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ABSTRACT Network evasions can bypass network intrusion detection/prevention systems to deliver
exploits, attacks, or malware to victims without being detected. This paper presents a novel method for
the detection and recognition of atomic network evasions by the classification of a transmission control
protocol (TCP) stream’s packet behavior. The syntax for the conversion of TCP streams to codeword
streams is proposed to facilitate the extraction of statistical features while preserving the evasion behavior
attributes of original network flows. We developed a feature extraction method of employing the normalized
term frequencies of codewords to characterize intra and inter packet attribute patterns hidden in actual
TCP streams. A TCP stream is then transformed to a fixed length numeric feature vector. Supervised
multi-class classifiers are built on the extracted feature vectors to differentiate different types of evasions
from normal streams. The quantitative evaluations on an evasion dataset consisting of normal network flows
and eight types of atomic evasion flows demonstrated that the proposed approach achieved an encouraging
performance with an accuracy of 98.95%.

INDEX TERMS Network intrusion detection/prevention, network evasion, term frequency and inverse
document frequency.

I. INTRODUCTION
Network Intrusion Detection/Prevention Systems (further
NIDS/NIPS) are now widely used to improve the security
of networks run by providers, enterprises and even home
users. These systems analyze traffic on networks, detect
any malicious activities and make alerts to system secu-
rity operators (NIDS) or disrupt suspicious network con-
nections (NIPS). Based on the detection approach, NIDS
can be divided into two categories: the anomaly-detection
NIDS and the misuse-detection NIDS. The former gets a
notion of normal activity and flags deviation from that profile.
The latter monitors activities with precise descriptions of
known malicious behaviors. In terms of actual deployments,
the misuse-detection NIDS products are found almost exclu-
sively in use, commonly in the form of signature-based NIDS
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which scans network traffic and seeks for characteristic byte
sequences [1].

As soon as they are deployed, NIDS/NIPS themselves
become targets of attacks aiming to undermine their capabil-
ities. These attacks continue to be one of the most serious
threats in the domain of cyber security. The advent of net-
work evasion techniques enables attackers to deliver exploit
code to victims without being detected by a misuse-based
NIDS/NIPS. Due to the robustness principle [2] in an internet
protocol design, which means that an implementation of a
protocol should be careful to send well-formed datagrams,
but should accept any datagrams that it can interpret, there
are various interpretations in different protocol implemen-
tations. Attackers can use these ambiguities to deliberately
craft network traffic so that an NIDS/NIPS and endpoint
systems process packets in different ways. If the processing
of the packets generates different representations of the raw
data in the NIDS/NIPS and in the end systems, an attack
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can reach the destination undetected. Such concealment tech-
niques are collectively referred to as evasion techniques.
First introduced by Ptacek and Newsham [3], evasion tech-
niques have evolved from the exploiting tactics at the net-
work and transport layers to transforming application layer
messages, such as the HTTP IDS evasion [4] and polymor-
phic shellcode [5]. Vidal et al. [6] classified the most repre-
sentative evasion techniques into five categories: Insertion
and Evasion, Denial of Service, Malware Obfuscation, Link
Layer, and Application Layer. A single evasion technique is
called an atomic evasion [7]. Xiong et al. [8] summarized
common atomic evasion techniques and at least 147 atomic
evasions have been discovered [9]. Atomic evasions can be
combined to further confuse analysis devices and the num-
ber of their unique combinations is 2147 which is a truly
massive potential threat. Although not all of the combina-
tions work, many of them do. Chammem [10] investigated
non-exhaustive strategies to enhance the search performance
of effective combinations.

Modern NIDS vendors publish extensive performance test-
ing results regarding the line speed and breadth of attacks
detected by their systems, but little information regarding
their resilience to evasions. A recent effectiveness evalua-
tion of 35 well-known evasions against nine commercial and
one free state-of-the-art NIDS showed that even a single
evasion technique from the 1990s with suitable parameters
can successfully evade the detection of the best existing
NIDS [7]. Cheng et al. [11] assessed the effectiveness of
evasion techniques for FortiGate, Snort and ZyXEL. These
three signature-based NIDS all operated with up-to-date
firmware/code and rules. However, they were still bypassed
by the IP fragmentation atomic evasion. Gorton discovered
that some combinations of segmentation, overlapping and
chaffing could make Snort fail to detect the attacks under-
neath [12]. A test performed in 2017 by Levomaki et al. [13]
showed that TCP level atomic evasions were able to bypass
commercial products of Gartner ‘‘Intrusion Detection and
Prevention’’ and ‘‘Enterprise Firewall’’ 2017 magic quadrant
leading vendors.

Faced with the constant threat of network evasions, we pro-
pose to address the detection and recognition problem of
atomic evasions in the network and transport layers by means
of the classification of a TCP stream’s packet behavior.

The philosophy of our method is to extract features dis-
criminative enough to differentiate evasions from normal
behaviors, and train a classifier to identify the evasions’ types.
Specific evasion techniques modify traffic streams in their
uniqueways. This leads to value deviation of the related fields
in a packet’s header, or deviation of the affected fields’ rela-
tive value between neighboring packets in the receiving order.
These deviations also occur in normal streams for benign rea-
sons. So it is not appropriate to use simple thresholds on the
deviations to determine if evasions actually occurred. Instead
we employ the normalized term frequencies of codewords
learned from a training dataset to characterize the intra and
inter packet attribute patterns hidden in actual evasion traffic

streams, and use a classifier to differentiate different types of
evasions from normal streams.

The first contribution of this paper is that, to the best of
our knowledge, we are the first to introduce the TF-IDF
(term frequency–inverse document frequency) model to the
network evasion problem. As a simple and effective repre-
sentation used in the Natural Language Processing (NLP) and
information retrieval, the TF-IDF model has found enormous
success in document classification. In our evasion detection
problem, it offers an effective way of mapping intra and inter
packet attributes from TCP streams of variable length to fixed
length numeric vectors. The second contribution is the pro-
posal of a method for converting network flows to codeword
streams, which converts a difficult raw binary network stream
classification problem to a text classification task. Consisting
of finite codewords, codeword streams preserve the evasion
behavior attributes of original TCP streams and facilitate the
extraction of statistical features.

The rest of this paper is organized as follows. In the next
section, we survey related work. Section III describes the pro-
posed approach, details the generation of codeword streams
and specifies the feature extraction method. In section IV we
present our dataset setup and give the performance results.
Section V concludes the paper.

II. RELATED WORK
Some previous studies on anti-evasion techniques have
focused on the elimination of ambiguities between an
NIDS and endpoint systems. One of the most representative
approaches is the traffic normalizer [14] proposed byHandley
and Paxson. It is an inline network element which patches
packet streams to remove potential ambiguities. Because it
consumes a large quantity of resources to store the state
and previous packets of each connection when analyzing
the consistency of connections, the traffic normalization’s
performance and robustness is often an issue when working
with high speed networks [15]. A similar approach was sug-
gested by Watson et al. [16], who introduced an intermediate
system called the Protocol Scrubbing which converted traffic
to well-formed TCP data. However, it may erode the transport
semantics and disrupt the useful traffic [14]. Another way of
disambiguating is the Active Mapping proposed by Paxson
and Shankar [15]. It builds profiles of a network topology
and hosts’ TCP/IP policies which an NIDS can use to dis-
ambiguate the interpretation of network traffic on a per-host
basis. This technique has been adopted by Snort [17] in its
IP defragmentation preprocessor (frag3) and stream reassem-
bly preprocessor (stream5) [18]. Active Mapping avoids the
performance and semantic drawbacks of traffic normalization
but it may fail to map hosts whose IP addresses are allocated
via DHCP. Also the anomalous traffic it actively sends out
may be rejected by firewalls or routers [19]. Frag3 utilizes
target based fragmentation reassembly [20] and stream5 uses
target based TCP stream reassembly [21]. These two prepro-
cessors can detect and alert on IP fragmentation and TCP
reassembly related anomalies. However, the alerts they raise
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FIGURE 1. Overall procedure of the proposed approach. Our evasion detector first extracts normal TCP streams from a set of captured network flows(¬),
and applies atomic evasion techniques on these normal streams to get evasion streams(­). Then it converts the normal and evasion streams to
codeword streams(®), extracts numeric features from these codeword streams(¯), and trains a classifier to classify them(°). For an unknown TCP stream,
its features are extracted from its converted codeword stream (±), and the trained classifier is used to identify the stream as a normal flow or one type of
evasion.

are minimally accurate because alerts can also be generated
by normal traffic. It is not easy to distinguish false positives
from the alerts that accompany an actual attack [12]. So these
alerts are mostly for debugging purpose [22]. While attackers
can actively exploit ambiguities to evade an NIDS, ambi-
guities unfortunately also rise in traffic streams for benign
reasons, requiring analysis for ascertaining whether the con-
dition constitutes a threat.

While earlier studies had tried to eliminate the ambi-
guities to prevent evasions, recent machine learning based
approaches to combating evasions devoted to increasing their
classifiers’ resilience to evasions. Zhang et al. [23] proposed
an adversary-aware feature selection model that incorporated
specific assumptions on an evaion’s data manipulation strat-
egy. Anindya and Kantarcioglu [24] developed a strategy to
defend against evasions from a game theoretic viewpoint
by searching for the optimal parameters of centroid-based
clustering models. Katzir and Elovici [25] suggested build-
ing robust classifiers consisting of only resilient features
to remain unchanged despite the occurrences of evasions.
Homoliak et al. [26] improved an anomaly-detection NIDS’s
resilience to link layer evasions by augmenting the NIDS’s
training dataset with attack samples on which evasions were
applied. The NIDS they improved was a non-payload-based
intrusion detection classifier which distinguished attacks
from legitimate traffic based on the features extracted only
from the IP and TCP headers. Their experiments showed
that evasions caused an exacerbation of the True Posi-
tive Rate(TPR) ranging from 7.8% to 66.8%, while the
dataset augmentation increased the TPR by 4.21%-73.3%.
However, all these proposed approaches are based on the
anomaly-detection NIDS whose actual deployment is rarely

seen due to its high false positive rate and low accuracy [27].
Du and Yang [28] developed probabilistic graphical models
to analyse the impact of removal, insertion, and alteration
evasion actions on performance of an NIDS. They proposed
the Expected Classification Accuracy (ECA) to assess the
impact of evasions in terms of class distribution overlap. Their
study solved the problem of evasion evaluation but not the
problem of evasion detection.

In this paper, we propose another way to prevent evasions.
Instead of eliminating ambiguities or increasing an NIDS’s
resilience to evasions, we can detect and recognize evasion
behaviors in network activities and may further inform other
security devices to terminate the involved stream connections.

III. THE PROPOSED APPROACH
The overall approach is illustrated in FIGURE1. Our
approach works in two stages: training and detection. In the
training stage, we first acquire normal TCP streams by
extracting TCP streams from captured network flow trace
files. Evasion streams are then obtained by applying eva-
sion techniques on the normal TCP streams. Next, code-
word streams are generated from the normal and evasion
streams(SectionIII-A). Finally, feature vectors are extracted
from the codeword streams(SectionIII-B) and used to train a
multi-class classifier. In the detection stage, an unknown TCP
stream is converted to a codeword stream and a feature vector
is extracted from the codeword stream. The trained classifier
is employed to categorize the feature vector and determine
the type of the TCP stream. Our approach focuses on the
inspection of a stream’s packet behavior, not its content.
The proposed codeword stream generation method encodes
a stream’s packet behavior attributes in codewords, which
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converts the difficult raw binary network stream classifi-
cation problem to a textual codeword stream classification
task. In addition, in feature extraction we exploit the TF-IDF
method which characterizes the different attribute patterns
hidden in different types of evasion and normal streams. This
transforms the variable length codeword stream classification
problem into a fixed length vector classification task, which
can benefit from classical classifiers such as the linear SVM
and the Randowm Forrest.

FIGURE 2. Illustration of the proposed method and previous approaches.

FIGURE2 illustrates the difference between the proposed
approach and previous methods. Traffic normalizer and Pro-
tocol Scrubber, as shown in the first row, sit in the traffic path,
patch up packets and eliminate potential ambiguities before
the traffic is seen by the NIDS and hosts in the intranet it’s
protecting. Active Mapper, as shown in the second row, sits
beside an NIDS, builds and provides the NIDS with hosts’
profiles via the probe packets sent by the mapper. Armed with
the host profiles, the NIDS can resolve ambiguities in traffic
streams. The machine learning based approaches mentioned
in Section II build an anomaly-detection NIDS whose classi-
fier has better resilience to evasions. Our approach works like
an NIDS. As shown in the last row of FIGURE2, it monitors
the TCP streams in the traffic path and reports the atomic eva-
sion events it finds. Its report can be valuable information for
the NIDS administrator, and can be used to inform firewalls
to terminate suspicious evading TCP connections.

A. CODEWORD STREAM GENERATION
Although there have been lots of datasets [29] available
in the field of cyber security, none of them fits for the

scenario of network evasion detection. The DARPA Intrusion
Detection Data Sets [30], its famous derivation KDD Cup
1999 Data [31], and the improved version [32], for instance,
are widely used for the IDS evaluation without evasion. The
UNB ISCX 2012 and 2017 Intrusion Detection Evaluation
Datasets [33] are for the same purpose. Public datasets from
CAIDA [29] and Internet Traffic Archive [29] are mainly
for the study of network dynamics, usage characteristics, and
growth patterns. The MAWILab [34] trace repositories pro-
vide datasets for traffic anomaly detection. For the purpose
of evasion detection we need to build a dataset consisting of
samples of different evasion types as well as samples without
evasions.

First, normal network flows were captured from a small
intranet network whose bandwidth was 10Mbps. We ensured
that no evasion tools were running on any hosts of the net-
work. These network flows were captured at different time
periods on a typical working day. The capturing was per-
formed on a mirror port of the intranet’s hub using tcpdump.
The hubworked at the transfer rate of 10Mbpswhile the desk-
top performing the capturing had its gigabit network interface
card connecting to the hub’s mirror port. The desktop was
equipped with an Intel I5 CPU and eight gigabytes primary
memory to make sure that no packets would be dropped due
to the lack of processing efficiency.

TCP streams were then extracted from the captured flows
and saved in separate trace files in the tcpdump’s pcap format.
These TCP streams are taken as normal network streams.
Evasion techniques were applied on these trace files to gen-
erate evasion network streams. Since we focused only on
the detection of atomic evasions in this study, evasion tech-
niques were applied individually and not in combination.
The evasion techniques we applied were ip_chaff, ip_frag,
ip_opt, ip_ttl, ip_tos, tcp_chaff, tcp_opt and tcp_seg. Based
on fragroute [35] we developed a program which was able to
apply an evasion technique to the trace file under operation
if it decided that the evasion technique was applicable to that
trace. According to the evasion technique specifications, this
program read each packet from the normal network flow trace
files, then dropped the packet or saved the modified copy or
inserted new packets to the resulting trace files. Each resulting
trace file was comprised of packets generated by a specific
evasion technique from the originating normal stream, and it
was labeled as the corresponding evasion class.

Streams of evasion attacks differ from normal streams
in some quantitative attributes. In our study, we formulate
these attributes into intra-packet ones and inter-packet ones.
Intra-packet attributes such as the length of an IP packet can
be extracted from a single packet. Inter-packet attributes such
as the difference between the IP fragment offset values of two
packets can be derived frommore than one packet of the same
stream.We use codewords to code these attributes and convert
each TCP stream to a codeword stream.

TABLE1 lists and describes the conventions that are used
in the conversion syntax of network traces to codeword
streams. The complete conversion syntax of a TCP stream in a
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TABLE 1. Syntax conventions.

TABLE 2. Conversion syntax.

trace file to a codeword stream is listed in TABLE2. TABLE3
explains the correspondence between the packet attributes
and codewords.

TABLE 3. Attributes, codewords and their explanations.

Table4 lists the complete correspondence between code-
words and the intra&inter-packet attributes they code. For
instance, codeword iplen codes the length of the current IP
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TABLE 4. Correspondence between codewords and intra&inter packet
attributes.

FIGURE 3. A TCP stream consisting of four packets.

packet which is one of the intra-packet attributes, so it’s
labeled ’Y’ in the column ‘‘Intra attribute’’. ipseqplus is one
of the inter-packet attributes, so it’s labeled ’Y’ in the column
‘‘Inter attribute’’.

The following is a codeword stream converted from an
example TCP stream with four packets shown in FIGURE3.

iplen23 ipflags2 ipttlplus1 tcplen18 tcpseqorderoverlap-
plus3 tcpflags24 iptos0 tcpack. iplen23 ipseqzero ipflags2
ipttlzero tcplen18 tcpseqorderoverlapminus4 tcpflags24
iptos0 tcpack. iplen23 ipseqzero ipflags2 ipttlzero tcplen18
tcpseqorderoverlapminus4 tcpflags24 iptos0 tcpack. iplen23
ipseqzero ipflags2 ipttlzero tcplen18 tcpseqorderoverlapmi-
nus4 tcpflags24 iptos0 tcpack.

Converted codeword streams can be seen as text documents
and can be further processed by NLP models. Other pub-
lications which employed NLP models for intrusion detec-
tion take a packet analyzer’s (e.g. TShark) text output [36]
or ready-made features [37], [38] from publicly available

datasets (e.g. KDD CUP’99 and UNSW-NB15) as their
source input text. They do not have a step for preparing the
model’s input. The proposed conversion syntax enables the
transforming from raw binary network streams to text, and
converts the network evasion behavior detection problem to
a text classification task.

B. FEATURE EXTRACTION
Features are subsequently extracted from the codeword
streams to generate samples in the form of numerical vectors.
We borrowed the idea of TF-IDF (term frequency–inverse
document frequency) in text mining. First all the unique code-
words in all the streams are collected to get the codeword set.
For each codewordwe calculate its term frequency (tf) in each
stream adjusted for the stream’s length. Then we measure
the information provided by each codeword with its inverse
document frequency (idf) which is the logarithmically scaled
inverse fraction of the streams that contain the codeword.
The importance of each codeword for discriminating types of
streams is taken as the multiplication of its tf and idf values,
and is called tfidf. The detailed computation is as follows.

For codeword ti, its term frequency tfi,j in stream sj is

tfi,j =
ni,j∑
k nk,j

(1)

where ni,j is the number of occurrences of ti within sj and
the denominator is the number of codewords in sj. For code-
word ti, its inverse document frequency is

idfi = log
1+ |S|

1+ |{j : ti ∈ sj}|
+ 1 (2)

where |S| is the number of streams and |{j : ti ∈ sj}|is the
number of the streams in which ti occurs. For codeword ti its
importance in stream sj is

tfidfi,j = tfi,j × idfi (3)

If the number of unique codewords in all streams is denoted
by |UC |, for stream sj we produce a vector X (j) of length |UC |
whose ith element is

X (j)
i = tfidfi,j (4)

And we normalize X (j) by

X (j)
=

X (j)√
X (j)2
0 + X (j)2

1 + · · · + X (j)2
|UA|−1

(5)

The normalized X (j) is the feature vector of sj. X (j) and the
jth stream’s class label yj constitute the jth sample

(
X (j), yj

)
of

the training set.
In Figure4, we demonstrate the ability of the extracted

features to capture the intra&inter packet attribute differ-
ence between different types of streams. We randomly chose
300 normal TCP streams and 300 ip_frag streams, and drew a
subset of their features comprised of only the codewords start-
ing with ‘‘iplen’’ (e.g. iplen5, iplen6,etc). There are 187 dif-
ferent iplen codewords (from iplen5 to iplen188). So each
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FIGURE 4. Images of iplen feature subset for 300 ip_frag and 300 normal
streams showing different patterns.

image has 187 rows as shown in Figure4. The 300 streams’
feature vectors form the columns of the images. It can be
seen that the feature value distribution of ip_frag streams is
different from that of normal streams. Supervised multi-class
classifiers can be trained to differentiate the hidden patterns,
and later be employed to classify unknown TCP streams.

In the cyber security domain the TF-IDF method has been
employed to detect spam emails, phishing attempts in emails,
exfiltration events in logs, malicious URL, and masquer-
ade attacks, etc. Besides the TF-IDF there is the Recurrent
AutoEncoder (RAE) [39] which also maps variable length
text to fixed length vectors. The RAE is not considered in
our study because it is intended for semantic understanding
but not for classification. The TF-IDF has achieved notable
success in document classification and that’s why we chose it
to extract features for evasion detection by codeword stream
classification.

Table5 details the workflow of the proposed evasion detec-
tion algorithm. It consists of an offline training procedure
and an online detection procedure. In the training procedure,
the algorithm extracts normal TCP streams, generates eva-
sion streams, computes codeword stream set, builds training
dataset and trains the classifier. In the detection procedure,
the algorithm computes the codeword stream of the TCP
stream under test, generates the feature vector and determines
its evasion type by the classifier’s prediction of the generated
feature vector.

If numeric features are extracted from each packet
of a network flow, a TCP stream can be converted to
a Multi-Dimensional Time Serie(MDT). And a multi-
dimensional DTW [40] could be defined on these converted
MDTs as a distance measure. Then the atomic network
evasion detection would be a classification problem which

TABLE 5. Atomic network evasion detection and recognition algorithm.

could be solved by a minimal distance classifier. However,
the number of packets in each TCP stream varies widely.
Short TCP streams may consist of only four packets while
long streams may contain several hundred packets. Due to
the common constraints of DTW implementations (e.g. the
Sakoe-Chiba Band constraint) [41], which limit the warping
path within several cells from the diagonal of the warping
matrix, theDTWmay fail to find the ideal path thatminimizes
the warping cost when the numbers of two streams’ packets
are of significant difference. This may lead to a poor distance
measure and affect the classification accuracy.

IV. EXPERIMENTAL RESULTS
Although to our knowledge there are no published results on
the atomic network evasion detection and recognition which
we can compare our approach with, we give our dataset setup,
detection and computation performance in this section in
detail.

A. DATASET
We evaluated our model on a dataset consisting of 280,217
samples generated from normal TCP streams and 8 types of
atomic network evasion streams. Every evasion sample was
obtained by applying an evasion technique to the original
TCP stream with specific option values. TABLE6 shows the
different option values for the eight types of evasions in the
dataset. For instance, twenty four samples of the ip_frag
evasion may be generated from one normal stream by apply-
ing 24(3 × 2 × 4) different value combinations of ‘‘order’’
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TABLE 6. Option values of different evasions in the dataset.

TABLE 7. Sample numbers of different evasion types in the dataset.

(3 different values), ‘‘favor’’ (2 different values) and ‘‘size’’
(4 different values) options. And there may be 14 tcp_chaff
samples derived from one normal stream by applying 14 dif-
ferent tcp_chaff options (cksum, null, paws, seq, syn, 1-9).
For a detailed explanation of all these evasion options, please
refer to the website of fragroute [35]. The numbers of sam-
ples for different evasion types in the dataset are listed in
TABLE7. It is noted that not all value combinations of a
particular evasion type’s options work on all normal streams.
Therefore the number of samples for each evasion type is
not proportional to the number of the evasion options’ value
combinations.

The option value configurations in TABLE6 were chosen
with consideration. Gorton [12] and Cheng [11] considered
only the IP fragments and TCP segments of length less
than or equal to 8 bytes in their test since larger sizes were
unlikely for an evasion attempt to succeed. That is the reason
why we chose the maximum size of ip_frag and tcp_seg to
be 32. Some options’ values such as the size in tcp_opt,
ip_addr and ptr in ip_opt are insignificant because they pro-
duce the same codewords. Our previous experimental results
indicated that those numeric option values in tcp_chaff,
ip_chaff, ip_tos and ip_ttl didn’t have significant impact on
the recognition performance. They were chosen to cover the
range of the options or to generate a balanced number of
samples.

The total number of unique codewords in our experi-
ment configuration is 1487, i.e. |UC | = 1487. Each TCP
stream is then represented as a sparse vector sample with
1487 elements.

B. DETECTOR PERFORMANCE
We trained a Support Vector Machine (SVM) and a Random
Forest (RF) classifier respectively on our evasion stream
dataset built in Section IV-A and employed cross-validation
to evaluate the performance of evasion recognition. For the
RF the size of the random subsets of features to consider
when splitting a node was set to 38. And the number of trees
was 200. The minimum number of samples in a leaf node
was fixed to 50. Each training sample was weighted inversely
proportional to its class frequencies in the dataset. For the
SVM a linear kernel was used with the penalty parameter
of the error term set to the reciprocal of class frequencies in
the dataset. FIGURE5 shows the receiver operating charac-
teristic (ROC) curves of our detector when using the SVM on
one of the test datasets. Each curve indicates the performance
of the detector for the normal network streams or one of the
eight evasion types’ streams. For a better view of the curves in
the false positive rate (FP) range from 0 to 0.01, an enlarged

FIGURE 5. ROC of the proposed approach using SVM.

FIGURE 6. Partial enlarged view of ROC using SVM in the range from
0.0 to 0.01.
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FIGURE 7. ROC of the proposed approach using RF.

FIGURE 8. Partial enlarged view of ROC using RF in the range
from 0.0 to 0.1.

partial view of FIGURE5 is shown in FIGURE6. It can be
seen that when the FP is 0.01, the true positive rates (TP)
of our model for all types are close to 1. FIGURE7 shows
the ROC curves of our detector when using the RF on one
of the test datasets. FIGURE8 is the enlarged partial view of
FIGURE 7 with the FP ranging from 0 to 0.1. It is shown
that when the FP is 0.1 the TP of our model for all types are
close to 1. The performance measures of the SVM classier
validated by cross validation are presented in TABLE8.
The accuracies on the test sets via fivefold cross valida-
tion are [0.98888453, 0.98922314, 0.98968631, 0.98924021,
0.99027463] which is 0.9895(mean) +/−0.00053628(std).
TABLE9 shows the performance measures of the RF
classier validated by cross validation. The accuracies on
the test sets via fivefold cross validation are [0.97182571,
0.9712012, 0.97111147, 0.97155755, 0.97230698] which
is 0.9716(mean)+/−0.00048741(std). All cross validation
experiments have been adjusted to employ stratified sampling
during assembling of folds, which ensured equally balanced
class distribution of each fold.

FIGURE9 and FIGURE10 show the confusion matrices
of our approach using the two classifiers on one of the test
sets in the five-fold cross validation. They both have a strong
diagonal.

TABLE 8. Performance of the proposed approach using SVM.

TABLE 9. Performance of the proposed approach using RF.

FIGURE 9. Confusion matrix of the proposed approach using SVM.

C. COMPUTATION PERFORMANCE
We do not compare our approach’s resource consuming and
computation performance with prior studies for several rea-
sons. First of all, they work in different modes. As shown
in Figure2 some prior techniques are inline (e.g. the traffic
normalizer and Protocol Scrubbing) whereas our approach
is not. Second, as shown in Table5 our approach con-
sists of an offline training and an online detection proce-
dures while Active Mapping does not have an offline stage.
Finally, machine learning based approaches [23]–[26] gave
only classification performance data, but no computation
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FIGURE 10. Confusion matrix of the proposed approach using RF.

performance data. We list available resource consuming and
computation performance information of prior techniques
here for completeness. The traffic normalizer was able to
normalize a TCP traffic stream at 100,000 pkts/sec in a
bidirectional 100Mb/sec environment using commodity PC
hardware [14]. Active Mapping was reported to operate with
a steady-state rate of about 5 seconds per host, produc-
ing additional traffic about 19 KB per host and memory
footprint approximately 100 bytes per host [15]. Protocol
Scrubbing was reported to achieve 322.3Mb/sec throughput
while the crossover’s throughput was 359.13Mb/sec under
the same benchmark [16]. We evaluated our approach’s com-
putation performance in terms of the average number of
streams processed per second by running the detection pro-
cedure in Table5 on the dataset consisting of 280,217 streams
described in SectionIV-A for 10 times. Implemented in
Python the detection procedure of our approach operated at a
rate of 41617 streams per secondwhen using the RF classifier,
and 399 streams per second when using the linear SVM. The
evaluation was carried out on a laptop with an Intel I5 CPU,
16GB memory and Windows 10 operating system.

V. CONCLUSION
Early studies on anti-evasion techniques focused on the
elimination of ambiguities between an NIDS and endpoint
hosts. Recent machine learning based approaches devoted to
increasing their classifiers’ resilience to evasions. And we
proposed a method to detect and recognize network evasions
by means of intra&inter packet behavior classification.

First we created a network evasion trace set by applying
evasion techniques on normal TCP streams with different
option value combinations. Then we built a network eva-
sion dataset by converting TCP streams to codeword streams
and extracting statistical features from the intra&inter packet
attributes of the codeword streams. Based on this dataset we

trained SVMand RF classifiers to differentiate different types
of evasions from normal streams.Most notably, this is the first
study to address the network evasion problem from the view
of detection and recognition via machine learning techniques.
Experiments showed that the proposed approach achieved
an average recognition accuracy of 98.95%. Although this
preliminary study has examined only the detection of some
types of atomic network evasions, it indicates the possibility
and potential advantages of machine learning techniques for
evasion detection in application layers and even for the AET
detection. And that will be our further research efforts.
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