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ABSTRACT This paper proposes a novel version of path oblivious random access memory called radix
path ORAM (R-Path ORAM) with a large root (radix) bucket size but a small fixed size for all the other
buckets in the tree. A detailed analysis of the root bucket occupancy is conducted to provide a closed-form
solution of the required root bucket size that maintains a negligible failure probability. The performance of the
R-Path ORAM is evaluated and compared against the traditional Path ORAM using a unified platform. The
conducted experiments clearly show that R-Path ORAM provides much lower server storage and average
response time than the seminal Path ORAM. Furthermore, we propose a background eviction technique to
eventually reduce the root bucket size and avoid system failure. The conducted experiments on the unified
platform showed the usefulness and efficiency of the proposed two-way eviction technique in successfully
reducing the root bucket size while incurring a very small overhead.

INDEX TERMS Cloud storage, ORAM, path ORAM, security, system failure.

I. INTRODUCTION
Cloud storage is being heavily adopted nowadays. However,
storing sensitive data in the cloud has many security risks
[1], [2]. There are many technologies tailored to solve and
address the security risks associated with cloud storage. One
of the technologies that stands out is searchable encryption.
In searchable encryption both data and queries are encrypted.
The cloud server upon receipt of an encrypted query performs
the search on the encrypted data and returns the encrypted
result to the user. As such, full confidentiality is enforced as
everything is encrypted [3]. However, observing the access
pattern to the stored encrypted data may reveal nontrivial
information about the content of that data. Indeed given
some background knowledge about the stored encrypted data,
the authors in [4] showed that as much as 80% of the data can
be inferred by observing and analyzing the access pattern.

Fortunately, there is a cryptographic primitive that can be
used to implement searchable encryption and at the same
time hide the access pattern. This cryptographic primitive
is Oblivious RAM (ORAM) [5]. ORAM was first proposed
by Ostrovsky [6] and Ostrovsky and Goldreich [7], since
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then there have been many developments in the field of
ORAMs [8]–[16].

In general, ORAMs can be divided into two categories
based on how the data is stored on the server. The first
category is the hierarchical ORAM, that uses a hierarchical
data structure to store the data on the server and the second
category is tree ORAMs that uses a tree data structure. Tree
ORAMs are the most recent and generally outperform hier-
archical ORAMs [17], [18].

There are a number of tree ORAMs among them are
Path, Ring, XOR Ring and Onion. However, Path ORAM
outperforms the other three ORAMs in terms of performance
and simplicity as shown by AlSaleh and Belghith [19]. The
original Path ORAM uses a binary tree structure to store the
data at the server and the nodes of the binary tree are called
buckets. A bucket can hold a constant number, say z, of data
blocks that should be greater or equal to 4 to ensure that Path
ORAM has negligible failure probability. Stevanov et al. [14]
proved this theoretically for z = 5 and experimentally for
z = 4. Furthermore, in Path ORAM to access a given data
block, a complete path of the tree starting from the root bucket
until the leaf bucket should be read and then written back.
During such an access, all the z data blocks of all the buckets
on the path are read and then written back.
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This paper proposes a new version of Path ORAM that
uses a smaller bucket size, z, to reduce the amount of storage
needed at the server side as well as to reduce the number of
blocks in an accessed path. The reduction of the number of
blocks in an accessed path tacitly leads to a valuable improve-
ment in the average response time. However, the reduction
of the bucket size affects the failure probability that should
be maintained at a negligible value. To this end, we analyze
the situation that leads to Path ORAM failures, namely the
situation where an overflow occurs at the root bucket. The
root bucket size should be much larger than z. We provide an
accurate estimation of the needed maximum root bucket size.
Then using this information, we propose a new version of
Path ORAM coined Radix Path ORAM that uses a large size
for the root bucket and a smaller bucket size z for the rest of
the buckets in the tree. We compare the performance of Radix
Path ORAM against the performance of the original Path
ORAMusing a unified experimental platform. The conducted
experimental results show that the average response time
and the server storage are significantly reduced. Moreover,
we propose a background eviction technique to enable our
new enhanced version of Path ORAM to use a lower root
bucket size and at the same time avoid the possibility of an
ORAM failure. The contributions of this paper are:
1) Mathematical modeling and analysis of the root bucket

occupancy in Path ORAM and its experimental valida-
tion.

2) Introduction of Radix Path (R-Path) ORAM: a novel
improvement to Path ORAM with a large root bucket
size and its performance evaluation.

3) Development of an efficient background eviction tech-
nique to enable the reduction of the root bucket size.

4) Integration of the background eviction technique into
the original Path ORAM and the R-Path ORAM, and
the experimental assessment of its practical impact.

The paper is organized as follows: in section II, we provide
a detailed description of the original Path ORAM. Then in
section III, we present some of the relatedwork. In section IV,
we specify the details of the unified experimental platform
used to assess and compare the performance of the pro-
posed R-Path ORAM to that of the original Path ORAM.
In section V, we provide a detailed analysis of the root bucket
occupancy needed to sustain the lowering of the bucket size z.
In section VI, we propose a new version of Path ORAM,
the R-Path ORAM that uses a large root bucket size while
fixing a smaller bucket size for the rest of the buckets.
Section VII introduces a simple yet efficient eviction tech-
nique that can be used to reduce the root bucket size as well
as to completely avoid failure situations. Finally, section VIII
concludes the paper.

II. PATH ORAM
Path ORAM uses a binary tree data structure to store the data
at the server. Each node in the binary tree is called a bucket
and can hold up to a constant number of data blocks referred
to by the constant z. In Path ORAMeach data block is mapped

to a leaf of the binary tree and this mapping is saved in a
data structure stored at the client side called the leaf map or
position map. When a data block is mapped to a leaf bucket,
this means that the data block can only be stored in one of the
buckets on the path from the root bucket until the leaf bucket.

The client in Path ORAMhas a local buffer called a stash to
store the read data blocks. The main invariant in Path ORAM
is that at any time, a data block is either in the tree on the path
it has been mapped to, or in the stash waiting to be mapped
to one of the buckets of its designated path.

To access a data block, the position map is firstly consulted
to find the leaf to which the data block is mapped, say x,
then the complete path starting from the root to leaf x is
completely read from the binary tree and stored in the stash.
The accessed data block is then presented to the user for
reading or updating. This accessed data block is then re-
mapped to a new random leaf and the position map is updated
accordingly. At this point, the read path is ready to be written
back from the stash into the binary tree at the server according
to the greedy filling strategy.

The greedy filling strategy starts from the leaf bucket and
goes upward in the path level by level until the root bucket.
Normally all the read data blocks from the path except the
accessed block (i.e. target block) can be written back into the
path. To be able to write a data block in a bucket, the bucket
must have an empty slot and must be on the path from the
root to the leaf node to which this data block is mapped. Each
bucket contains exactly z slots, where each slot is either a
data block or a dummy block. The data blocks written back
in the path, may include the accessed data block as well
as any additional blocks already in the stash from previous
read paths, as long as the Path ORAM invariant is satisfied
[13], [20]. Of course, when a data block is written back into
the tree it is removed from the stash.

The binary tree is of height L with the root being at
level 0 and the leaves being at level L. Hence the tree
has 2L leaves numbered from 0 to 2L − 1. Following
Stefanov et al. [14], [20], we consider that the total number of
nodes (i.e., buckets) of the tree is denoted by N , and as such
L = log(N + 1) − 1. The symbols used for Path ORAM are
shown in Table 1 and the Path data access algorithm is shown
in Algorithm 1.

Path ORAM has a negligible failure probability only if the
bucket size z≥ 4. Stevanov et al. [14] proved this theoretically
for z = 5 and experimentally for z = 4. The reason for this
is when z < 4, the number of left over blocks in the stash
keeps increasing which results in a total number of stored
blocks exceeding the size of the stash, and consequently the
ORAM system fails. Ren et al. [21] argued that Path ORAM
with z ≤ 2 consistently fails, despite using a very big stash
of 1000 blocks. They also showed that Path ORAM with the
same large stash size, will fail with non-negligible probability
when z = 3.

To provide a better understanding as to how blocks keep
accumulating in the stash, we divide it into two parts. A tem-
porary part, called stash1, that holds the read path and a
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TABLE 1. Symbols used for Path ORAM.

Algorithm 1 Path ORAM Data Access Algorithm
Input: oper, add, data*
1: x ← PosMap[add]
2: PosMap[add]← UniRand(0 . . . 2L − 1)
3: for i = 0 to L do
4: S ← (S ∪ ReBuck(P(x, i))
5: end for
6: if (oper = W ) then
7: S ← (S − (add, data)) ∪ (add, data∗)
8: end if
9: for i = L downto 0 do
10: S ′← (add ′, data′) ∈ S :
11: P(x, i) = P(PosMap[add ′], i)
12: S ′← Min(|S ′|, z) blocks from S ′

13: S ← S − S ′

14: WrBuck(P(x, i), S ′)
15: end for
16: return data

residual part, called stash2, that holds the left-over blocks
after writing the path back to the ORAM (i.e. the blocks that
cannot be written back to the ORAM). For Path ORAM with
z = 4, the residual stash has to be able to accommodate
89 blocks to achieve negligible failure probability [14].

Recall that for any block access request in Path ORAM,
a complete path has to be read from the tree, stored in
stash1 and then the path has to be written back again using a
greedy filling strategy with blocks from stash1 and stash2 that
satisfy the Path ORAM invariant. During this process all the
blocks of the read path but the requested one will be written
back. The accessed block may no longer fit in the path since
it has been re-mapped to a new random leaf. Indeed for
z ≥ 4, most of the time the newly accessed block is indeed
written back. However, for z < 4 it becomes harder to find
a bucket that can hold the accessed block, and still satisfies
the Path ORAM invariant, and consequently the block has
to wait in stash2. This block will have then to wait for the
following path writes to be written back into the tree. The
blocks waiting in stash2 may wait for several path writing

instances resulting in an increase of the size of stash2 (i.e.
blocks get accumulated in stash2 waiting to be written back).
When the number of blocks in stash2 reaches its maximum
and a new access request is performed and the newly accessed
block can no longer bewritten back into the path, PathORAM
then fails [14], [20].

We would like to design a new version of Path ORAMwith
a smaller bucket size z to reduce the amount of storage needed
at the server side as well as to reduce the number of blocks
in an accessed path which in turn yields a much lower com-
munication cost and a reduced response time. However, very
special attention should be given to the failure probability to
remain negligible. Path ORAM fails when stash2 is already
full and a newly accessed block cannot be written back into
the path. Therefore, we would like to investigate when the
root bucket gets full resulting in a block having to wait in
stash2.We shall also investigate themaximum size needed for
stash2 to have a very negligible probability of failure. Then
we shall consider stash2 as residing at the root of the tree.
As such, the root will be assigned a large capacity while we
may lower the value of z for the rest of the buckets.

III. RELATED WORK
Most of the relevant work on improving the operation and
performance of Path ORAM have been done in the context
of secure processors. In this paper, we are rather focus-
ing on the cloud storage. In the context of secure proces-
sors, the sequence of requests may be considered known in
advance which is not the case for cloud storage.

In the context of secure processors, Fletcher et al. [22],
Fletcher [23], and Ren et al. [21] introduced background evic-
tion to lower the probability of Path ORAM failure. However,
we will use background eviction as a leverage for R-Path
ORAM to eventually reduce the size of the root bucket.

Ren et al. [21] also tried to enhance the performance of
Path ORAM in the secure processor domain by introducing
the static super block technique. Blocks that have some form
of locality are gathered together and saved in a super block.
Blocks in a super block are all mapped to the same leaf in
the Path ORAM tree. Hence, all the blocks that belong to a
super block are read whenever a single block in the super
block is read. Moreover, after reading the blocks in a super
block, not only the single accessed block gets re-mapped but
also all the blocks belonging to the same super block get re-
mapped to the same random leaf. However, they only used
address space locality and not data locality limiting their work
to program locality. Moreover, the grouping of the blocks into
super blocks is to be done before loading the ORAM tree.

Yu et al. [24] proposed using a dynamic super block. Their
work is an improvement to the work of Ren et al. [21]. The
dynamic super block technique permits the contents and size
of the super block to change during the run of the ORAM
taking into consideration the programs locality. However,
the dynamic super block still only takes consideration of
program locality and not data locality and is then restricted to
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the secure processor domain. They called their new approach
Dynamic Prefetcher for ORAM (PrORAM).

Another enhancement to Path ORAM was proposed by
Zhang et al. [25]. They proposed to merge two successive
access requests together since they might share some com-
mon buckets in their paths. Unfortunately this necessitates the
prior knowledge of the sequence of requests, yet the merging
of two requests together resulted in the saving of just one
bucket (i.e. only one bucket does not have to be re-read) as
showed by Sánchez-Artigas [16]. This saving of one bucket
is actually in the root and we could have attained this saving
by using root top caching.

Sánchez-Artigas [16] tried to improve the work done by
Zhang et al. [25] by merging the access requests in larger
groups than two. Moreover, Sanchez suggested dynamic
reordering of the batch access requests to attain the maxi-
mum common buckets amid paths of a batch. The dynamic
reordering obviously necessitates the prior knowledge of the
sequence of requests which is not feasible for outsourced
data.

Al-Saleh and Belghith [26] proposed an enhanced version
of Path ORAM that they called Locality Aware Path ORAM.
Their new version is used for outsourced data and takes
advantage of any eventual locality and popularity in the data
itself. They only had to introduce a small extra storage at the
client side, and they showed that their new version of Path
ORAM outperforms the traditional Path ORAM even with
data that has a small popularity rate and using a small cache.

Mass et al. [27] were the first to introduce tree top caching.
In tree top caching the top k levels of the ORAM tree are
cached in the stash. The rationale behind this is to reduce the
length of the accessed path, so instead of reading and writing
a complete path of length L + 1 we only need to read and
write a path of length L − k + 1 where the top k levels are
stored locally at the client. This can improve the performance
of the ORAM. They implemented tree top caching on a secure
processor named Phantom that uses Path ORAM.

Ren et al. [11] also suggested using tree top caching with
Ring ORAM. They proposed caching the top k levels of
the tree. We will adopt the same technique proposed by
Mass et al. [27]. However, we will only cache the root bucket
as we intend to make it larger than all the other buckets.
We name this specific case, root caching.

Our proposed Radix Path ORAM (R-Path) uses a constant
bucket size z smaller than 4 for all the buckets but the root.
The root bucket size will be fixed to a value that maintains
a negligible failure probability. This shall be investigated
analytically and experimentally using a developed platform.
Furthermore, R-Path ORAM uses root caching at the client
side and an efficient background eviction technique based on
dummy requests to reduce the root bucket size and to nullify
the probability of failure.

IV. UNIFIED EXPERIMENTAL PLATFORM
We set up a unified experimental platform to conduct various
experiments on the seminal Path ORAM and our proposed

R-PathORAM, and compare their performance. The platform
is also used to conduct experiments to validate our developed
mathematical model ascertaining the maximum root size,
and to evaluate the performance of the proposed background
eviction scheme.

The experimental platform consists of a client, a server and
a communication switch connecting the server and client with
a base speed of 1.09 Gbps. The client is a laptop with 1 TB
hard disk, 8 GB of memory and has Intel core i7-7 500u, up to
3.5 GHz. The server has 1 TB hard disk, 128 GB of memory
and is composed of 8 cores. The operating system used in
both client and server is Ubuntu 14.04. MongoDB is used at
the server to hold and manage the database.

We used the C++ programming language and we imple-
mented the non-recursive version of Path ORAM. The
AES/CFB is used for the necessary encryption with a key
length of 128 bits. The block size is set to 4096 Bytes.
Moreover, we set the number z of blocks in a bucket to
4 for Path ORAM. Requests for Data blocks are assumed to
follow the Poisson distribution with an inter arrival time of
one minute. Data blocks are chosen randomly. Six hundred
random access requests are performed in each experiment.
Experiments are repeated ten times to calculate the 95%
Confidence Interval (CI).

V. ROOT BUCKET OCCUPANCY
The occupancy (the number of data blocks) of the root
emanates from the eventual overflow of its children in addi-
tion to data blocks that are successively accessed from the
same half of the ORAM tree and re-mapped to paths residing
on the other half of the tree. Our objective is to get a closed
form solution for the maximum of the root occupancy. The
number of blocks that accumulate in the root bucket from
data blocks that are successively accessed from the same half
of the ORAM tree and re-mapped to paths residing on the
other half of the tree will be here after referred to by ‘‘direct
overflow’’. On the other hand, the number of blocks that
overflow from the children into the root bucket will be here
after referred to by ‘‘indirect overflow’’.

A. DIRECT OVERFLOW
LetX be a random variable counting the number of successive
data blocks that should be placed at the root at any time due to
direct overflow.We consider the following 4 types of requests
or events:

1) Event RR: this represents a request for a data block
mapped to a leaf residing on the right half of the tree (as
indicated by the Position Map) that is to be re-mapped
to a leaf on the right half of the tree.

2) Event LL: this represents a request for a data block
mapped to a leaf residing on the left half of the tree (as
indicated by the Position Map) that is to be re-mapped
to a leaf on the left half of the tree.

3) Event RL: this represents a request for a data block
mapped to a leaf residing on the right half of the tree
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(as indicated by the Position Map) that is to be re-
mapped to a leaf on the left half of the tree.

4) Event LR: this represents a request for a data block
mapped to a leaf residing on the left half of the tree (as
indicated by the Position Map) that is to be re-mapped
to a leaf on the right half of the tree.

The probability of any of these defined events is 1
4 indepen-

dently from the tree size and the bucket size (i.e. independent
from N and z). X = k means that we have k successive
accesses of data blocks mapped to leaves residing on the
same half of the tree and randomly re-mapped to leaves of
the other half of the tree; that is a sequence of k RL events
or a sequence of k LR events. It is very useful here to note
that a sequence of RL (respectively LR) events could be
interspersed by any number of RR events (respectively LL
events). Such an interspersion does not affect the occupancy
of the root being accumulated by the sequence of the RL or
LR events. On the other hand, the accumulation of the data
blocks at the root by a sequence of RL events (respectively
LR events) is stopped by the first encountered LL or LR
event (respectively RR or RL event) which necessitates the
execution of the greedy refilling and rewriting of the accessed
path. Consequently, let us consider the random variable Y that
counts the successive occurrences of RL (respectively LR)
interspersed by occurrences of RR (respectively LL). Con-
sider the following sequence of events (data block accesses)
of types RR, LL, RL and LR:

LL LL LR LR LL LL LL LR LL LR RR RR RR RL
RL RL RR RR RL RL RR RR RR LR LR LL LR LR LL
LL LL LR LR LR LR LL LL RR RR

The first occurrence (blue) of variable Y starts with LR and
ends when we first encounter RR. Here Y is equal to 8 events
or successive data block accesses, X is equal to 4 successive
LR events which amounts to 4 data blocks to be stored in the
root. The second occurrence (green) of Y starts with RL and
ends when we encounter LR. This amounts to Y = 10 and
X = 5. The third occurrence (red) of Y starts with LR, ends
when we encounter RR and amounts to Y = 14 and X = 8.
Let us first concentrate on random variable Y and later on we
get back to random variable X . We clearly observe that the
occurrence of Y either:
1) starts with LR and ends either with RR or RL, or
2) starts with RL and ends either with LL or LR.
Random variable Y is clearly geometrically distributed:

P[Y = k + 1] = qkp k ≥ 0 (1)

where q = 1
2 and denotes the probability for the next event to

be RR or RL (respectively LL or LR) given that Y has started
with RL (respectively LR) and p = 1

2 denotes the probability
for the next event to be LL or LR (respectively RR or RL)
given that Y has started with RL (respectively LR). That is
q = 1−p. Notice that we put P[Y = k+1] and not P[Y = k]
since the event that started the occurrence is already given.

Now if we consider a very long sequence of data block
accesses, we shall have a very big number, denoted by n,
of occurrences of the random variable Y . These occurrences
are independently and identically (geometrically) distributed
(iid). We would like to get a closed form of the expected value
of the maximum of these n iid geometric random variables.

1) CLOSED FORM OF THE EXPECTED VALUE OF THE
MAXIMUM DIRECT OVERFLOW
First notice that formula (1) can be rewritten as:

P[Y = k] = qk−1p k ≥ 1 (2)

Let Y1,Y2, . . . ,Yn denote our n iid geometric random vari-
ables. By formula (2), we have:

P[Yi ≤ k] = 1− qk i = 1, . . . , n k ≥ 1 (3)

Now let M denote the random variable accounting for the
maximum of the n iid geometric random variables. That is
M = max(Y1, . . . ,Yn), then using (3) we have:

P[M ≤ k] = (1− qk )n k ≥ 0

The expected value of the maximum of the n iid geometric
variables is then given by:

M̄ =
∞∑
k=0

P[M > k] =
∞∑
k=0

(1− (1− qk )n)

Unfortunately, there is no closed form expression for this
sum [28]. However, we might approximate it by its corre-
sponding integral with q = e−λ, that is:∫
∞

0
(1− (1− e−λx)n)dx <

∞∑
k=0

(1− (1− qk )n)

< 1+
∫
∞

0
(1− (1− e−λx)n)dx

and since [28],∫
∞

0
(1− (1− e−λx)n)dx =

∫ 1

0

1− xn

λ(1− x)
dx

=

∫ 1

0

n−1∑
k=0

xk

λ
dx =

n∑
k=1

1
λk

It follows that:

1
λ

n∑
k=1

1
k
< M̄ < 1+

1
λ

n∑
k=1

1
k

and finally putting back λ = −ln(q) gives:

1
−ln(q)

n∑
k=1

1
k
< M̄ < 1+

1
−ln(q)

n∑
k=1

1
k

(4)

We may then confidently approximate the expected value of
the maximum of our n iid geometric random variables by:

M̄ ≈
ln(q)−

∑n
k=1

1
k

ln(q)
(5)
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and for very large n, we may approximate the harmonic
number Hn =

∑n
k=1

1
k using expression 0.131 in [29]; that

is:

Hn =
n∑
i=1

1
i
≈ γ + ln(n)+

1
2 n

where γ is the Euler’s constant and is given by
γ = 0.5772156649. As n is assumed to be very large,
we consider the following approximation instead:

Hn ≈ γ + ln(n)

and consequently (5) yields:

M̄ ≈
ln(q)− γ − ln(n)

ln(q)
(6)

In a similar way, we approximate the variance of the max-
imum of our n iid geometric random variables by:

Var(M ) ≈
1

ln2(q)

n∑
i=1

1
i2

(7)

The harmonic of degree 2, Hn(2) =
∑n

i=1
1
i2
can be readily

approximated for very large values of n using equation 9
of [26] where we put α = 2:

Hn(2) ≈
6n− 1
4n

≈
3
2

Now we are ready to get back to random variable X . The
question essentially amounts to ascertain the value of X given
that the value of Y is known; that is how many occurrences
of RL (respectively LR) are in a given occurrence of Y .
It is not difficult to see that X given Y follows the binomial
distribution with parameter l (the value of Y ) and p = 1

2 ; that
is:

P[X = k/Y = l] =
(
l
k

)
pk (1− p)l−k (8)

The expected value of X , that is the average number of RL
(respectively LR) in a given occurrence of Y of length l,
is lp = l

2 . Consequently, the expected value of the maximum
of n occurrences of random variable X is given using (6) by:

M̄X ≈
ln(q)− γ − ln(n)

2 ln(q)
(9)

While the random variable X is independent from the size
of the tree (X does not depend on N the number of nodes in
the tree) as well as the size z of the each bucket, the number of
data blocks that overflow from the children into the root (i.e.
the indirect overflow) does greatly depend on both N and z.
Wewould like tomake a final note, about thismathematical

model. We stated previously that the occurrence of Y either:
1) starts with LR and ends either with RR or RL, or
2) starts with RL and ends either with LL or LR.

However, the filling of the root may continue after encoun-
tering RR or RL (respectively LL or LR) with a small though
a non-null probability. This may happen when the accessed
path cannot accommodate any of the blocks in the root bucket.

TABLE 2. Direct overflow for different size z and for different number of
requests.

As such, our proposed mathematical model is rather opti-
mistic and may sometimes yield a lower root occupancy than
that resulting from any actual direct overflow.

2) VALIDATION OF THE MATHEMATICAL MODEL
To validate our mathematical model, we performed experi-
ments on our unified platform.We kept track of the maximum
number of accumulated blocks in the root bucket resulting
from the direct overflow. We needed to eliminate the indirect
overflow from the children. Thus, we set up our ORAM to
have infinite bucket size for the first top two levels (i.e. the
root and its two children) Thus, allowing the root bucket to
accommodate as much blocks as necessary without overflow-
ing and at the same time the children buckets have enough
space so that they do not overflow buckets to the root. The
bucket size for the rest of the levels is set to z like in traditional
Path ORAM.

We performed experiments for different bucket size z rang-
ing from 1 to 5 on a tree with L= 10 and N= 1024. Further-
more, we performed the experiments for different numbers
of access requests 1,00,000, 1,000,000 and 10,000,000 to
purposely show that the number of access requests affects
the number of blocks in the root bucket. Each experiment is
repeated ten times and we calculated the corresponding con-
fidence interval at 95 %. The obtained results are displayed
in Table 2 where AV represents the average maximum direct
overflow and CI the obtained confidence interval.

We clearly observe from Table 2 that the direct overflow
does not depend on the used bucket size z. The direct over-
flow, however, is affected by the number of access requests
(i.e., the length of the request sequence) that are performed on
the ORAM tree; it increases with the increase of the number
of access requests.

Further conducted experiments, using larger trees have
showed, as we know, that the direct overflow is independent
from the size of the tree.1

We can also see by observing the results in Table 2, that the
experimental results are consistent with formula (9). When
using the formula for 1,00,000 access requests the number of
accumulated blocks in the root is 10 and when the number of
the access requests is 1,000,000 the formula gives 11. Finally,
when using formula (9) for 10,000,000 access requests,

1 A tree with L= 12 and N= 4096 and a tree with L= 13 and N= 8192.
We obtained the same results as when we used a small tree with L = 10 and
N = 1024.
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FIGURE 1. A comparison between the theoretical and experimental
average direct overflow.

we get 13. A comparison between the experimental and the-
oretical results of the average direct overflow is displayed on
Figure 1.

From Figure 1, we can see that the theoretical results
are indeed lower than the experimental results as expected.
Recall, that the mathematical model is optimistic and yields
a lower root occupancy than that actually performed by the
direct overflow. Indeed, while a sequence of RL requests
interspersed by RR requests (respectively LR request inter-
spersed by LL requests) is stopped when encountering the
first LR or LL request (respectively the first RL or RR
request), the accumulation of blocks at the root may continue.
This takes place when the newly selected path is unable to
host any block from the root. We observe on Figure 1 that
the results given by the mathematical model are around 10%
lower than the actual root direct occupancy values.

B. INDIRECT OVERFLOW FROM CHILDREN
As stated previously, the occupancy of the root bucket
depends on the direct overflow as well as the indirect over-
flow from the children. Setting up the root bucket size to the
sum of themaximum of the direct overflow and themaximum
of the indirect overflow tacitly results in a very negligible
failure probability.We believe that the number of overflowing
blocks from children depends on z; the bigger is z the smaller
is the number of overflowing blocks from the children and
vice versa. Moreover, the number of access requests that are
performed on the ORAM affects the number of overflowing
blocks from the children. Increasing the number of access
requests increases the probability of overflowing blocks.

Unfortunately, coming up with a closed form approxima-
tion as it was done for the direct overflow is not an easy task.
To this end, we try to experimentally evaluate the indirect
overflow by setting up a new Path ORAMwith an infinite size
root bucket only, and by fixing the size of the rest of the buck-
ets to z. The used ORAM has height L = 10 and N = 1024.
We vary the size of the buckets z from 1 to 5 and the number
of access requests from 1,00,000, 1,000,000 and 10,000,000.
We repeat each experiment ten times and calculate the CI

TABLE 3. Indirect overflow from children for infinite root bucket and a
tree with N = 1024.

FIGURE 2. Indirect overflow for infinite root bucket and a tree with
N = 1024.

at 95%. The obtained results are displayed in Table 3 and
Figure 2.

We clearly observe that the indirect overflow depends on
the bucket size z; the smaller is z the larger is the number of
overflowing blocks. The indirect overflow is also affected by
the number of requests; it gets larger for a larger number of
requests. This is understandable as the indirect overflow is
the maximum of the number of overflowing blocks, and the
maximum of iid random variables depends on the number
of these random variables as shown previously. However,
we further observe from Figure 2 and especially from Table 3
that the indirect overflow is less sensitive to the increase of
the number of access requests than to the bucket size z.

Moreover, we notice that the number of overflowing blocks
from the children when z = 5 is very low 0.8, 2.8 and
3 respectively for the three considered numbers of access
requests. This means that Z = 5 is enough to accommodate
the blocks with negligible overflow and consequently a neg-
ligible probability of failure.

We also conducted experiments using a larger tree to ascer-
tain the effect of the size of the tree on the indirect overflow.
We experimentedwith a tree having L= 12 andN= 4096 and
another larger tree having L = 13 and N = 8192. The results
of the experiments are displayed in Table 4 and Figure 3 for
the former and in Table 5 and Figure 4 for the latter.

When increasing the tree size, we notice that the num-
ber of overflowing blocks from the children into the root
increases. This is understandable as when the tree size
increases so does the number of blocks in the tree which
enforces the impact of a smaller bucket size. The smaller
is the bucket size the larger is the difference. For example,
for z = 1 and for 1,00,000 access requests the number of
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TABLE 4. Indirect overflow for infinite root bucket and a tree with N =

4096.

FIGURE 3. Indirect overflow from children for infinite root bucket and a
tree with N = 4096.

TABLE 5. Indirect overflow from children for infinite root bucket and a
tree with N = 8192.

FIGURE 4. Indirect overflow from children for infinite root bucket and a
tree with N = 8192.

overflowing blocks from the children into the root amounts
to 131, 463.4 and 878.9 respectively for the trees with
N = 1024, 4096 and 8192. However, using z = 3 amounts
to an indirect overflow equal 5.6, 9.1 and 10.3 respectively
for the trees with N= 1024, 4096 and 8192; the difference is
much smaller here then it was when the bucket size was equal
to 1.

VI. RADIX PATH ORAM
In view of the previous conducted analysis and obtained
results, we propose a new version of Path ORAMwith a large

TABLE 6. Average response time and server storage size for R-Path
ORAM with z = 1, 2, 3 and Path ORAM with z = 4.

root (Radix) bucket size while using the same small z for all
the other buckets in the tree. The root bucket size if set to
the sum of the maximum of the direct overflow and the max-
imum of the indirect overflow, would necessarily guarantee
a very negligible probability of failure. We name this new
version the Radix Path (R-Path) ORAM. In the traditional
Path ORAM, the de-facto size for z is 4, we propose to use
smaller z and adjust the root size to an appropriate value able
to enforce a negligible probability of failure. R-Path ORAM
is then able to provide a tangible reduction in the storage at
the server side, yet it amounts to a great gain in the average
response time. The root bucket size in R-Path ORAM is much
larger than that of the original Path ORAM, however it does
not impact its efficiency should we use the root top caching
to cache the root at the client side.

A. EXPERIMENTATION
We implemented R-Path ORAM for z = 1, 2 and 3. For a
tree with L = 10 and N = 1024. The size of the root bucket
for each z is calculated using the formula we developed (9)
to estimate the direct overflow and the experiments for deter-
mining the indirect overflow from children. For example, for
z = 1 by using formula (9) for 10,000,000 access requests
we get 13, and by looking up table 3 and taking the max-
imum size of the root when the number of access requests
is 10,000,000 gives us 144. Adding the two numbers gives
157 which is the maximum root size needed.

Six hundred random access requests are performed in each
experiment. Experiments are repeated ten times to calculate
the 95% CI. Recall that the average response time provided
by the original Path ORAM, was 1516.15 ms. The obtained
results for R-Path ORAMwith z = 1, 2, 3 are displayed in the
three first columns of Table 6. The fourth column of Table 6
represents the results for the seminal Path ORAMwith z = 4.
The average response time of an access request to a data block
is defined as the time elapsing from the instant of issuing the
request until the delivery of the data block to the user. The
average response time provided by the original Path ORAM
is 1516.15 ms as indicated in Table 6.

We clearly observe the tangible gain in the average
response time; the smaller is z the higher is the gain. When
using a bucket size z = 1, the average response time is
reduced to 424.96 ms which amounts to almost a quarter
of the average response time of the original Path ORAM.
This is indeed a natural result since the number of blocks in
each bucket was reduced to a quarter of its original size. This
reduction leads to a decrease in the number of blocks read
and written back in each ORAM access leading to a large
reduction in the average response time. As for the storage
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needed at the server side, it is reduced to 25%, 50% and
75% of the original size needed for Path ORAM, when using
z = 1, 2 and 3 respectively.

VII. REDUCTION OF THE ROOT BUCKET SIZE
We introduce here a background eviction technique into
R-Path ORAM to fulfill two objectives. The first is to ensure
that the root bucket does not exceed its pre-defined capacity;
and therefore we remove the possibility of a failure, namely
we nullify completely the probability of failure. The second
objective is to lower the needed root bucket capacity. The
background eviction technique is called whenever the root
bucket becomes full and serves to evict some blocks from the
root bucket downward. Essentially, the background eviction
is performed by issuing one or more requests for random data
blocks. These requests are hereafter called dummy requests
since they are different from the real read/write requests.
A dummy request for a random data block amounts to reading
the complete path (all the blocks of all the buckets on this
path) from the root to the leaf to which the data block is
mapped as stated in the positionmap. Then this path is written
back using the greedy filling algorithm which pushes the data
blocks downward the path as much as possible, which in turn
may move some data blocks form the root downward the
path. Note here that there is no re-mapping of the randomly
accessed blocks. The question naturally arises as how to be
sure that the background eviction removes (by pushing data
blocks downward the tree using the greedy filling) some data
blocks from the full root bucket. Our goal here is not to
propose the best background eviction scheme, rather we want
to show that the background eviction as a technique fulfils
both of our mentioned objectives.

A background eviction technique should not breach the
security of the ORAM and must ensure its obliviousness.
In addition, an eviction technique should only add a small
overhead in terms of additional storage and communication.
As the technique we are proposing is based on dummy
requests then: 1) It does not breach the security of the ORAM
and does maintain its obliviousness since the dummy requests
concern randomly chosen data blocks, yet dummy requests
are handled exactly the same way as normal requests. The
server or an adversary has no way of distinguishing between
normal and dummy requests. It is true that in a dummy request
for a random data block there is no re-mapping of the data
block at the client side; but this action is transparent to the
server and to any adversary, 2) there is no additional storage
required either at the server or at the client and 3) as each
dummy request amounts to the reading and the writing back
of a complete path using the greedy filling, the proportion of
dummy requests should be kept very low. The communication
overhead of the eviction technique is proportional to the
number of calls multiply the number of dummy requests per
call. The background eviction is called each time the root
bucket gets full. As such, a natural tradeoff builds up between
the number of data blocks to remove from the root bucket
at each call and the corresponding communication overhead.

TABLE 7. TWE technique for bucket size z = 1, root bucket size = 120,
130, 140 and 150 and number of access requests = 10,000,000.

There is also a natural tradeoff between the reduced deployed
capacity of the root bucket and the frequency of calling the
background eviction. The smaller is the defined capacity of
the root bucket, the more frequent the background eviction is
to be called.

A. THE TWO WAY EVICTION TECHNIQUE
The Two Way Eviction (TWE) technique just performs two
dummy requests per eviction call. The first dummy request
concerns a randomly selected data block from the left half
of the ORAM tree and the second dummy request concerns
a randomly selected data block from the right half of the
ORAM tree. The rationale behind selecting a random data
block (equivalently path) from each half of the tree is to solve
the case where blocks accumulate in the root from direct
overflow. In the case where blocks have accumulated in the
root bucket from successive RL access requests, a dummy
eviction request to the left half of the tree will most likely
evict some blocks from the root bucket. On the other hand,
if the blocks have accumulated in the root bucket from succes-
sive LR access requests a dummy eviction request to the right
half of the ORAM tree will most likely evict some blocks
from the root bucket. As we do not know which successive
access requests led to the accumulation of blocks in the root
bucket, we perform both dummy requests per eviction call.

B. EXPERIMENTATION WITH TWE
We implemented and integrated the TWE background evic-
tion technique into the R-Path ORAM. We used ORAMs
with L = 10, N = 1024 and performed 10,000,000 access
requests per experiment. The experiments are divided into
three groups. The first group is used to experiment with
bucket size z = 1 and root bucket size equal 120, 130, 140,
150, 160. The second group of ORAMs is used to experiment
with bucket size z = 2 and root bucket size 10, 12, 16, 20,
30 and 40. Finally, the third group of ORAMs is used to
experiment with bucket size z = 3 and root bucket size 10,
12, 15, 20, 25.

During the experiments, we kept track of the number of
calls made to the background eviction technique, as well as
the cumulative number of evicted (removed from the root
bucket) blocks. The number of dummy requests (equivalently
the number of evicted paths) is readily equal to the double
of the number of calls. The larger is the number of evicted
paths the bigger is the communication overhead introduced
by the background eviction technique.

TWE is never called when using the large root size;
specifically, when using root size = 160 with z = 1, root
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size = 40 with z = 2 and root size = 25 with z = 3.
This is a natural result since the number of blocks in the
root bucket never reaches the root size. An estimation of the
maximum root size for each ORAM is readily given using
formula (9) and Table 3. For a number of access requests
of 10,000,000, formula (9) gives 13 and Table 3 gives 144,
28 and 13 respectively for Z = 1, 2, 3. Then adding the direct
overflow to the indirect overflow from children readily gives
the root sizes 157, 41 and 26 for bucket sizes z = 1, 2 and
3 respectively. For bucket size z = 2 and 3 even though we set
the root size to be less than the maximum estimated number
of blocks, during the run of the experiments the maximum
number of blocks accumulated never exceeded the capacity
of the root bucket resulting in zero calls.

The results of using the TWE technique with bucket size
z = 1, root bucket sizes 120, 130, 140 and 150 are dis-
played in Table 7. For a root bucket size 150, the number of
evicted paths (equivalently the number of dummy requests)
is indeed extremely small and equals 16. As we reduce the
root bucket to 120, the number of evicted paths grows and
reaches 73450, but still this is just 0.74% of the total number
of data access requests. This can be easily tolerated without
affecting the request average response time, specially since
the dummy evictions performed by the TWE technique are
identically distributed among the data access requests. To sum
up, we can reduce the root bucket size from 157 to 120 and
the system incurs only 0.74% overhead defined as the propor-
tion of additional dummy requests given we are performing
10,000,000 data access requests.We also note that the average
number of evicted data blocks from the root is equal to around
1.42 blocks per eviction call when the bucket size z = 1.
We would like to note here that while z = 1 represents the
extreme case of R-Path its corresponding root bucket size
can be successfully reduced by the TWE background eviction
technique.

To maintain a negligible failure probability, the traditional
Path ORAM, in the case of L= 10 and Z = 4, requires a stash
of capacity equal to 133 blocks: 89 extra blocks to enforce a
negligible failure probability [14] and 4*11 = 44 blocks for
the retrieved path. On the other hand, for the extreme case
of z = 1, the proposed Radix-Path ORAM requires a client
storage of 167 blocks: 157 blocks for the root and 10*1 = 4
10 blocks for the retrieved path. This amounts to an additional
storage of 34 blocks. Furthermore, the use of our proposed
TWE technique may reduce the storage needed at the root
from 157 to 120 with virtually a negligible impact on the
average delay. To sum up, even for the extreme case of z= 1,
the proposed R-Path ORAM with the root top caching and
the TWE technique outperforms the seminal Path ORAM
with z = 4. Furthermore, since we are targeting the domain
of cloud storage and not that of secure processors, a small
additional client storage should not be that problematic as
even cheap smart mobile phones are currently equipped with
few GB of storage.

The results of using the TWE technique with bucket sizes
z = 2 and 3 are displayed in Tables 8 and 9. First of all,

TABLE 8. TWE technique for bucket size z = 2, root bucket size = 10, 12,
16, 20, 30 and number of access requests = 10,000,000.

TABLE 9. TWE technique for bucket size z = 3, root bucket size = 10, 12,
15 and 20 and number of access requests = 10,000,000.

we clearly observe that the number of evicted paths decreases
with the increase of the bucket size z. This is understandable
as for a larger z a path in the ORAM tree accommodates
a higher number of blocks and consequently the pressure
on the root bucket is reduced. The results achieved by the
TWE technique are impressive. For example, when z = 2
and the root bucket size = 20 the number of evicted paths
is 22860. That is, we can save 50% on the storage of the
root bucket size (i.e. recall that for z = 2 maximum root
bucket size = 41) by introducing an overhead of just 0.23%
of dummy evictions. Moreover, using z = 3 provides even
better results, for example when the root bucket size equals
15, the number of evicted paths is only 514. This means that
we can save 50% on storage needed for the root bucket by
injecting a tiny overhead of 0.005% dummy requests.

VIII. CONCLUSION
R-Path ORAM is an improved version of the seminal Path
ORAM. R-Path ORAM allows to use a small bucket size for
all buckets in the ORAMbinary tree but the root bucket which
uses a large bucket size. First, we conducted a detailed anal-
ysis of the root bucket required size and then we developed
a mathematical model providing a closed form expression of
the root bucket size. Reducing the bucket size tacitly amounts
to a tangible gain in the server storage as well as in the
request average response time. Extensive experiments were
conducted on a developed platform to ascertain the efficiency
of R-Path and its gain in server storage and request average
response time.

We also proposed the use of a background eviction scheme
to reduce the root bucket size and to nullify the probability of
failure. We proposed the TwoWay Eviction scheme that uses
just two clever dummy requests per eviction call. Conducted
experiments showed that our proposed TWE scheme presents
indeed a very efficient technique to reduce the needed root
bucket size, yet completely prune any possibility of the sys-
tem failure due to an overflow of the root bucket.

While the proposed TWE is very efficient, further investi-
gation is needed to find the optimal background eviction tech-
nique that provides the largest reduction of the root bucket
size for the smallest overhead in terms of the proportion of
the added dummy requests.
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