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ABSTRACT Autonomous unmanned aerial vehicle (UAV) swarm flights have been investigated widely.
In the presence of a high airspace density and increasingly complex flight conditions, collision avoidance
between UAV swarms is very important; however, this problem has not been fully addressed, particularly
among self-organizing flight clusters. In this paper, we developed a method for avoiding collisions between
different types of self-organized UAV clusters in various flight situations. The Reynolds rules were applied
to self-organized flights of UAVs and a parameter optimization framework was used to optimize their
organization, before developing a collision avoidance solution for UAV swarms. The proposed method can
self-organize the flight of each UAV swarm during the overall process and the UAV swarm can continue to fly
according to the self-organizing rules in the collision avoidance process. The UAVs in the airspace all make
decisions according to their individual type. The UAVs in different UAV swarms can merge in the same space
while avoiding collisions, where the UAV’s self-organized flight process and collision avoidance process are
very closely linked, and the trajectory is smooth to satisfy the actual operational needs. The numerical and
experimental tests were conducted to demonstrate the effectiveness of the proposed algorithm. The results
confirmed the effectiveness of this approach where self-organized flight cluster collision avoidance was
successfully achieved by the UAV swarms.

INDEX TERMS Collision avoidance, parameter optimization, Reynolds rules, self-organized, unmanned

aerial vehicle cluster.

I. INTRODUCTION

Owing to scientific and technological development, the roles
of unmanned aerial vehicles (UAVs) have become increas-
ingly important in both military and civilian fields. The
inherently small and flexible nature of UAVs allows them
to perform well in many areas, and they are particularly
useful in environments and situations that are not suitable
for humans. UAV swarm collaboration will become com-
monplace to meet the increasingly complex requirements
of future missions. Communication and control become
increasing difficult as the number of UAVs increases; thus,
it is important to achieve self-organization behavior dur-
ing UAV flights. In self-organizing cluster flights, com-
munication and messaging can occur between the UAVs;
however, external instructions cannot be sent. Thus, indi-
vidual UAVs must analyze the available information and
make their own decisions. However, a swarm of UAVs
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might merge from different directions during a self-organized
UAV flight. Therefore, a collision avoidance method is
required to prevent collisions assuming self-organized flight
conditions.

Improvements and optimization are required for the UAV
self-organizing flight model, and a collision avoidance
method is needed for UAV swarms comprising multiple
UAVs in the self-organized flight mode. Many methods are
currently employed for self-organizing UAV flights, such
as the Reynolds rules [1], pigeon flock algorithm, and
goose swarm algorithm. In the field of UAV collision
avoidance, the approaches employed include the artificial
potential field method [2], [3], ant colony algorithm [4], [5],
genetic algorithm [6], [7], particle swarm optimization
algorithm [8], [9], Markov decision method [10], and
dynamic programming method [11], [12].

UAV collision avoidance methods have been studied for
decades and various strategies have been proposed for col-
lision avoidance by self-organized drones, but each method
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TABLE 1. Self-organizing uav flight anti-collision methods.

Model Physical experiment  Target parameter optimization  UAV type Leader agent based
Benedetti, et al.[13] N N / Y
Qiu, et al.[14] N Y / N
Di, et al.[15] N Y / N
Braga, et al.[16] N N Q N
Kownacki, et al.[17] Y N F Y
Clark, et al.[18] Y Y F N
Sajwan, et al.[19] N N / N
Quintero, et al.[20] Y Y F Y
Espelosin, et al.[21] N N / N
Hauert, et al.[22] Y N F N
Hildenbrandt, et al.[23] N N / N
Han, et al.[24] N N / Y
Vasarhelyi, et al.[25] Y Y Q N

has practical difficulties. Thus, to facilitate collision avoid-
ance in self-organizing UAV flights in practical applications,
we developed a method by optimizing the parameters of the
force formula used in the Reynolds rules. In the following,
we review relevant research into the UAV self-organized
flight collision avoidance problem.

Table 1 lists 14 previous studies that proposed models
for UAV self-organized flight collision avoidance, where the
key characteristics of these studies are indicated as: physical
experiment, target parameter optimization, UAV type, and
leader agent based. In particular, ““physical experiment™ indi-
cates whether a physical experiment was conducted, ‘““target
parameter optimization” indicates whether parameter opti-
mization was performed based on the flight target, “UAV
type” denotes the type of UAV, i.e., fixed-wing UAV(F) or
quadrotor UAV(Q), while *“/” indicates that the type of UAV
was not specified, and “leader agent based’”” shows whether
there was a leader in the UAV swarm.

Qiu and Duan [14] proposed a distributed optimization
control framework for UAV clusters, which transformed the
multi-objective optimization problem into a problem that can
be solved using a single UAV. A distributed cluster control
algorithm for UAVs based on an improved multipath I/O was
proposed, which allows a UAV swarm to exhibit stable flight
in a complex environment. Di et al. [15] proposed a two-layer
control framework to address the collaborative surveillance
problems using multiple UAVs, and distributed back horizon
optimization for planning UAV movements in cluster flight
situations. Braga et al. [16] used the Reynolds cluster rules
to drive a swarm of UAVs, and then conducted physical
experiments to demonstrate the feasibility of the method.

Kownacki et al. applied the two basic Reynolds rules and
combined them with leadership features to achieve the col-
lective flight of fixed-wing UAVs. Clark and Jacquesva [18]
conducted a UAV cluster flight test at NASA’s Dryden Flight
Research Center as an important step in the development
of a deployable distributed boid system. Sajwan et al. [19]
clustered the UAVs in a leader—follower manner and solved
each follower’s control problem in the context of stochastic
optimal control, where the problem was solved offline by
dynamic programming to minimize the expectations within
a limited range. Qiu and Duan [14] designed a distributed
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cluster control algorithm based on the dove cluster and
a coordinated obstacle avoidance model for managing a
situation where a UAV swarm flies through an environ-
ment containing obstacles without additional information.
Hauert et al. [22] studied the trade-off between the commu-
nication range and flight dynamics in a simulation within the
Reynolds cluster. Hildenbrandt et al. [23] combined conven-
tional coordination rules based on separation, attraction, and
alignment with the details of ostrich behavior to provide new
insights into the complex clustering mechanisms employed
by ostriches and other birds. Han et al. [24] proposed a new
concept called “soft control” for regulating the collective
behavior of self-organizing, multi-agent systems and demon-
strated a natural method for intervening in distributed sys-
tems. Vasdrhelyi et al. [25] solved the problem of seamless
navigation by a UAV swarm in a narrow space by addressing
and resolving issues in terms of constrained motion and com-
munication capabilities, delays, disturbances, or obstacles.
They proposed carefully selected sequence parameters and an
evolutionary optimization framework for a fitness function,
and they used 30 self-organizing UAVs in field experiments.
This was the largest airborne outdoor system without central
control reported in previous studies, and they demonstrated
successful avoidance by clusters of collective UAVs with
effective avoidance control.

In the present study, we developed an optimized, self-
organizing flight method to ensure stable flight and colli-
sion avoidance by UAV clusters. Our approach does not
require a leader to self-organize the flight and it achieves
self-organized flight collision avoidance for multiple UAV
swarms by optimizing the resulting trajectory for fixed-wing
UAVs and quadrotor UAVs, which is difficult for other meth-
ods. Our method does not require a leader, which means
that there is no mutual control between the drones and a
flight decision is made by assessing the airspace situation.
The core idea of this method involves optimizing UAV flight
parameters by defining a fitness function for optimizing
UAV flight. We studied the collision avoidance method in
a self-organized UAV swarm flight and designed a new
collision avoidance algorithm for self-organized flight col-
lision avoidance. The method was validated in simulations
using MATLAB.
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The remainder of this paper is organized as follows.
In Section II, we present the traditional Reynolds flocking
model. In Section III, we describe the optimization method
based on the Reynolds rules and a collision avoidance method
for self-organizing flight. In Section IV, we present the simu-
lation results and their analysis. We give our conclusions and
discuss future research in Section V.

Il. TRADITIONAL REYNOLDS FLOCKING MODEL

It should be noted that we do not consider the specific flight
control problem for the UAV and our method only plans the
trajectory of the UAV. Thus, we address the collision avoid-
ance problem for UAV clusters with normal communication
between UAVs regardless of the time delay for communica-
tion between UAVs.

We write U =< P,V,A > to represent the UAV clus-
ter system. P = (p;,Pa, " Pir " »Pn)> P;i € R" are
defined as the position vector of UAV;; V = 1, Vo, e,
Vi, -+, vy) are defined as the speed vector of UAV;; A =
(ai,az,---,di, -+ ,an), a;i € R" indicate the acceleration
vector of UAV;. The formula for the motion of a UAV is as
follows.

{z‘w) = Vi) 0

Vilt) = ai(1)
According to this formula, the control of the motion by
a UAV cluster may depend on the acceleration control. The

speed and acceleration of the UAV are constrained by the
following formulae:

?i(t)v T;i(t) = Vmax

vilt) = Vmax * ’zl(t) ’ ;i(t) > Vmax @
51'0)7 Ei(t) ‘ =< Omax

ai(t) - dmax ° ‘ ii(t) az(l‘)‘ > Omax, (3)

where v,y 1 the limited maximum speed value and amax 1S
the limited maximum acceleration value.

During the actual flight of an UAV, the change in flight
angle needs to be limited owing to the flight performance
limitations of the UAV.

The amount of change in the angle of an UAV is also
limited, as shown in Eq. (4), where 6mnax 1s the maximum
change in the angle of the UAV.

Vi(1) - vi(t — 1) -
Vi@l - 1vite = D]

Reynolds first introduced a distributed flock behavior
model in 1987 [1]. This model is based on the phenomenon
of cluster flights according to the behavior of bird flocks.
Subsequent research into flock modeling led to the defi-
nition of three simple rules for simulating flight decisions
and state updates for a single individual in a flock of birds.

COS Omax @)
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The clustering algorithm based on the bird flight rules pro-
posed by Reynolds can be summarized as follows.

R1 - Alignment: individuals attempt to align their velocity
to the average velocity of nearby flock mates.

R2 - Cohesion: individuals attempt to match the average
position of nearby flock mates.

R3 - Separation: individuals attempt to avoid collisions
with nearby flock mates.

However, the Reynolds rules are simply a simulation of
flock behavior and model details need to be optimized further
for application to a real UAV system.

IIl. OPTIMIZED FLOCKING MODEL WITH

COLLISION AVOIDANCE

The proposed flocking model is based on the Reynolds rules
and the optimized model is based on a previously described
model [25]. As shown in Figure 1, self-organized UAV flight
cluster collision avoidance is based on the Reynolds rules,
where the first advance involves providing an update by
calculating the combined effect of different forces. None of
the different UAV swarms in the simulation are controlled by
ground control stations, but instead they rely solely on infor-
mation sent by other UAVs for analysis and decision making.
In Section A, we introduce the basic Reynolds cluster rules
and some added buffer functions to make the cluster rules
more suitable for actual flight. In Section B, we introduce
the parameter optimization method for the cluster flight rules
as well as the design of the corresponding objective function
and iterative search of a random simulation scene to find the
various force parameters that best match the objective func-
tion. In Section C, we describe the self-organizing collision
avoidance method for UAV swarms.

A. OPTIMIZED FLOCKING MODEL

1) REPULSION

To keep the focal UAV, UAVy, separate from the other UAVs,
each UAV receives a collision avoidance force known as the
separation force, which is defined as follows:

]?sep(t) = lZfs,i(t) Zk 1/fz(l) pé(t) pl(t)
= [50—p0)]

)

1 1

9
dsep

where 1;(¢) is defined as:
OEI0)

if |50 = 50| = dy
0, if | p0) = pi(1)| > dyp,
and n indicates the serial number of each remaining UAV
other than the focal UAV (UAVy). In Eq. (6), () is the non-
linear gain of pairwise repulsion and ﬁg(t) — f)l-(t)H is the

distance between UAV; and UAV;. The symbol ds, defines
the maximum interaction range at which UAVs start to repel

vi(t) = (6)
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Reynolds flocking rules
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FIGURE 1. Self-organized flight concept diagram based on Reynolds rules.

each other and « is a coefficient that affects the magnitude of
the repellent force.

2) VELOCITY ALIGNMENT
UAV clusters are collectively managed by individuals match-
ing their average cluster velocity according to Eq. (7):

- l 1 1< R
Fai®==3 Fai)==3 Vailt)=—3 (Vi) =Va(1))
i=1 i=1 i=1
@)

where Va, i(t) represents the speed of UAV; relative to UAV,
and n represents the number of UAVs other than UAV,.

The flocking algorithm needs to handle possibly large
velocity differentials at the same time, so a braking curve
known as a velocity decay function (denoted by D(.)) is
applied to the flocking algorithm. The decay function aims to
provide constant acceleration at high speed and exponential
acceleration at low speed, as shown in Eq. (8):

0, ifr <0
D(r,a,p)={ 'P: ifo<rm<alp 8)
\J2ar —a?/p?,  otherwise

where r is the distance between a UAV and a desired stopping
point, a denotes the expected acceleration, and p represents
the maximum speed difference allowed at a certain separation
distance.

To construct the velocity alignment pattern, the speed dif-
ference that can be tolerated at a certain relative distance is
given by Eq. (9).

Vg)r max _ max (vtor’ D (pij _ pf)or’ ator’ ktor)) (9)
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Thus, the velocity alignment term calculated for UAV; with
respect to UAV;j is:

tor for max
Q (Vlf/_vij )

N Vi) — vi(t ]
i = Om IO ey e 1)
i = w00
0, otherwise
where V" represents the amount of velocity slack required

to allow for a certain amount of speed difference, which
is independent of the relative distance, p60’ indicates the
distance of UAV; relative to the stop point in front of UAV;,
and k™" and a'" represent the linear gain and acceleration
parameters for a pair of consistent speed changes, respec-
tively. In Eq. (10), Q™" represents the linear coefficient of
the speed fault reduction and v;; represents the absolute value

of the speed difference between UAV; and UAV;.

3) FLOCK CENTERING

The UAV cluster needs to be as close to the center of nearby
UAVs as possible, and thus the cohesion force is given by
Eq. (11):

n

2 1~ I (- ~
Fanl =22 Fei0= 13 (pi)=p0) D

i=1
where n represents the number of UAVs other than UAV..
4) FLIGHT TARGET POSITION

To reach the desired position, the UAV cluster should know
the general direction of the flight. We define the general
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direction as:

ftar(t) zﬁdes_ﬁi(l) (12)

where p 4, represents the target end point vector of the UAV.

5) FINAL COMBINED FORCE FORMULAE
Thus, the final combined force formulae are:

Vilt) = f geer + Vilt = 1) (13)
pit) = pit — 1) +v(t) (14)
where:
fsteer(t) = w] 'fsep(t) + w2 '?ali(t) + w3

Feon® + @4 F () = vit = 1) (15)

In Eq. (15), w1, w2, w3, and w4 represent the weight coef-
ficients of each force.

B. FLOCKING OPTIMIZATION ALGORITHM

1) FLIGHT EFFECT EVALUATION FUNCTION

A statistic is employed to measure the anti-collision effect
during the self-organizing flight of a UAV swarm, which
is then organized according to the statistic for parameter
optimization. Let T be the entire simulation duration, d;(t)
is the distance between UAV; and UAV; at time t, and dco;
refers to the danger zone around a UAV. In this situation,
the collision risk is defined as shown in Eq. (16), where ©(:)
is the Heaviside step function.

Scol = T N(N— I} 2226 dl](t)_ wl) (16)

t=1 i=1 i=j

0, x <0
Okx)=11, x>0 17
1/2, x=0

The next key element for self-organizing flight is the veloc-
ity alignment motion. The UAV cluster velocity correlation is
measured as shown by Eq. (17).

écor:T N(N 1)222

t=1 i=1 i=j

vi(t) - Vj(t)
BORG!

Finally, we require that the UAV cluster move at a des-
ignated speed. Let Vo be the designated speed and it is
measured according to Eq. (18).

T N
D> (7i(l) —Vﬂack>

gvel = =
r N t=1 i=1

(13)

19)

The global function can be defined using the following
three types of transfer functions.

The first type is a monotonically growing function repre-
sented as:

Fr(§,80,d) =1-S5(&, %.d) (20)
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where S(&, &, d) is a sigmoid function:

ifx <xg—d

1
(- (Ga-w) ),

ifxg—d <x < xp

S (x,x9,d) =

0, otherwise

The second transfer function is a sharp peak transfer func-
tion, as follows.

z
Fé,z) = (S——Z)Z (22)

Finally, we construct the following single objective fitness
function, which includes all of the related flocking behaviors.

F =Feor - Feol - Fspeed (23)
Feor =0 (scor) . ’g:cor
Feor = F2 (%_c‘ols aup) (24

Fspeed = F1 (%-velv Vilock » Vup)

C. COLLISION AVOIDANCE BETWEEN SWARMS OF UAVs
When different UAV swarms merge together, the probabil-
ity of collisions will increase significantly. The separation
force defined above is no longer effective because its direc-
tion is almost opposite to the direction of speed. Therefore,
new rules are necessary to achieve the anti-collision targets
between different UAV swarms.

In the presence of other UAV swarms, the force responsible
for preventing collisions is a force that overlaps with other
forces as little as possible; otherwise, the force used for
collision prevention would be diluted. To meet this require-
ment, we employ a three-dimensional (3D) geometry-based
approach where we calculate the closest proximity position of
the two opposing flying UAVs, and the corresponding applied
force is then obtained according to the speed and position
information for the UAVs. The magnitude of the force is the
same as the previous separation force but its direction differs.

Pieeat

hy

FIGURE 2. Method for calculating the nearest relative distance between
two UAVs.

As shown in Figure 2, the key step involves calculating the
time taken to arrive at the closest point of approach (CPA).
CPA occurs at the moment when the two UAVs arrive at their
closest point.
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Algorithm 1 Self-Organizing UAV Flight Cluster Collision Avoidance Algorithm

Input: initial position, target position, initial velocity of UAVs, number of UAVs N, simulation step length S, labels of the UAVs

Output: trajectories of all the UAVs
while flock do
if label is the same &&D;; < Djqufe1

Steering_force = Repulsion_force + Alignment_force + Cohesion_force + Target_force — Current_velocity;

elseif label is different &&Dj; < Diqfe2
Steering_force = Repulsion_force;
end
Updated_velocity = Current_velocity + Steering_force;
Updated_position = Current_position + Updated_velocity;
end

First, we calculate the CPA between UAV; and UAV;. The
distance between UAV; and UAV; is defined according to
Eqs (25)-(27):

hij f’t/
depajj = —— (25)
hij
Zl‘j = 3,’ X ?,- (26)
Py =D =D 27)

where ﬁi = (xi, yi, zi) and faj = (¥}, ¥}, zj) are the positions
of UAV; and UAVj, respectively, and v = (Vix, Vi,y, Vi,z) and
Vj = (Vjx, Vjy, vj,7) are their velocities.

We then determine the time required to reach CPA, which
is defined as Az. The formula p; ,, A, - vij = 0 holds when
the UAVs arrive at the CPA. Assuming that the locations of
the UAVs at time ¢ + At are as given by Eqgs (28) and (29):

f’i,t—i—At = (x,' +Vix - Aty +Vviy - Atz + Vi At) (28)
ﬁj,t+At = (Xj +Vjx - At, Yi+Vjy- At, Zj+ V- Al‘), (29)
where ¢ is the current moment, then we can calculate the
relative position vectors for the UAVs at time ¢ + At.
Pijrrar = (G =X+ Wjx —via) - ALY
—Yi+ jy—viy) Af,zj — zi + (vj; — Vi) - Af)
(30)
Therefore, the time interval Ar can be calculated as
follows.
At
|GG =)W =i )+ =) V), = Viy) + (2 —20)(vj,: = Vi2)|
| Vi =Yy 2+ Wiy =y 2+ (i 2= .02 |
(31)
Based on the information described above, we propose

a formula for calculating the anti-collision force for UAV;,
as follows.

hij dcpa,ij

R — — . ifﬁ,;/ . ﬁlj <0
7= Ivz-lﬁ- |- IVde Pl (32)
- UA . Cj’A,IJ’ ifhij'f?ijZO
il - [vil  Ipyl
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Similarly, the anti-collision force for UAV; can be written
as follows.

h“ d .. . R
- —2 TP ik py <0
- [vil - 1vil  |pyjl
fi= hi  d
ji CPA,ij 7 —
Lt == if ki py; =0,
[vil - [vil |yl
ZﬁZ?jX?,‘ (33)

The basic idea of this method is that the direction of
the force is perpendicular to the relative position vector
of the UAV when it reaches CPA. This approach gives the
UAV the most effective control over the relative distance
beyond the safe distance to the CPA.

Algorithm 1 is the collision avoidance algorithm for a
cluster of self-organizing UAVs, where the core step involves
distinguishing the UAV repulsive force from different UAV
swarms.

IV. SIMULATION AND RESULTS

Scripts were written in Matlab to generate four different
simulation scenarios. Each UAV swarm was assumed to be
heading toward its own target position along a straight line
at 5 m/s. The minimum safe separation distance, d0, was
defined as 15 m. The interval time, t0, for discrete points
was set as 0.1 s. The corresponding weight coefficients
wl, w2, w3, and w4 were calculated as 427, 0.225, 0.452,
and 548, respectively. The maximum variation range for
the pitch angle, A, was 0.74, and the minimum value, B,
was —0.74. We assumed that each UAV could receive infor-
mation from the other UAVs and that the simulation calcula-
tion times could be ignored. The simulations were performed
using an HP EliteBook laptop, with an Intel i5 processor at
2.6 GHz and 4 GB of RAM.

A. UAVs IN A SWARM FLYING TOWARD EACH OTHER

We assumed that two swarms of UAV's approached each other
from opposite directions, and thus collisions were imminent.
In the simulations, each UAV swarm contained three UAV's
and each UAV swarm was self-organized to form its own team
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TABLE 2. Initial UAV states for the first flight scenario.

Number UAV1 UAV2

UAV3 UAV4 UAVS UAV6

Initial position of UAV

en, m, ) (200,-17.3, 10)

(204, -17.3,-10)
Initial speed of UAV

(m/s, m/s, m/s) (.0.0)

(5,0,0)
Initial angle of UAV
(rad, rad, rad)
UAV flight end point
(m, m, m)

0,0,0) (0,0, 0)

(1000, -8.7, 0) (1000, -8.7, 0)

(1000, -8.7, 0)

(205, 0, 0)

(600,-17.3, 14) (603,-17.3, 6) (601, 0, 4)

(5,0,0) (-5,0,0) (-5,0,0) (-5,0,0)

(0,0,0) (m, 0,0) (m, 0,0) (m, 0,0)

(200, -8.7, 0) (200, -8.7, 0) (-200,-8.7, 0)

50

Z(m)

-50

300
X(m)

- 250
50 -50150

0
Y(m)

Distance

i« UAV4

~ UAVS

650
600

FIGURE 3. Simulation results for scenario one.

at the target location. The initial state and target status for each
UAV are shown in Table 2.

In Figure 3a, each UAV trajectory is displayed in the form
of a 3D curve. The green tracks represent the trajectories
of the first UAV swarm and the red tracks represent the
trajectories of the second swarm. Figure 3a shows that the
trajectories of the two swarms changed continually during
the collision avoidance process. The UAVs in the two swarms
flew from the scheduled starting position in a self-organized
manner until the end of the flight. During the entire col-
lision avoidance process, the two UAV swarms adaptively
generated collision avoidance movements within the collision

85542

Time(s)

b

area, where the distributions of their positions in space
were uniform and their trajectories satisfied the actual flight
demands.

Figure 3b shows the relative distance between each
UAV pair. The minimum distance between any two UAVs
was 15.03 m, which was above the lower limit of the safe
separation distance.

B. UAV SWARM FLIGHT SCENARIO THAT
MIGHT CAUSE A DOMINO EFFECT

A second scenario was generated to detect whether collision
avoidance could be achieved in a high traffic density situation
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a
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£
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£ 200 N
fa S
150
100 S
50
0 I T
0 10 20 30 40 50 60 70 80
Time (s)
b
FIGURE 4. Simulation results for scenario two.
TABLE 3. Initial UAV states for the second flight scenario.
Number UAV1 UAV2 UAV3 UAV4 UAVS UAV6
e ?rﬁs‘;m;f;f YAV (200,0,10)  (204,0,-10)  (205,0,0)  (600,0,14)  (603,0,6) (601,0,4)
Initial speed of UAV
(m/s, m/s, m/s) (.0,0) (5.0,0) (5,0,0) (-5,0,0) (-5,0,0) (-5, 0, 0)
Initial angle of UAV
ol g, 1ad) (0.0,0) 0.0,0) (0,0,0) (%, 0,0) (%, 0,0) (%, 0,0)
uav (f};gf;;eﬁg POt (1000,-8.7,0)  (1000,-8.7,0) (1000,-8.7,0) (-200,-8.7,0) (-200,-8.7,0) (-200,-8.7,0)

where the airspace was limited and the UAV vertical sepa-
ration distances were very small. Figure 4 shows that two
swarms of approaching UAVs were present and their colli-
sions were imminent. Unlike scenario 1, the UAV formations
in each swarm were arranged in a vertical manner and this
formation could lead to a collision domino effect when the
UAV swarms met. Table 3 shows the initial state and the target
status of each UAV.

The trajectory of each UAV is presented in the form of
a 3D curve in Figure 4a. The green track represents the
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trajectory of the first UAV swarm and the red track repre-
sents that of the second swarm. In this simulation scenario,
the UAVs generally adopted horizontal strategies for collision
avoidance because vertical collision avoidance movements
could have resulted in a domino effect. This scenario verified
the anti-collision effect of self-organizing UAV clusters in a
vertically stacked situation. Figure 4b shows the relative dis-
tances between each UAV pair, where the minimum distance
between any two UAVs was 15.02 m, which was higher than
the minimum safe separation distance.
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FIGURE 5. Simulation results for scenario three.
TABLE 4. Initial UAV states for the third flight scenario.
Number UAV1 UAV2 UAV3 UAV4 UAVS UAV6
nitial z’r‘r’f‘rtr‘lorr‘n‘;f VAV 200,-173,10)  (204,-17.3,-10)  (205,0,0)  (382.7,-200, 11) (382.7,-202,-9) (400,205, 1)
Initial speed of UAV
s o, ) (5.0.0) (5,0,0) (5,0,0) (0,5,0) (0,5,0) (0,5,0)
Initial angle of UAV
(rad, rad, rad) (0,0,0) (0,0,0) (0,0,0) (n/2, 0, 0) (n/2, 0, 0) (n/2,0,0)
UAV flight end point (1000, 8.7, 0) (1000, -8.7, 0) (1000, -8.7, 0) (400, 591.3, 0) (400, 591.3, 0) (400, 591.3, 0)
(m, m, m)

C. UAV SWARM VERTICAL CROSS FLIGHT
This scenario was designed to test whether UAV swarm col-
lisions could be avoided effectively in the vertical direction.
Figure 5 shows that two UAV swarms approached each other
at a vertical angle and collisions were imminent. The simu-
lation showed that the method could readily ensure collision
avoidance in this scenario and the anti-collision trajectories
were very smooth, thereby meeting the realistic flight require-
ments. This scenario supported the effectiveness of the anti-
collision method when UAV swarms meet at a vertical angle.
The initial state and target status for each UAV are shown
in Table 4.

The trajectory of each UAV is represented by a 3D curve
in Figure 5a. The green track represents the trajectory of
the first UAV swarm and the red track is the trajectory of
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the second swarm. Figure 5b shows the relative distance
between each pair of UAVs, where the minimum distance
between any two UAVs was 15.04 m, which was above the
minimum safe separation distance.

D. THREE DIFFERENT DIRECTIONS OF UAV

SWARM GATHERING SCENE

This scenario tested the effect of the anti-collision method
when several UAVs arrived in the same airspace from dif-
ferent directions. Figure 5 shows that three swarms of UAVs
were flying from three different directions and collisions were
imminent. This scenario tested whether the algorithm was
still effective at avoiding collisions when the UAV swarms
merged from three different directions. The simulation results
showed that although the airspace density was high, the
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TABLE 5. Initial UAV states for the fourth flight scenario.

Number UAV1 UAV2 UAV3 UAV4 UAVS UAV6 UAV7 UAVS UAV9
Initial position
(200,173,  (204,-17.3, (600,-17.3, (603, (382.7, - (382.7, - (400, —
of UAV 10) “10) (205,0,0) 14) 173,6)  ©OLOA 50010y 202, -9) 205, 1)
(m, m, m)
Initial speed of
UAV (5,0,0) (5,0,0) (5,0,0) (=5,0,0) (-5,0,0) (=5,0,0) (0,5,0) (0,5,0) 0,5,0)
(m/s, m/s, m/s)
Initial angle of
UAV 0,0,0) (0,0,0) (0,0,0) (7, 0,0) (m, 0, 0) (7, 0,0) (n/2, 0, 0) (m/2, 0, 0) (n/2,0,0)
(rad, rad, rad)
UAfo:)lign}:t end (1000,-8.7, (1000, 8.7, (1000, — (200, -8.7, (=200, — (200, — (400, 591.3, (400, 591.3, (400,
(m, m, m) 0) 0) 8.7,0) 0) 8.7,0) 8.7,0) 0) 0) 591.3,0)
50
E UAV4
0 =
= UAV1 e — —— :
-50 UAV3 7= m— UAVS
> YAV
UAV2 S—— L ST
200 5 UAVS
1 -
0 600 650
-100 400 450 500 550
Y(m) 200 459 200 250 300x - )350
a
450
400 s,

FIGURE 6. Simulation results for scenario four.

anti-collision effect was very good and the flight paths did
not require excessive deviations, thereby meeting the realistic
flight requirements. The initial state and target status of each
UAV is shown in Table 5.

The trajectory of each UAV is represented by a 3D curve
in Figure 6a. The green track represents the trajectory of the
first UAV swarm, the red track is that for the second swarm,
and the blue track is that for the third swarm. Figure 6b
shows the relative distance between each pair of UAVs, where
the minimum distance between any two UAVs was 15.03 m,
which was higher than the minimum safe separation distance.

E. SIMULATION ANALYSIS AND COMPARISON

OF VARIOUS SCENARIOS

Each simulation scenario showed that all of the UAVs were
located greater than the safe distance, thereby demonstrating
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that collisions were successfully avoided in the drone swarm.
The relative distance maps indicated that the collision avoid-
ance effect was very good for the UAVs, and each UAV swarm
continued to move toward the target position after completing
the collision avoidance process. The relative distances of the
UAVs in the same swarm or in different swarms were also
maintained in a smooth manner during the entire collision
avoidance process. However, in the fourth scenario, the rel-
ative distances of the UAVs at the CPA varied more than
those in the first three scenarios because the airspace traffic
density was very high in the same airspace at the moment
corresponding to the CPA, and each UAV swarm was at risk
of colliding with the UAV swarm in both directions.

The mixed state of the UAV swarm was observed using the
relative distance curves for the UAVs and by assessing the
topology of the UAV swarm from the side. For each scene,
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two types of relative distance curves were obtained, where
one tended to form a straight line and other tended to form
a curve. The former represents the relative distances of the
UAVs inside the swarm and the latter within the different
swarms. The relative distance curve inside the swarm was
smooth and it varies little, and thus the UAVs inside the
swarm had a smooth and compact topology throughout the
simulation.

V. CONCLUSION AND FUTURE WORK

In this study, the self-organized flight of UAV swarms was
optimized based on the Reynolds rules. A new fitness func-
tion was proposed and the parameters were optimized using
a CMA-ES optimization algorithm. A new cluster anti-
collision algorithm was also proposed. The simulation results
proved that the proposed self-organized UAV swarm flight
collision avoidance method performed in a safe and effective
manner with smooth avoidance trajectories, thereby meeting
the realistic flight requirements. The main contributions of
our study are summarized as follows.

1) Self-organizing flight rules were modeled for a UAV
swarm based on the traditional Reynolds rules and
suitable constraints were added. A fitness function was
constructed to optimize the rules in the model to ensure
that the self-organizing UAV swarm flight collision
avoidance behavior was aligned with the actual flight
requirements.

2) The traditional self-organizing flight rules are not
effective for addressing the collision avoidance prob-
lem between UAV clusters, so we derived new anti-
collision rules between UAVs to improve the collision
avoidance efficiency and obtain smooth avoidance
trajectories. In the simulations, the UAVs com-
pleted their anti-collision maneuvers without changing
speed, which is suitable for meeting the actual flight
requirements.

3) Our proposed method was verified in four simulation
experiments, where UAV swarms approached face-
to-face as well as extreme collision avoidance by
UAV swarms in the vertical direction, vertical angle
convergence to allow anti-collision by UAV swarms
approaching in the horizontal direction, and colli-
sion avoidance by UAV swarms approaching the same
airspace from three different directions.

In future research, we will consider factors such as commu-
nication delays to further optimize the rules model as well as
the drone speed to make the model more flexible. In addition,
actual flight experiments will be conducted using fixed-wing
UAVs to validate our proposed method.
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