
rails Ruby 2010-09 — 2019-03 1,862 30.56% | 50.50% | 63.23% 73,110 261

the tensorflow project. The project Node.js has the maximum
number (11,039) of selected pull requests, 447 reviewers
candidates and 26,762 commits. The project jekyll has the
minimum number (918) of selected pull requests, 50 reviewer
candidates and 10,448 commits. For tensorflow, bitcoin and
swift, the Top-1 majority reviewers reviewed less than 30%
of the pull requests, which indicates that there are several
active reviewers in these teams. For opencv, keras and pandas,
the Top-1 majority reviewers reviewed more than 60% of
the pull requests, which indicates that one reviewer in each
project is responsible for most the pull requests.

B. EVALUATION METRICS

We split the dataset into multiple folds. For each pull request
from a test fold, to test the model, we use the learned
weights to compute the weighted scoring function s(p, c) for
each reviewer candidate. We then rank all the candidates in
descending order based on their score values. We compare the
ranking result with the ideal ranking in which the candidates
who are reviewers should be listed at the top. Finally, the over-
all system performance is computed by pooling together the
ranking results from all test folds. We use the following
evaluation metrics to assess the ranking performance.

e Accuracy@k represents the percentage of pull requests
that at least one correct recommendation appears within
the top k positions in the ranked list.

o Mean Average Precision (MAP) is defined as the mean
of the Average Precision (AvgP) values across all the
queries. It is a standard metric measuring the overall
ranking performance of an IR system [12].

10 _ Z

AvgP Prec@k
MAP =) AvgPlq) AvgP frec™h
q=1 keK

20
T4 (20)

10l

Here Q denotes the set of all queries (i.e., pull requests),
K denotes the set of the positions of the positive
instances (the candidates who are reviewers) in the
ranked list. Prec@k denotes the precision over the top
k instances in the ranked list:

# of relevant docs in top k

Prec@k =
rec T

21
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e Mean Reciprocal Rank (MRR) [15] is a metric measur-
ing the ranking performance on the first recommenda-
tion, where first, is the position of the first positive
instance (the first candidate who is a reviewer) in the
ranked list, for each query ¢:

1 10l

MRR = — L (22)
101 = firsty

C. LEARNING TO RANK & HYPERPARAMETERS

As shown in Equation 1, our ranking model s(p,c) is a
weighted sum of different features, where each feature cap-
ture a specific type of relationships between a pull request p
and a reviewer candidate d. To train the model parameters w;,
we use the SVM’@ package [16], which is a implementation
of a learning-to-rank approach [17]. In this learning frame-
work, learning w means solving the optimization problem
shown in Equation 23, where R denotes the set of pull
requests in a training set, P(r) is the set of positive instances
(reviewers for pull request r), and N(r) is the set of negative
instances (non-reviewers for pull request r).

The optimization procedure of this learning technique tries
to optimize the model parameters so that the scoring function
can rank the candidates that are known to be the actual
reviewers of a pull request at the top of the ranked list for
that pull request.

L. 1 2
minimize: J(w, £) = §||W|| + CZSrpn

subject to: w! &(r, p) — W ®(r,n) > 1 — &y
Erpn > 0

VreR, peP(r), ne N(r) (23)

To tune the size of the training dataset /R and the number
of negative instances per pull request A (r), we compute
learning curves for two different projects: tensorflow and
rails. For the tensorflow project, the latest 1000 pull requests
are used for testing, the next 500 pull requests are used for
validation, the rest 4835 pull requests are used in the pool of
training examples. Similarly, for the rails project, the latest
1000 pull requests are used for testing, the next 500 are used
for validation, and the rest 9539 are used in the training pool.
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To compute the learning curves, we repeatedly train the
ranking model on |R| pull requests. At the beginning, we use
the newest 10 pull requests from the training pool in R. Then
we use the newest 50 pull requests in R. With an increments
of 50, we continue to use the newest 100 pull requests and
then up to all the pull requests from the training pool. Figure 1
shows the learning curves for |R|. Both MAP and MRR grow
obviously when the number of training pull requests in R
grows from 10 to 500. However, beyond 500 pull requests,
the performance in terms of MAP and MRR stays mostly
flat. We observe that the two different projects have similar
behavior. Therefore, we choose training sets |R| to be 500 for
all twelve projects in the remaining experiments.

To tune the number of negative instances (non-reviewers
for pull requests) N (r), we use a similar approach. First,
we use the latest 500 pull requests from the training pool
as the training examples R. Then we repeatedly train the
ranking model as we increase the value of N(r). At the
beginning, we set /' (r) to be 10. Then we increase N (r) with
an increment of 30 and tune N (r) up to 250. Figure 2 shows
the learning curves for A/ (r), where the performance in terms
of MAP and MRR grows as A/ (r) increases from 10 to 100.
Beyond 100, the learning curves of A/(r) stay flat. Therefore,
we fix N(r) to be 100 in the following experiments.
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Next, as shown in Equation 23, we tune the capacity
parameter C of the ranking SVM model. First, we set the
training size R to be 500 and the number of negative instances
per pull request N (r) to be 100. Then we repeatedly train
the ranking model by increasing C from 0.1 to 1000. The
learning curves of C is shown in Figure 3, where both MAP
and MRR increase substantially as C increase from 0.1 to
100. The learning curves become stable when C grows from
100 to 1000. Therefore, we let C to be 100 in the remaining
experiments.

D. SPLITTING THE DATASET
Before splitting the dataset, we sort the pull requests of
each project chronologically based on their create timestamp.
For all the projects, we split their sorted pull requests into
K equally sized folds fold;, fold,, ..., foldx, where fold;
contains the oldest pull requests while foldg contains the
most recent pull requests. Based on the tuning results to be
discussed in the following section, we let each fold con-
tain 500 pull requests. Then the total number of folds K can
be computed as the number of pull requests divided by 500:
# of pull requests
B 500
Therefore, the large projects tensorflow, bitcoin, electron,
swift, node.js, react and pandas are split into 13, 6, 7, 14, 22,
5 and 8 folds, respectively. The pull requests from opencv,
keras, scikit-learn, jekyll and rails are split into 4, 3, 4, 2 and
4 folds respectively. The ranking model is then trained on
foldy and tested on foldy41, forall 1 <k < K.

K (24)

E. RESULTS AND COMPARISONS
We compared our learning-to-rank approach with the baseline
and a state-of-the-art approach:

1) The majority class is used as the baseline. It shows the
percentage of pull requests reviewed by the top-k (k =
1, 3, 5) developers who most reviewed pull requests in
the project.

2) CoreDevRec [11] uses 11 attributes to measure the
social relationship, file location and activeness of
developers. It uses these 11 attributes to classify pull
requests to different developers.
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TABLE 2. Accuracies per project.

CoreDevRec Learning-to-Rank
Baseline Accuracy Accuracy

Project Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 MAP MRR Top-1 Top-3 Top-5 MAP MRR
tensorflow | 13.12%  27.36% 39.51% | 43.71% 61.90% 70.43% 0.507 0.585 | 51.80% 74.80% 82.50% 0.643 0.656
opencv 69.49%  84.96%  90.19% | 8551%  93.99%  95773% 0.873 0911 | 85.59% 96.19% 98.50% 0.899 0911
bitcoin 22.74%  46.52%  62.84% | 37.24%  63.57% 73.719% 0401 0.540 | 45.30% 70.80% 81.10% 0.525 0.608
electron 33.88%  68.62%  79.04% | 46.13%  70.44% 8297% 0.581 0.601 | 55.30% 76.60% 86.40% 0.611 0.687
swift 18.35% 3837% 48.17% | 3420% 51.50% 60.70% 0.357 0.513 | 46.80% 69.30% 81.70% 0.580  0.608
node 39.88% 5531% 65.76% | 41.10%  67.60% 72.40% 0.529 0.572 | 48.70% 71.90% 76.20% 0.429  0.622
react 3556%  69.90%  77.72% | 34.30%  62.710%  73.10% 0.397 0513 | 37.30% 70.30% 80.00% 0.492 0.543
keras 60.78%  91.68%  96.02% | 62.71%  9533% 97.19% 0.713  0.762 | 61.37% 96.33% 99.01% 0.731 0.746
pandas 70.48%  80.14%  89.24% | 67.30%  88.10% 94.90% 0.703 0.794 | 73.80% 91.70% 96.70%  0.788  0.834
scikit-learn | 59.91%  80.01%  89.24% | 65.90%  83.60%  88.10% 0.688 0.771 | 73.50% 93.30% 97.10% 0.771  0.837
jekyll 57.84%  7822%  85.50% | 70.10%  87.90%  95.60% 0.753 0.816 | 83.10% 97.50% 99.20% 0.849  0.907
rails 30.56%  50.50%  63.23% | 46.30%  70.40% 81.80% 0.593 0.603 | 62.20% 84.20% 90.60% 0.707 0.751

Table 2 shows the experimental result. For tensorflow and
swift, their baseline Top-1 majority classes are less than
20%, their Top-3 majority classes are less than 40%. Thus,
multiple developers in these two projects frequently review
pull requests. Our learning-to-rank approach achieves better
performance than the baseline and the CoreDevRec approach
in these two projects. More specifically, our learning-to-
rank approach reaches 51.8%, 74.8% and 82.5% for Top-1,
Top-3 and Top-5 recommendations respectively for the ten-
sorflow project. For swift, our approach reaches 46.8%,
69.3% and 81.7% for Top-1, Top-3 and Top-5 recommenda-
tions. In terms of MAP and MRR, our approach outperforms
CoreDevRec as well.

For bitcoin, electron, node.js, react and rails, their base-
line Top-1 majority classes are less than 40%, their Top-3
majority classes are less than 70%. These projects have a
small group of developers taking charge of the review work.
In these projects, our learning-to-rank approach outperforms
the baseline and the CoreDevRec approach. For example,
the baseline Top-5 majority classes are 62.84%, 65.76%
and 63.23% for bitcoin, node.js and rails respectively. The
Top-5 accuracies of CoreDevRec for these three projects are
73.79%, 72.4% and 81.8%. Our learning-to-rank approach
achieves the Top-5 accuracy of 81.8%, 76.2% and 90.6% in
these three projects. For all these five projects, our learning-
to-rank approach achieves higher MAP and MRR than the
CoreDevRec approach.

For opencv, keras, pandas, scikit-learn and jekyll, their
baseline Top-1 majority classes are larger than 50%. More
than half of the pull requests were reviewed by a single devel-
oper. This shows that there is a developer who takes charge
of much of the review work in each of these project. Again,
for these projects except keras, our learning-to-rank approach
outperforms the baseline and the CoreDevRec approach. For
keras, CoreDevRec has a higher Top-1 accuracy and higher
MRR value. But learning-to-rank has higher Top-3, Top-5 and
MAP values than CoreDevRec in keras.

For all the twelve projects, our learning-to-rank approach
outperforms the baseline in terms of Top-1, Top-3 and
Top-5 recommendations. Our learning-to-rank approach has
higher MAP values than CoreDevRec for all these projects.
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Overall, our approach recommends the suitable reviewers
within the top-1 recommendation for over 80% of the pull
requests in opencv and jekyll. It recommends the suitable
reviewers within the top-5 recommendations for over 90%
of the pull requests in opencv, keras, pandas, scikit-learn,
jekyll and rails. Our approach outperforms the baseline and
CoreDevRec.

F. FEATURE SELECTION

The results reported in the previous subsection are obtained
using all 14 proposed features. However, when used in con-
junction with other features, some features may be redundant.
Some features may also be irrelevant to the task. In this
subsection we seek to justify these features’ utility for this
task. More exactly, a feature selection technique is applied in
order to answer two research questions:

1) Can feature selection selects a subset of features that

give better performance than using all the features?

2) What features are more important for the reviewer

recommendation task?

In order to answer the two research questions, we perform
feature selection by using the greedy backward elimination
algorithm [18], [19]. According to the algorithm, it greedily
removes a feature from the current feature set at each iteration
to maximize the MAP on the testing dataset. Then it returns
the feature set that achieves the best MAP across all iterations.

First, we use the splitting strategy described above to split
a dataset into K folds. Then we set Dy, = foldy and Dyesr =
foldy 41 for all folds 1 < k < K — 1 when running the greedy
backward feature elimination algorithm. We then compute the
MAP by pooling together the results from K — 1 testing folds:
fold, to foldk .

1) ANSWER TO QUESTION 1

We only performed feature selection on the larger size
projects including tensorflow, bitcoin, electron, swift, node.js
and pandas. We applied the Mann-Whitney U Test [20] to
test if there exists a significant difference between the MAP
obtained using a selection of features and the MAP obtained
using all the features. Table 3 shows the feature selection
results. Results show that applying feature selection achieves
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FIGURE 4. Feature selection histograms.

better performance in terms of MAP for all six projects. How-
ever, the p — value in Table 3 are all greater than 0.7, which
means that there is no a significant difference in terms of
MAP between using feature selection and using all features.
Hence, to answer the first question, when compared with
using all the features, automatic feature selection can select a
subset of features but overall achieves similar performance.

2) ANSWER TO QUESTION 2
Figure 4 shows a histogram for each project. Each histogram
shows the number of test folds that a feature was selected.
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TABLE 3. MAP comparison: Feature selection versus all features.

Project # of test MAP across all test folds p value
folds Feature Selection  All Features
tensorflow 12 0.652 0.643 0.738
bitcoin 5 0.531 0.525 0.746
electron 6 0.620 0.611 0.881
swift 13 0.588 0.580 0.837
node 21 0.437 0.429 0.792
pandas 7 0.792 0.788 0.843

The corresponding radar charts are shown on the right hand
side. Along the circumference are different features. The
radius indicates the number of times that each feature is
selected. Take the tensorflow project for example, there are
K = 12 test folds. We select a feature set for each of the
12 test folds. Figure 4 shows that features ¢ is selected in all
12 folds, whereas feature ¢14 is selected only twice.

As shown in Figure 4, feature ¢4 and ¢5, which measures
the number of pull requests that were sent by the requester
and reviewed by a developer, are the most important features
for all six projects. Feature ¢4 is selected in all the test folds
across all six projects. Feature ¢, which measures the file
path similarity between files changed in a pull request and
files modified by a developer, is another important features.
Feature ¢ is selected in all test folds for four projects. Feature
¢>, which measures the file path similarity between files
changed in a pull request and files reviewed by a developer,
helps on all projects as well. Feature ¢3, which measures the
lexical similarity between the new pull request and old pull
requests reviewed by a developer, although less important,
is selected in many test folds for all projects except pandas.
Feature ¢g and ¢, which count the number of pull requests
reviewed by a developer, are useful for tensorflow and swift.
Feature ¢1», which measures the recency of a developer’s
review activity, is useful for electron.

To summarize the answer to the second question, feature
phiy, ¢, ¢4 and ¢s are the most important features. Feature
@3, P3, o and ¢, also provides complementary information
that helps improve the ranking performance for the reviewer
recommendation task.

VI. CONCLUSION

The pull-based development model is an emerging software
development paradigm to support distributed development.
A developer who wants to contribute to a project can request
an integration of the code changes by sending a pull request.
Upon receiving a pull request, the development team will
review the changes and make a decision to either accept or
reject the changes. In this work, we introduced a learning-to-
rank approach to emulate the reviewer recommendation pro-
cess employed by the development team. Our approach uses a
ranking model to rank all the reviewer candidates for a given
pull request. The ranking model leverages fourteen features
to characterize useful relationships between a pull request
and reviewer candidates. Experimental evaluations on twelve
open-source projects show that our approach can recommend
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the suitable reviewers within the top-5 recommendations for
over 76% of the pull requests in all the projects. Furthermore,
the proposed approach outperforms the baseline and a state-
of-the-art approach CoreDevRec.

Feature evaluation experiments employing greedy back-
ward feature elimination show that the most important fea-
tures are feature ¢4 and ¢s, which count the number of
previously resolved pull requests sent by the requester and
reviewed by a developer. The feature ¢, which computes the
file path similarity between files changed in the pull request
and files previously modified by a developer, is another
important feature.

The proposed adaptive ranking approach is general enough
to be applied to software projects that contain a sufficient
amount of commit history information and a sufficient num-
ber of previously resolved pull requests.

In future work, we plan to integrate additional types of fea-
tures such as features that leverage the comment network [7].
We also plan to perform evaluations of the proposed approach
on more software projects.
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