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ABSTRACT Against complex background containing the tiny target, high-performance infrared small target
detection is always treated as a difficult task. Many low-rank recovery-based methods have shown great
potential, but they may suffer from high false or missing alarm when encountering the background with
intricate interferences. In this paper, a novel graph-regularized Laplace low-rank approximation detecting
model (GRLA) is developed for infrared dim target scenes. Initially, a non-convex Laplace low-rank regular-
izer instead of the nuclear norm is employed to boost the accuracy of heterogeneous background estimation.
Then, to maintain the intrinsic structure between background patch-image, the graph regularization is
incorporated in the detecting model. Besides, aiming at reducing the nontarget outliers, a reweighted l1 norm
with nonnegative constraint is used. Finally, the proposed model is extended to a generalized framework
(G-GRLA) by replacing different non-convex rank functions. With the help of the alternating direction
method of multiplier (ADMM), the solution of the proposed model is obtained by an iterative optimization
scheme. The experimental results on extensive actual infrared images present the superior performance of
our proposed method to compare with the state-of-the-art methods.

INDEX TERMS Small target detection, nonconvex low-rank regularizer, manifold information, graph
regularization, reweighted l1 norm with nonnegative constraint.

I. INTRODUCTION
Small infrared target detection, which aims to localize the
suspicious incoming target from acquired infrared images,
has aroused increasing attention as a key technology of
infrared search and tracking applications (IRST). It has a
wide range of applicability in plenty of military projects,
such as automatic infrared target recognition, infrared guid-
ance and antimissile [1]–[3]. However, suspicious projected
targets generally present point-like structure at a far imag-
ing distance, losing most of specific characteristics, such
as detectable shape and texture. And the point target with
concentrated brightness may be dispersed into blurred spots
in unfavorable weather conditions, reducing target contrast.
In addition, infrared imagemay be contaminated by the ambi-
ent noise and the inherent sensor factors. Moreover, small
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target would be immersed into clutter edges in sky scene,
obscured by sea glint in oceanic background, or interfered
by artificial building. Therefore, it is always a challenge and
research hotspots to detect small target from complex infrared
background.

Numerous advanced infrared small target detection meth-
ods have been proposed in recent years, which can be coarsely
categorized into two groups, namely, multi-frame detection
and single-frame detection.With some prior knowledge about
target, such as shape and velocity, the multi-frame detec-
tion algorithms accomplish target detection task very well
via the usage of spatial-temporal information in infrared
sequences [4]. The state-of-the-art multi-frame detection
algorithms include generalized likelihood ratio test [5],tem-
poral profiles filtering [6], Markov random field [7], convo-
lution neural network (CNN) [8], pipeline filtering [3] and
so on. These approaches have achieved encouraging perfor-
mance in the cases that background is assumed to be slowly
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transitional and the target trajectory is regarded as consistent
between adjacent frames [9]. However, when encountering
high-speed targets like anti-ship missile, the background will
change rapidly due to the fast motion between target and
imaging device and the target continuity may be destroyed
because of the jitter of the infrared sensing platform [10].
Their performance degrades seriously. For these reasons,
the study of single-frame infrared small target detection is of
great essential for practical IRST applications.

For the single-frame detection, conventional filtering
methods [11]–[13] based on the assumption of background
consistency are suitable for the simple homogeneous back-
ground but sensitive to the strong clutter and pixel-sized noise
with high intensity in complex scenes. Under the hypothesis
of regional saliency of target, saliency-based detection meth-
ods [14]–[20] delineate the dissimilarity between target and
local area to characterize target singularity for highlighting
target while neglecting background. However, these methods
might be dull to target but sensitive to strong edges or target-
like glint because the interferences may be more noticeable
than real target with respect to the view of thermal brightness.

Recently, low-rank recovery theory [21] have been widely
applied in image processing, such as object detection [22],
background subtraction [23], image denoising [24].
Gao et al. [9] firstly quoted the theory to single-frame detec-
tion task under the prior assumptions of target sparsity and
background nonlocal correlation. They proposed a repre-
sentative work termed as Infrared Patch-Image (IPI) model,
which transforms the small target detection task into a low-
rank recovery problem [21]. The IPI model is formulated as:

min
L,S
||L||∗ + λ||S||1 s.t. D = L+ S (1)

where the nuclear norm || · ||∗ as the background patch-image
constraint is the sum of singular values of a matrix. || · ||1 is
the l1-norm as regularization of target patch-image, and λ is
a tradeoff between the low-rank and sparse components.

A. MOTIVATION
Although IPI model achieves promising detection perfor-
mance in some scenarios, it still has some limitations when
facing extremely heterogeneous backgrounds. At first, using
the nuclear norm as the constraint of background patch-image
leads to inexact estimation of background. The inherent rea-
son lies in that the nuclear norm denotes the sum of all sin-
gular values rather than handling them equally as the matrix
rank function does. It penalizes the larger singular value
determining the background component more heavily than
smaller ones, which will result in the absence of background
information. Furthermore, the missing background informa-
tion would be left in target image, becoming false alarm.
In addition, although the way of using the sliding window
raises the redundancy of the background features, it destroys
the intrinsic structure of infrared image. Usually, the damage
of the image structure will further deteriorate the recovery
of the background. Finally, employing a constant tradeoff

FIGURE 1. Approximation of different non-convex rank function to the
actual rank in terms of varying singular values.

may be irrational since the invariable threshold rigidly deletes
values less than itself. Therefore, under the scene with both
highly complex background and less intensity target, an unco-
ordinated tradeoff would result in high false or missing alarm.

To address the above drawbacks, we propose a novel small
target detection model, named as graph-regularized Laplace
low-rank approximation (GRLA). One of our main consid-
erations is how to obtain an accurate background estima-
tion under limited image patches. The larger singular values
should be less penalized while the smaller ones should be
more punished. In order to cater to the different punishment
degree of singular values, we introduce a nonconvex low-rank
regularizer called Laplace norm. Fig. 1 shows the advantage
of Laplacian norm in approaching real rank compared with
other rank functions. As shown in Fig. 1(a), the nuclear norm,
arctangent rank function, Schatten 0.3-norm and Schatten
0.5-norm deviate significantly from the true rank when the
singular values are larger than 1. By comparison, the Laplace
norm (denoted by the black curve) fits the rank function better
with the increase of singular values. In addition, the approx-
imation quality can be adjusted by its parameter (as shown
in Fig. 1(b)). Other one is that the manifold information is
often used to preserve the intrinsic structure of low dimen-
sional data [25]. How to explore the manifold information to
preserve the background structure in small target detection
problem is eagerly expected. Inspired by Ref. [26], graph
regularization is exploited to constrain the background patch-
image in our proposed model. Because the graph regulariza-
tion as smooth operator can not only preserve the structure of
background, but avoid introducing other interferences during
the detection process. Finally, the sparse reweighted scheme
is used to make the constant tradeoff adaptive. With the
above considerations in mind, a novel single-frame small
target detection framework is presented. The main contri-
butions of the proposed model are summarized as three
folds:

1) Laplace low-rank regularizer is introduced instead of
the traditional nuclear norm. It can take unequal treatment to
different rank component and achieve more complete back-
ground recovery. A sparse reweighted method is then used to
adjust the tradeoff and eliminate the target-like false alarm in
target image.

2) A nearest neighborhood graph regularization is con-
structed to preserve the inherent structure of patch-image.
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Finally, the proposed method is extended to a generalized
framework via using different nonconvex rank functions.

3) With the help of ADMM [27], an efficient algorithm is
designed to solve the proposedmethod, in which the subprob-
lem of nonconvex Laplace norm minimization is solved by
recently developed generalized weight singular value thresh-
old (WSVT) [28].

Extensive experiments on various real infrared images
show outperforming performance of the proposed method
comparedwith some state-of-art approaches in terms of quan-
titative indicators and subjective visual.

The remainder of the paper is organized as follows.
In Section II, we review existing infrared small detection
methods. Section III introduces the construction of the pro-
posed method. Section IV gives the optimization of the pro-
posedmethod and extends themethod to a generalizedmodel.
SectionV presents the experimental results. SectionVI shows
the discussion of parameter settings, algorithm convergence
and complexity. In Section VII, we conclude this paper.

II. RELATED WORK
Recent years havewitness great progress in infrared small tar-
get detection that covers two research interests: Track Before
Detection (TBD) method and Detection Before Track (DBT)
method. TBDmethods can use the adjacent frame knowledge
to enhance targets and suppress residual false alarm by using
the spatial-temporal information in sequence image [5], [6].
Here, we will briefly go over the latter type of approaches,
to which the proposed method is belonging. Typical
DBT methods include single-frame detection approaches
depending on image filtering, human visual system (HVS),
pattern recognition and low-rank recovery theory.

To relaxed the sensitivity of traditional filtering methods
to heavy noise or strong clutters, some filtering methods
based on background content guidance are proposed such
as edge directional TDLMS [12], new Tophat filter [29].
Unlike the above filtering methods, some methods attempt
to find suspicious target region by delineating the local
contrast of central area and its neighboring ones inspired
by HVS. Chen et al. [14] put forward to use local contrast
measure (LCM) to pop out the small target and suppress
background clutters. Following this clue, an improved LCM
(ILCM) built on subblocks of infrared image was designed
in Reference [30]. Furthermore, several saliency detection
schemes guided by multiple successive stages have been
proposed for improving the detection accuracy. For instance,
Qin and Li [15] proposed a novel LCM by employing dif-
ference of Gaussian filter and novel local saliency mea-
sure to suppress pixel-sized noises with high brightness.
Yao et al. [31] suggested a coarse-to-fine detection system
combing structured background recovery and unstructured
clutter suppression. Wei et al. [32] provided a multiscale
patch-based contrast measure (MPCM) to increase target
contrast. Different from the methods that calculate local con-
trast using raw pixel values, some current methods integrate
multiple features (e.g. information entropy, scale, direction,

spatial distribution and variance-level features) to deal with
the deficiency of single feature in gray level, such as method
based on flux density jointing direction diversity [10], mul-
tiscale gray and variance difference measures (MGVD) [16],
derivative entropy-based contrast measure (DECM) [19].

The small target detection task is usually regarded as
a classification problem in pattern recognition-based meth-
ods, such as random walker [33], [34], convolutional neural
network [35]. These methods are workable in scenarios
covered by training feature samples or labels that include
various small targets and clutters. However, practical long-
range infrared scenes are so intricate that the limited training
features hardly represent all the types of target and back-
ground [7]. Then, their performance might degrade rapidly.

In recent years, RPCA theory has been widely applied
in target/object detection or segmentation task and achieves
great success [22], [36], [37]. However, infrared small target
detection is different from general object detection and sepa-
ration tasks due to the unique characteristics of infrared small
targets and complex backgrounds. In the seminal work of
Gao et al. [9], the infrared small target detection task is
inverted into RPCA problem with the help of IPI model.
To ameliorate the performance of initial IPI model on
infrared small target detection, then a series of improved
schemes were developed one after another. Dai et al. [38]
adopted target likelihood parameter computed by steering
kernel as adaptive weight for the better suppression of clut-
ters. In another effort [39], a total variation regularization
was introduced to smooth the crisp edge in background.
Zhang et al. [40] used the lp-norm to constrain the target
patch-image. In methods [41], [42], different nonconvex low-
rank regularizers were used to constrain the background
patch-image to get more accurate background estimation.
In recent work [4], the IPI model was generalized to a novel
infrared patch-tensor model (IPT) to dig more information
from background patch-image. Zhang and Peng [43] and
Sun et al. [44] exploited different optimization methods of
tensor nuclear norm to improve the limitations of initial IPT.
To improve the robustness of IPI model, some methods based
on multi-subspace structure were designed, such as low-
rank and sparse representation (LRSR) [45], stable multi-
subspace learning methods (SMSL) [46]. Compared with
the above low-rank recovery-based methods, our proposed
method takes three considerations into account, namely accu-
rate background recovery, adaptive sparse penalty param-
eter and preservation of inherent structure of background.
Experiments demonstrate that our proposed method has bet-
ter robustness and effectiveness, and achieves outperforming
detection performance in comparison with the state-of-the-art
methods.

III. GRAPH-REGULARIZED LAPLACE LOW-RANK
APPROXIMATION MODEL (GRLA)
A. LAPLACE LOW-RANK REGULARIZER
Recently, some nonconvex low-rank approximation regular-
izers have achieved expressive performance in infrared small
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FIGURE 2. Illustration of background recovery under different rank relaxations. The first row shows the recovered background and
the second row presents the background residues. Column 1: Synthetic image. Column 2: Recovering result using nuclear norm. Column 3:
Recovering result using S1/2 norm. Column 4: Recovering result using Laplace norm. Red circles mark some salient points.

detection field [41], [42]. Different from the non-convex low-
rank constraint already used in small target detection frame-
works, Laplace norm [47] as rank relaxation is used in the
proposed model, which is defined as:

rank(L) ≈ ||L||γ =
min{m,n}∑
i=1

(1− e−σi(L)/γ ) (2)

where γ (γ > 0) is an approximation factor, controlling the
degree of approximation to the original rank. It is a pseudo
norm and its nice properties have been given in Ref. [47],
which also play important role in our proposed model.

To illustrate the advantages of Laplace norm induced low-
rank approximation, wewill test some nonconvexmatrix rank
relaxations on a synthetic data. Fig. 2 shows the recovering
results of a synthetic image using three rank relaxations:
nuclear norm, Schatten 1/2-norm (S1/2-norm) and Laplace
norm. We set up various geometric structures in synthetic
images, such as squares, triangles, pentagons, lines and
curves. Their sparse edges and corners pose great challenges
to background restoration. The second to fourth columns of
Fig. 2 present the background recovering effect of different
rank relaxations on synthetic image. As shown in the second
column of Fig. 2, it is easily observed that many sparse edges
are not fully recovered due to the limitation of nuclear-norm
relaxation. The third column of Fig. 2 shows the result of
background recovery using S1/2-norm relaxation. We see that
there are no edges but still exist substantial salient corners
that are not recovered. The fourth column of Fig. 2 displays
the result of Laplace norm approximation. It is seen that the
restoration is better than others. There is almost no significant
background residue.

B. NONNEGATIVE CONSTRAINT REWEIGHTED L1-NORM
FOR ENHANCING SPARSITY
As shown in the fourth column of Fig. 2, some weak cor-
ner point of geometries are still not recovered completely,
which are marked by red circles. Intuitionally, these points
have similar intensity to the infrared dim target. Considering

the drawbacks of l1-norm as the sparsity measure of target
patch-image, it would lead to a dilemma that the dim targets
may be over-shrank resulting in high missing alarm or the
nontarget points remain in the target image rising false
alarm [38]. Therefore, it is necessary to use an adaptive
shrinkage threshold to distinguish dim small target from
background residues. Moreover, the key prior information
that small target is usually more salient than its neighborhood
should not be ignored. Hence, the negative values generated
by matrix decomposition are unrelated to the target gray
values. Adding a non-negative constraint to the target sparse
measure will better fit the property of the target local saliency.
Combining the reweighted view [48] and non-negative con-
straint, the sparse constraint term of the target patch-image is
defined as the reciprocal form of gray value as following:

||WS � S||1 =
∑
i,j

wi,jsi,j (3)

where WS = {WS (i, j)} are adaptive weights for the
elements Si,j of S, which is described as:

Wk+1
S (i, j) =


1

Ski,j + ε
if Ski,j ≥ 0

0 if Ski,j < 0
(4)

where ε is a smoothing parameter to avoid division zero.

C. THE CONSTRUCTION OF GRAPH REGULARIZATION
As above mentioned, the background patch-image has low-
rank property owing to the nonlocal correlation in infrared
background. However, the intrinsic local geometric structure
of infrared background is destroyed in the construction of
patch-image. Therefore, how to effectively explore and pre-
serve the local structure of background patch-image will be
of great significance. Inspired by Reference [26], a nearest
neighbor graph is constructed to model and maintain the local
structural information. The construction process of graph
regularization is as follows.

Let D = [d1, d2, . . . , dP] ∈ RD×P be the constructed
infrared patch-image, in which P denotes the number of
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FIGURE 3. Graph construction on infrared patch-image.

patch image and each di (i = 1, 2, ...,P) represents the
ith vectorized image patch. L = [l1, l2, . . . , lP] ∈ RD×P is
the low-rank part representing the background patch-image.
li (i = 1, 2, ...,P) denotes the low-rank component of the
ith background patch. To preserve the intrinsic geometrical
structural in background patch-image, one may naturally
hope that if two patches di and dj are close in the intrinsic
manifold, their corresponding low-rank components li and
lj are also close or similar too. Following this, a nearest
neighbor graph G can be constructed by viewing each di as
its vertex. The weighted matrix of G is denoted asW. If di is
one of the k-nearest neighbors of dj, the weight is defined as:

Wij = e
−
||di−dj||22

σ 2w (5)

which is known as the heat kernel [49]. Wij is the
(i, j)th element of W, and σ 2

w is the variance of origi-
nal patch-image. Recall that the corresponding low-rank
components of any two background patches di and dj are
expected to maintain the same local structure among them.
To achieve this, a reasonable way is tominimize the following
function [49]:

1
2

P∑
i,j=1

||li − lj||22Wij =
1
2

P∑
i,j=1

(lTi li + l
T
i li − 2lilj)Wij

=
1
2
(2

P∑
i=1

lTi liHii − 2
P∑
i=1

lTi liWij)

= tr(LHLT)− tr(LWLT)
= tr(LMLT) (6)

where tr is the trace of a matrix, H is a diagonal matrix in

which Hii =
P∑
j=1

Wij, and M = H-W is the graph Laplacian

matrix. For a more intuitive observation, Fig. 3 shows the
construction of a graph on an infrared patch-image.

Taking the three parts into consideration, we develop
GRLA model for detecting small infrared target, which is
formulated as:

min
L,S
||L||γ + λ1||WS � S||1 + λ2tr(LMLT)

s.t. D = L+S (7)

where λ1 and λ2 represent the tradeoff between the sparse
constraint and graph regularization.

IV. OPTIMIZATION PROCEDURE OF GRLA MODEL
A. OPTIMIZATION PROCEDURE
In this section, we present how to solve GRLA model by
Alternating Direction Method of Multipliers (ADMM) [27].
The problem (7) is first converted to the equivalent type.

min
L,S
||L||γ + λ1||WS � S||1 + λ2tr(ZMZT)

s.t. D = L+S, L = Z (8)

Subsequently, the problem (8) is transformed as minimizing
the following augmented Lagrange function:

L = ||L||γ + λ1||WS � S||1 + λ2tr(ZMZT)

+ 〈Y1,D− L− S〉 + 〈Y2,Z− L〉

+
µ1

2
||D− L− S||2F +

µ2

2
||Z− L||2F (9)

where µ1 and µ2 are positive penalty parameters, Y1 and Y2
are the Lagrangianmultiplier, and 〈·, ·〉 stands for the standard
trace inner product, i.e 〈A,B〉 = trace(ATB). The minimiza-
tion of the problem (9) can be iteratively solved by alter-
natively updating every variable in the augmented Lagrange
function while fixing others. In the following, we give the
details for each iteration.
UpdatingLwhen fixing the latest values of other variables.

Lk+1 = argmin
L

L(L,Sk ,Zk ,Yk
1,Y

k
2, µ

k
1, µ

k
2)

= argmin
L
||L||γ +

〈
Yk
1,D− L− Sk

〉
+

〈
Yk
2,Z

k
− L

〉
+
µk1

2
||D− L− Sk ||2F +

µk2

2
||Zk − L||2F

= argmin
L

τ ||L||γ +
1
2
||L− Xk

L||
2
F (10)

where Xk
L = (µk1(D − Sk + Yk

1/µ
k
1) + µ

k
2(Z

k
+ Yk

2/µ
k
2))/

(µk1 + µk2). Due to the nonconvex property of Laplace-
norm, the conventional singular values threshold (SVT) [50]
algorithm fails in the subproblem (10). Fortunately,
as demonstrated in [51], the approximate solution of the
subproblem (10) can be obtained by the generalized weight
singular value threshold (WSVT) operator. The detailed
procedure of the subproblem (10) using WSVT is shown
in Algorithm 1.
Updating Swhen fixing the latest values of other variables.

Sk+1 = argmin
S

L(Lk+1,S,Zk ,Yk
1,Y

k
2, µ

k
1, µ

k
2)

= argmin
S

λ1||Wk
S � S|| +

〈
Yk
1,D− Lk+1 − S

〉
+
µk1

2
||D− Lk+1 − S||2F

= argmin
S

λ1

µk1

||Wk
S � S|| +

1
2
||S− Xk

s ||
2
F (11)
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Algorithm 1: Solving Laplace-Norm Minimization

Input: Lk , γ , τ , Xk
L, 3

0;
1 Initialize: t = 0, [U 6ii V] = svd(Xk

L);
2 For convenience, define ϕi(σ ki ) = 1− e−σ

k
i (L)/γ and

∂ϕi(σ ki ) is the derivative of ϕi(σ
k
i ) with respect to σ ki .

while not converged do
3 1: Solving 6t+1

4 ∂ϕi(σ ki ) =
1
γ
e−σ

k
i (L)/γ ,

6t+1
ii = max(6ii − (∂ϕi(σ ki )/γ ))

5 2: Convergence condition
6 ||6t+1

−6t
||F < ε

7 end
Output: Lk+1 = [U 6t+1 V];

whereXk
s = D−Lk+1+Yk

1/µ
k
1. The above problem is solved

by the conventional soft threshold operator [50].

Sk+1 = S λ1
µk1

Wk
s
(X kS ) (12)

UpdatingZwhen fixing the latest values of other variables.

Zk+1 = argmin
Z

L(Lk+1,Sk+1,Z,Yk
1,Y

k
2, µ

k
2)

= argmin
Z

λ2tr(ZMZT )+
〈
Yk
2,Z− Lk+1

〉
+
µk2

2
||Z− Lk+1||2F (13)

The solution of the Eq. (13) is obtained by setting the deriva-
tive of the equation with respect to Z to zero.

Zk+1 = (2
λ2

µk2

M+ I)−1(Lk+1 − Yk
2/µ

k
2) (14)

Updating Y1, Y2, µ1, µ2 when fixing the latest values of
other variables. For convenience and without loss of general-
ity, we initially set µ0

1 = µ
0
2 = µ

0.

Yk+1
1 = Yk

1 + µ
k (D− Lk+1 − Sk+1) (15)

Yk+1
2 = Yk

2 + µ
k (Zk+1 − Lk+1) (16)

The optimization procedure of the proposedmodel is outlined
in Algorithm 2.

B. GENERALIZE THE MODEL TO OTHER NON-CONVEX
LOW-RANK APPROXIMATION CASE
Recently, many researchers have concentrated on how to
achieve better low-rank recovery by developing different
nonconvex norm instead of nuclear norm [47], [52]. Here,
we extend our model into a generalized nonconvex model
with the help of different nonconvex rank functions, named as
Generalized Graph-regularized nonconvex low-rank approx-
imation model (G-GRLA). The generalized model can be
described as:

min
L,S
||L||NC−Norm + λ1||WS � S||1 + λ2tr(ZMZT)

s.t. D = L+S, L = Z (17)

Algorithm 2:GRLAModel for Detecting Small Infrared
Target
Input: Infrared Patch-image D, γ , λ1, λ2;

1 Initialize: L0
= S0 = Z0

= 0;Y0
1 = Y0

2 = 0;µ0
=

1.25
||D||2 ;µmax = 107; ε = 10−7; k = 0; ρ = 1.1;

2 while not converged do
3 Solving Lk+1 by Algorithm 1.
4 Solving Sk+1 by (12).
5 Solving Zk+1 by (14).
6 Solving Yk+1

1 by (15).
7 Solving Yk+1

2 by (16).
8 UpdatingWk+1

S by (4)
9 Updating µk+1 = min(ρµk , µmax)
10 Check the convergence condition

11
||D−Lk+1−Sk+1||F

||D||F
< ε or ||Sk+1||0 = ||Sk ||0

12 k = k + 1
13 end

Output: L and S;

where ||L||NC−Norm represents different nonconvex rank
functions.

ADMM [27] is still used to optimize the model. With other
equations unchanged, we only convert (10) to the following
problem:

Lk+1 = argmin
L

L(L,Sk ,Zk ,Yk
1,Y

k
2, µ

k
1, µ

k
2)

= argmin
L

τ ||L||NC−Norm +
1
2
||L− XL||

2
F (18)

Now we provide several possible examples as following:
For weighted Sp-norm, the problem (18) is effectively solved
using generalized soft-threshold (GST) [52]; For S1/2-norm,
we employ the half-threshold operator [53] to solve the prob-
lem; For arctangent rank function [54] and γ -norm [55],
they are optimized by difference of convex (DC) program-
ming [56]. As soon as obtaining Lk+1, the other variables
Sk+1, Zk+1, Yk+1

1 and Yk+1
2 are alternately solved by (12),

(14), (15) and (16) separately.

C. DETECTION PROCEDURE
In Fig. 4, we provide the whole schematic of GRLA model
for detecting small target. The detailed steps are as follows:

1) Constructing the infrared patch-image D via the same
patch-image construction as the IPI model.

2) Algorithm 2 is exploited to implement the target-
background separation.

3) According to the uniform average of estimators (UAE)
reprojection scheme, the background image fL and target
image fS can be reconstructed from the background patch-
image L and target patch-image S.
4) The final target is separated by an adaptive threshold,

which is determined by:

Tup = max(υmin, β+kσ ) (19)

VOLUME 7, 2019 85359



F. Zhou et al.: Graph-Regularized Laplace Approximation for Detecting Small Infrared Target

FIGURE 4. The Schematic of GRLA model for detecting small target.

where β and σ are the mean value and standard deviation
of the target image fE , respectively. k and υmin are constants
determined experientially.

V. EXPERIMENTAL ANALYSIS
In order to fully validate the proposed model, we conduct
experiments on extensive actual infrared scenes involving
different complex background and compare twelve state-of-
the-art methods in terms of subjective visual and objective
evaluation.

A. EVALUATION CRITERIONS
Several frequently used criterions are introduced to quanti-
tatively evaluate the performance of all tested algorithms for
comparison.

The probability of detection (Pd ) and the false alarm
rate (Fa) are the vital metrics to quantify the performance of
the detection methods. They are defined as

Pd =
number of true detections
number of actual targets

(20)

Fa =
number of false detections

number of images
(21)

A good detector should possess high Pd while having
low Fa at the same time. The receiver operating characteristic
(ROC) plots the tradeoff betweenPd andFa. Here, we assume
that the detected results are correct in the case when there
is positive pixel in the 5×5 window centered on the ground
truth.

Signal-to-clutter ratio (SCR) is widely used as a descriptor
of the target saliency, denoting the degree of difficulty in
detection and defining as:

SCR =
|µt − µb|

σb
(22)

where µt and µb are the average grayscale of the target area
and its surrounding region, respectively. σb stands for stan-
dard deviation of the neighborhood region. SCR-gain (SCRG)
represents the enhancement of target saliency before and after

FIGURE 5. Infrared small target and local background region in infrared
image.

processing. It is defined as:

SCRG =
SCRout
SCRin

(23)

where SCRin and SCRout are the SCR values before and after
target detection separately. Background suppression factor
(BSF) presents the background suppression ability of detec-
tion methods, which is formulated as:

BSF =
σin

σout
(24)

where σin and σout are the standard deviation of background
neighborhood in original image and the suppressed image.
The higher the SCRG and BSF values are, the superior the
performance of target enhancement and background suppres-
sion is. They are calculated in a local region, as presented
in Fig. 5. Suppose the target region is a × b, and d = 20 is
the neighborhood width.

B. BASELINE METHODS AND TEST DATASETS
Baseline Methods: Twelve state-of-the-art approaches are
involved in the experiments as baseline methods. Among
them, Max-Median [11] and Tophat [13] are filtering meth-
ods. ILCM [30], MPCM [32], WLDM [17] and LSM [18]
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TABLE 1. Summary of all tested methods and their detailed parameter settings.

are saliency-based methods. IPI [9], NIPPS [41], RIPT [4],
TV-PCP [39], SMSL [46] and NLRA [42] belong to low-rank
recovering methods. All tested methods and their parameter
settings involved in the experiments are listed in Table 1. They
are implemented using MATLAB 2018b on a PC with Intel
Core i5 CPU 3.4 GHz and 8GB RAM.
Test Datasets: In order to verify the stableness of the pro-

posed method to diverse scenes, extensive practical infrared
images including single frames and sequences are tested.
Considering that detecting weak small target from back-
ground with strong clutters is always a great challenge for
existing detection methods, a superior detection performance
for the extremely complex images carries more conviction
than relatively simple images. Hence, 18 infrared images
covering diverse target types and complex scenes are used to
exhibit the performance of the proposed method in following
experiments, as illustrated in Fig. 6. Their detailed informa-
tion is listed in Table 2. All small targets are markedwith cyan
box and enlarged to facilitate weak target observation.

C. EVALUATION OF THE PROPOSED ALGORITHM
1) ROBUSTNESS TO DIFFERENT SCENES
In the Fig. 6, the 18 infrared images with various scenes
have low spatial resolution/SCR values, noisy bright spot,
heavy cloudy/sea clutters and bright man-made buildings.
The size of small targets in these scenes varies greatly. For
example, as displayed in Fig. 6(c, h, m-p), the number of
pixels occupied by the target areas are less than 5× 5, liking
bright points in local background. The target containing in
the scenes of Fig. 6(b, e, q, r) are larger than the previous
ones, which possess the size range from 5 × 5 to 10 × 10.
There are some targets beyond the defined ranges of infrared
small target whose regions are greater than 10×10, as shown

in Fig. 6(a, d, f, k, l). Moreover, the intensity of targets
changes from extremely dim to very bright. The 3-D gray
distribution of separated targets using the proposed method is
given for intuitively observing, as shown in Fig. 7. Observing
the Fig. 7, it can be found that the target and background are
completely separated without any background components
left in target images. Under these scenes, it is fair to conclude
that the proposed method has good robustness for different
complex background, target size and intensity.

2) COMPARISON WITH THE STATE-OF-THE-ART METHODS
Qualitative Comparisons: In this subsection, the abil-

ity of clutter suppression and target detection of the pro-
posed model is demonstrated by compared with twelve
state-of-the-art methods qualitatively. Fig. 8- 9 present the
experimental results obtained by all tested methods on six
single-frame images. For the results of Max-Median filter,
the targets can be enhanced, but the strong edges and pixel-
sized noise are also enhanced at the same time, as illus-
trated in Fig. 8(b1,c1),9(a1,c1). It can be seen in the results
of TopHat operator that all targets are well detected. But
there are some strong edge residues in the detection map
owing to the usage of uncoordinated structural elements
to depict the background, such as Fig. 8(a2-c2),9(a2,c2).
Observing the results of ILCM, we can clearly see that
ILCM highlights the targets while outstanding other bright
non-target structures as well. In the results of MPCM, tar-
gets are enhanced remarkably and background clutters are
suppressed very well. However, when confronting with the
background with low signal-to-clutter ratio, some point-
like nontarget with high brightness still remain in the final
detection results, as illustrated in Fig. 8(b4,c4),9(a4-c4).
For WLDM and LSM, there are some clutter residues in
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TABLE 2. Detailed information of all tested infrared images.

FIGURE 6. The 18 real infrared images with diverse scenes. The labelled area is enlarged for better visualization.

FIGURE 7. For the 18 different complex scenes, (a)-(r) present the 3-D gray maps of separated targets using the proposed method.

their result maps, as shown in Fig. 8(a5,c5),9(a5,c5). From
the above observations, we can find that the filtering and
saliency-based methods may be not stable enough for com-
plex background.

The last six methods are all based on low-rank recovery.
Compared with the above methods, they have better per-
formance in background suppression. Specially, the result
maps of the last six methods, as shown in rows 2, 4 and 6
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FIGURE 8. Detection results obtained by 12 compared methods. For better visualization, the demarcated region is enlarged in the right up
corner.

of Fig. 8-9, have fewer clutter residuals. From the separated
target images of IPI, we notice that the real targets are well
detected, but some strong edges and bright spots are still
retained, such as Fig. 9(a7,b7). There are several salient
point false alarms in the results of NIPPS. From the results
of SMSL, it easily finds that there is not only salient point but
also clutters residuals, which shows that the subspace learn-
ing strategies may lack stability in these scenarios, especially
those with spot-like components. Some outliers are left in the
results obtained by TV-PCP, as shown in Fig. 8(c9). It may
be that total variation regularization can smooth strong edges
well but fail in pixel-sized points with high intensity. For
the separated target images achieved by RIPT and NRAM,
it is clearly that there are no non-target residues. How-
ever, the non-convex low-rank approximation within NRAM
might lead to over-restoration of background, i.e. taking the
target components as background, causing missing alarm
(as shown in Fig. 8(a11,b11) or weakening targets (as shown
in Fig. 9(a11-c11). The results of RIPT have several
sparse nontarget points because they own similar spar-
sity to small target such as Fig. 9(a12,b12). Different
from RIPT and NRAM, the sparse reweighted scheme,
graph regularization and Laplace norm are integrated
into the proposed model to overcome their drawbacks.

The detection results obtained by our model have less
clutter and noise residues under various complex back-
grounds, as illustrated in Fig. 8- 9. Therefore, the proposed
method has outperforming performance both in background
suppression and target preservation among the 12 tested
methods.
Quantitative Comparisons: Two objective indices SCRG

and BSF are used for evaluating the performance of the
proposed method and comparison methods quantitatively.
Table 3 gives the experimental data obtained by all tested
methods on Fig. 8-9. For the two metrics, the higher values
achieve, the better performance is. In this table, Inf is the
abbreviation of infinite which indicates that the target sur-
rounding area is completely shrink to zero, and ‘-’ denotes
that the target is undetected. Except for Inf, the first three
optimal results are also highlighted with green, yellow and
cyan blocks, respectively. In Table 3, it is clearly observed
that the scores of our method are all Inf in terms of SCRG
and BSF . It indicates that the local background clutters are
suppressed completely by our proposed method. The result
is consistent with the segmentation result shown in Fig. 7.
It shows that the proposed method achieves the best back-
ground suppression and target detection among 12 compari-
son methods.
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FIGURE 9. Detection results obtained by 12 compared methods. For better visualization, the demarcated region is enlarged in the right up
corner.

FIGURE 10. The ROC curves of detection results obtained using different methods (a) Sequence 1. (b) Sequence 2. (c) Sequence 3. (d) Sequence 4.
(e) Sequence 5. (f) Sequence 6. (g) Group 1. (h) Group 2.

To verify the robustness of the proposed method, we give
the ROC curves of all tested methods on six real infrared
sequences, as illustrated in Fig. 10(a-f). In addition,
the single-frame scenes are divided averagely into two groups
according to the target size, that is, from 1 × 1 to 5 × 5

and from 5 × 5 to 10 × 10. Then, the ROC curves of each
groups under all comparison methods are provided, as dis-
played in Fig. 10(g-h). It aims to estimate the stability of
the proposed algorithm for different size targets in different
scenarios. From the figures, we observe that the performance
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TABLE 3. Detection performance comparison by two evaluation metrics in Fig. 8-9.

TABLE 4. Average Pd and Fa obtained by proposed method.

of different tested algorithms varies greatly in sequences and
single-frames groups. But our proposed method achieves the
best performance for different backgrounds as compared with
baseline methods. It is noteworthy that Pd values of our
proposed method are less than TV-PCP in Sequence 4 and
RIPT in Sequence 6 when Fa is less than 0.5. However,
when the false alarm is greater than 0.5, the detection of
probability of the proposed algorithm will be greater than
that of the two compared methods, and even reach 100%
detection rate. The saliency-based methods obtain unsatisfac-
tory detection performance in Sequences 1-4 and two single-
frame groups. Observing the Fig. 10(g-h), it is clearly that
the methods based on low-rank recovery are more stable than
other methods in single-frame scenarios with different size
targets. Among them, our algorithm performs more robust
than the comparison methods. In conclusion, the ROC curves

of all tested results show that the proposed method have
obvious advantages in the robustness and effectiveness of
target detection compared with all experimental methods.

3) ROBUSTNESS TO NOISY SCENES
Except for the complex and changeable imaging background,
small infrared targets will be contaminated by various noise
derived from sensor and natural factors. It would result in
reducing the brightness and contrast of the target and declin-
ing the accuracy of detection. Here, two schemes are designed
to evaluate performance of the proposed method with respect
to different level noise. On one hand, white Gaussian noise is
added to 6 complex scenes that are selected from Fig. 7. Then,
different level noise is added to the selected images. The
proposed method is used to test the noisy images. When the
noise standard deviation is 10, the target detection and back-
ground suppression could be well achieved (Fig. 11(g-l)).
As the noise standard variance increases to 20, the proposed
method still locates the target exactly in Fig. 11(m,n,o,r), but
fails in Fig. 11(p). Nevertheless, the result is still acceptable
because the small target in Fig. 11(p) has been completely
submerged in the noise.

On the other hand, Monte-Carlo study is used to analyze
the noise influence for the proposed method with plenty
of white Gaussian noise realizations for each noise level.
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FIGURE 11. The images polluted by additive white Gaussian noise with standard deviation of 10 and 20 are shown in first and third rows,
and the second and fourth rows present the detection results by the proposed algorithm.

100 images are randomly selected from Sequence 5, then
each image is added with 4 different standard deviations
of Gaussian white noise, in which standard deviations is 5,
10, 15, and 20, respectively. In this condition, these noise-
added images can be divided into four groups based on
noise intensity (denoted as NA-Groups 1-4). Subsequently,
with the help of better denoising performance of nonlocally
centralized sparse representation (NCSR) [57], it is employed
to denoise the 4 groups of noise-added images. Then we
obtain four corresponding groups of noise-removed images
(denoted as NR-Groups 1-4). The proposed method is tested
on NA-Groups 1-4 and NR-Groups 1-4. Fig. 12 shows the
detection results of the proposed method on one image in
each group of images. Table 5 gives the average probability
of detection and false alarm rate obtained by the proposed
method for the eight groups of images. From them, we can
conclude that the higher the target contrast is, the easier it
is to detect. The proposed algorithm can still function if the
projected target could remain relatively salient in the local
area of the contaminated image.

VI. DISCUSSION OF THE PROPOSED METHOD
A. PARAMETER SETTINGS
In our proposed method, some critical parameters, such as the
sparse penalty, graph regularization weight, low-rank approx-
imation factor, patch size and sliding step, play key role in
affecting the fitness of the proposed method for various real
scenarios. These parameters can be selected experimentally.
However, the empirical approach is time-consuming and hard
to obtain the best detection performance due to lack of the
criterion for quantitative evaluation. Nevertheless, we can

FIGURE 12. Detection results of the proposed method for the noisy image
and the denoised image. Row 1: Noisy image with different noise level.
Row 2: Detection results of noisy images. Row 3: Denoised images. Row
4: Detection results of denoised images.

narrow the scope of their choice in applications by analyzing
the characteristics of different parameters.

1) SPARSE PENALTY λ1
As a compromise between low-rank and sparse components,
λ1 is an important factor in optimization process. Although
smaller sparse penalty can detect targets more steadily,
it would cause high false alarm rate. Conversely, larger value
can suppress strong clutter edge better, but it may reduce the
intensity of small targets and even cause missing detection.

85366 VOLUME 7, 2019



F. Zhou et al.: Graph-Regularized Laplace Approximation for Detecting Small Infrared Target

FIGURE 13. ROC curves of detection results obtained tuning different parameters. Row 1: Different sparse penalties λ1. Row 2: Different graph
regularization weight λ2. Row 3: Different approximation factors γ . Row 4: Different patch size. Row 5: Different sliding steps.

For simplicity in testing, we use λ1 = L/
√
max(m, n) as a

substitute of the sparse penalty λ1 and vary L from 4 to 6
with 0.2 interval. In the first row of Fig. 13, the ROC curves
of different L on Sequences 1-4 are given. From the figures,
it can be observed that the performance of the proposed
method changes little in the intervals. Nevertheless, when
L is too large, the detection performance is unsatisfactory,
especially in Sequence 2. In our paper, we set L in [4, 6] in
the following experiments.

2) GRAPH REGULARIZATION WEIGHT λ2
It controls the weight’s preservation degree to local structure
of background. Generally, the larger the weight of graph
regularization is, the less the background residuals are left in
the target image. But it may result in missing detection in the
case of overlarge weight, reducing the detection probability.

To tune the parameter finely, we take λ2 as G/
√
min(m, n),

instead of directly varying λ2. The second row of Fig. 13
presents the effect of λ2 with different G. From the illustra-
tion, it finds that the detection rate of the proposed method
would be reduced for over large or over small λ2. For instance,
the detection probability of G = 1 and G = 6 are low
in Sequences 1-4. The detection results of G within [2,5]
is acceptable. But G = 2 perform unstable compared with
G = 3, 4, 5 among all tested sequences. In order to adapt to
different scenarios better, we set G within the interval [3,5].

3) LOW-RANK APPROXIMATION FACTOR γ
Despite the usage of graph regularization weight, γ is also
a critical parameter to control low-rank approximation. For
Laplace norm, a smaller γ provides better approximation
for true background (as illustrated in Fig.1(b)). However,
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FIGURE 14. Convergence rates of the methods based on low-rank recovery.

TABLE 5. The average running time (/s) of each frame in Sequences 1-6.

when the factor is over small, it will wipe out some targets.
Therefore, fine tuning of the factor is also significant. Tomore
intuitively verify the impact of γ , we vary γ from 0.01 to
0.05 with 0.01 interval and show the ROC curves of their
detection results in third row of Fig. 13. From the figures, it is
easy to find that although γ = 0.3, 0.4, 0.5 keep the false
alarm very low, their detection probability is also low. The
detection performance of the algorithm gradually increases
with the decrease of γ = 0.01 seems a better choice for
Sequences 1-4 since it achieves the most stable detection
performance.

4) PATCH SIZE
Patch size has a significant impact on the computational
complexity and detection performance. A smaller patch size
reduces the computational effort while lessening the target
sparsity. Conversely, a larger patch size ensures the tar-
get sparser but also increases the sparsity of rare structure.
In order to balance the computational burden and detection
performance, we test our proposed method on different patch
size within the scope of [20,70] with ten intervals. The fourth
row of Fig. 13 shows the ROC curves. Observing the figures,
we find that the detection result of patch size among [20,60]
is acceptable. But when patch size increases to 70, the pro-
posed method performs worst. Taking all these into account,
we choose 30 as patch size because of its best robustness in
all tested sequences.

5) SLIDING STEP
The sliding step influences the computational complexity and
detection performance as well, which has a similar effect
to the patch size. That is, a large sliding step also reduces
the computational complexity and target sparsity, but the
detection performance will be degraded if the sliding step
is too large. To validate its role, the sliding steps changing
from 8 to 20 at intervals of 2 are tested on our experiments.
We display the ROC curves in the fifth row of Fig. 13.
As shown in the figures, it can be observed that with the
increase of step size, the detection performance decreases
gradually. However, when the step size is too small, it not
only does not improve the performance of the algorithm,
but increases the computational complexity, such as sliding
step 8. The best choice of sliding step is among 10 to 16, here
we pick 12.

B. ALGORITHM CONVERGENCE AND COMPLEXITY
ADMM is employed to solve GRLA and G-GRLA model,
which has been proved a O(1/k) convergence [58]. There-
fore, our solving scheme is ensured to converge. In Fig. 14,
we experimentally plot convergence curves of the proposed
method and comparison methods based on low-rank recovery
to evaluate their convergence. For comparison, when the
relative error is less than 10−7, the optimization iteration is
stopped for all test methods. Besides, the maximum relative
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error in Fig. 14 is taken as 0.002 for convenient observation.
From the figures, it easily finds that the convergence rate
of the proposed method is faster than IPI, TV-PCP, NIPPS
and SMSL, but slower than RIPT and NRAM. Furthermore,
we briefly discuss the complexity of the proposed method.
Given anM ×N image, m, n are the rows and columns of the
patch-image or mode-3 unfolding. For our proposed method,
the complexity of graph construction needsO(mnlog(n)). The
computational complexity of non-convex low-rank approxi-
mation depends on the number of final singular value decom-
position, where the final SVD step is O(Imn2). So the overall
complexity of our proposed method is O(mn(log(n) + In)),
where I denotes the numbers of iterations. The computational
complexity and average completion time of all testedmethods
for per frame in Sequences 1-6 are shown in Table 5. It is
clearly that the saliency-based methods consume less time
than the low-rank approximation methods, which is because
most of time consuming is occupied by expensive SVD in
every iteration for the low-rank approximation methods. Our
proposed methods is faster than IPI, NIPPS and TV-PCP, but
it takesmore time than SMSL,NRAMandRIPT. Considering
that the proposed method achieves the minimum false alarm
and missing detection rate for different backgrounds, target
types and target sizes, the proposed method is more desirable
than other state-of-the-art ones.

VII. CONCLUSION
In this paper, we propose a novel infrared small target detec-
tion method that integrates Laplace low-rank approxima-
tion and graph regularization. Laplace norm is employed
to further accurately recover the complex backgrounds with
various types of clutters. For graph regularization, a nearest
neighbor graph is constructed to mine the local structure
of patch image. In addition, a sparse enhancement scheme
including both reweighted l1 norm and nonnegative con-
straints is introduced to suppress the non-target points. Fur-
thermore, an ADMM-based optimization framework is used
to solve the proposed method efficiently. Finally, we extend
the proposed method to a general model via the substitution
of different non-convex low-rank approximation functions.
Experimental results on extensive real-world infrared images
demonstrate the proposed method obtains favorable perfor-
mance compared to the state-of-the-art methods. However,
it is still difficult for our proposed method to effectively
handle the case in which targets are completely submerged
in cloud clutter or noise. The time consuming of the model is
relatively expensive. Taking account of the above limitations,
our future work will focus on how to better distinguish low
contrast targets from background and explore new weighted
schemes to reduce the execution time.
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