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ABSTRACT Twin support vector machine (TWSVM) is a new machine learning method, as opposed
to solving a single quadratic programming problem in support vector machine (SVM), which generates
two nonparallel hyperplanes by solving two smaller size quadratic programming problems. However, the
TWSVM obtains the final classifier by giving the same importance to all training samples which may be
important for classification performance. In order to address this problem, in this paper, we propose a novel
entropy-based fuzzy twin bounded support vector machine (EFTBSVM) for binary classification problems.
By considering the fuzzy membership value for each sample and assigning it based on the entropy value,
the samples with higher class certainty are assigned to relatively larger fuzzy membership. In addition, the
proposed EFTBSVM not only maintains the superior characteristics of the TWSVM but also exploits the
structural riskminimization principle by introducing a regularization term. The experimental results achieved
on synthetic datasets and benchmark datasets illustrate the effectiveness of the proposed method.

INDEX TERMS Pattern classification, twin support vector machine, information entropy, fuzzy
membership.

I. INTRODUCTION
Traditional support vector machine (SVM) is one of the
most popular machine learning approaches, which is based
on VC dimensional theory and structural risk minimization
principle [1], [2]. Thus, it has already been extensively
used in a variety of practical applications such as speaker
identification [3], face recognition [4], bioinformatics [5],
intrusion detection [6] and text categorization [7]. However,
the computational cost of SVM is very high, i.e. O(m3),
where m is the number of training samples. Followed by the
success of the basic SVM, some improvements have been
proposed. For instance, Fung and Mangasrian [8] proposed
a proximal support vector machine (PSVM) for binary clas-
sification. In the spirit of PSVM, Mangasrian and Wild [9]
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proposed a generalized eigenvalue multisurface proximal
SVM (GEPSVM), which aims at seeking a pair of nonparallel
proximal hyperplanes such that each hyperplane is closer to
one class and as far as possible from the other. Following
GEPSVM, Jayadeva et al. [10] proposed a novel nonparal-
lel hyperplane classifier for binary classification problems,
called twin support vector machine (TWSVM). The key
innovation of TWSVM aims at constructing two nonparallel
hyperplanes, which needs to solve two small size quadratic
programming problems (QPPs) rather than a single large size
QPP. It makes training speed of TWSVM four times faster
than SVM. From then on, various TWSVM methods have
been widely investigated [11]–[23], such as least squares
twin SVM (LSTSVM) [11], twin bounded SVM (TBSVM)
[12], twin parametric-margin SVM (TPMSVM) [13], coor-
dinate descent margin based twin SVM (CDMTSVM) [14],
robust twin SVM (RTSVM) [15], nonparallel hyperplane
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SVM (NHSVM) [16], maximum margin of twin spheres
support vector machine (MMTSSVM) [17], novel twin
SVM (NTSVM) [18], wavelet twin SVM (WTWSVM) [19],
angle-based twin SVM (ATSVM) [20], sparse pinball TSVM
(SPTWSVM) [21], Pin-GTSVM [22] and improved uni-
versum TSVM (IUTSVM) [23]. In order to deal with
complex XOR problem, inspired by multi-weight vector
projection SVM (MVSVM) [24], Chen et al. [25] proposed
the projection twin SVM (PTSVM), which seeks a projec-
tion direction rather than a hyperplane for each class. Fol-
lowed by, many variants of PTSVM were proposed, such as
LSPTSVM [26], [27], LIWLSPTSVM [28], RPTSVM [29],
L1-TPSVM [30], PTSVR [31], NPTSVM [32] and
L21-EMVSVM [33]. Moreover, some overviews on twin
support vector machine can be found in references [34]–[36].

On the one hand, as we knew, TWSVM implements the
empirical risk minimization principle and the generalization
ability of TWSVM is weak. In order to address this problem,
TBSVM implements the structural risk minimization (SRM)
principle by introducing a regularization term to the objective
function and resulting in better generalization ability. In other
words, by introducing the regularization term, TBSVM can
not only eliminate the singularity but also have a deep theo-
retical basis from the statistical learning theory. Thus, reg-
ularization technique is widely used in various TWSVM
methods such as RLS-TWSVM [37], RELS-TSVM [38],
RLTSVR [39], LTPMSVM [40], KNNUPWTSVR [41] and
others [42]–[44]. Specifically, we can find that RPTSVM is
an improved version of PTSVM with a regularization term
and RLS-TWSVM is an improved version of LS-TWSVM
with a regularization term. The rest are similar. On the other
hand, SVM treats all the training samples with the same
importance and ignores differences between positive and neg-
ative classes, which results in the learned decision surface
biasing toward the majority class. To deal with this problem,
Lin and Wang [45] proposed Fuzzy SVM (FSVM) based on
fuzzy membership values such that different training samples
have different contributions to the final decision surface.
However, it assigns the smaller fuzzymemberships to support
vectors whichmight decrease the effects of support vectors on
the construction of decision surface. In order to overcome this
problem in FSVM, a new fuzzy SVM for imbalance datasets
was proposed to reduce the misclassification accuracy of the
minority class in FSVM [46]. In addition, based on utiliz-
ing fuzzy membership, various Fuzzy SVMs were presented
such as NFSVM [47], Bilateral-weighted FSVM (BFSVM)
[48], WCS-FSVM [49], FTSVM [50], NFTSVM [51] and
FLTPMSVM [52], etc.

Recently, Fan et al. [53] proposed an entropy-based fuzzy
SVM (EFSVM) for class imbalance problem in which
fuzzy membership is computed based on class certainty of
samples. Following EFSVM, Gupta et al. [54] proposed
a fuzzy twin support vector machine based on informa-
tion entropy which is termed as EFTWSVM-CIL. At the
same time, Gupta et al. [55] proposed a new fuzzy least
squares twin support vector machine (EFLSTWSVM-CIL)

for class imbalance learning. Moreover, Richhariya and Tan-
veer [56] proposed a robust fuzzy least squares twin SVM
(RFLSTSVM-CIL) for class imbalance learning. We can find
that the choice of fuzzy membership is very important for
classification problems. Based on the above analysis and
inspired by TBSVM and EFTWSVM-CIL, in this paper,
we propose a new entropy-based fuzzy twin bounded support
vector machine, namely EFTBSVM. The contributions of our
proposed EFTBSVM can be highlighted as follows. Firstly,
entropy-based fuzzy membership is given to evaluate the
class certainty of all training samples. Similar to EFTWSVM-
CIL, our proposed EFTBSVM utilizes entropy to evaluate
the class certainty of each sample and then computes the
corresponding fuzzymembership based on the class certainty.
Thus, it pays more attention to the samples with higher
class certainty to result in a more robust decision surface,
which can improve the classification accuracy with extended
generalization ability. Secondly, different from EFTWSVM-
CIL, our proposed EFTBSVM implements the structural risk
minimization (SRM) principle instead of the empirical risk
minimization (ERM) principle by adding the regularization
term into the objective functions. Finally, the experimental
results obtained on various synthetic datasets and bench-
mark datasets can illustrate the effectiveness of the proposed
EFTBSVM over other state-of-the-art methods.

The rest of this paper is organized as follows. Section II
gives a brief review of TWSVM, TBSVM, FTSVM, and
EFTWSVM-CIL. The details of linear EFTBSVM and its
nonlinear version are proposed in Section III, respectively.
In Section IV, experimental results and further discussions are
given to show the effectiveness of the proposed EFTBSVM.
Finally, the conclusion is drawn in Section V.

II. RELATED WORKS
In this section, we briefly explain the basics of TWSVM,
TBSVM, FTSVM and EFTWSVM-CIL. Let us consider
a binary classification problem in the n-dimensional real
space Rn and training data is represented by T =

{(x1, y1), (x2, y2), · · · , (xm, ym)}, where xi ∈ Rn and yi ∈
{−1, 1}, i = 1, 2, · · · ,m. For simplicity, we organize the m1
inputs of positive class by matrix A ∈ Rm1×n and the m2
inputs of negative class by matrix B ∈ Rm2×n, respectively.

A. TWSVM
Different fromSVM, twin support vectormachine (TWSVM)
[10] aims to find a pair of nonparallel hyperplanes

wT1 x + b1 = 0 and wT2 x + b2 = 0 (1)

such that each hyperplane is close to the training samples of
one class and as far as possible from the samples of the other
class. Therefore, the primal optimization problem of linear
TWSVM is expressed as

min
w1,b1,ξ2

1
2
‖Aw1 + e1b1‖22 + c1e

T
2 ξ2

s.t. − (Bw1 + e2b1)+ ξ2 ≥ e2, ξ2 ≥ 0, (2)
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min
w2,b2,ξ1

1
2
‖Bw2 + e2b2‖22 + c2e

T
1 ξ1

s.t. (Aw2 + e1b2)+ ξ1 ≥ e1, ξ1 ≥ 0, (3)

where c1 ≥ 0 and c2 ≥ 0 are penalty parameters, ξ1 and ξ2
are slack variables, e1 and e2 are vectors with each element
of the value of 1.

By introducing the method of Lagrangian multipliers,
the corresponding Wolfe dual of QPPs (2) and (3) are rep-
resented as

max
α

eT2 α −
1
2
αTG(HTH )−1GTα

s.t. 0 ≤ α ≤ c1e2, (4)

max
γ

eT1 γ −
1
2
γ TH (GTG)−1HT γ

s.t. 0 ≤ γ ≤ c2e1, (5)

where G = [B e2], H = [A e1] and α ∈ Rm2 , γ ∈ Rm1 are
Lagrangian multipliers.

The nonparallel hyperplanes (1) can be obtained from the
solutions α and γ of (4) and (5) by[

wT1 b1
]T
= −

(
HTH

)−1
GTα, (6)[

wT2 b2
]T
=

(
GTG

)−1
HT γ, (7)

Once the solutions of w1, b1 and w2, b2 are obtained from
(6) and (7), the two nonparallel hyperplanes (1) are known.
Then, the new data point x ∈ Rn is assigned to positive class
W1 or negative class W2 by

x ∈ Wk , k = argmin
k=1,2

{|wT1 x + b1|, |w
T
2 x + b2|}, (8)

where | · | is the absolute value.
Although (HTH )−1 and (GTG)−1 are always positive

semidefinite, they are possible that they may not be well
conditioned in some situations. Therefore, (6) and (7) are
modified to[

wT1 b1
]T
= −

(
εI + HTH

)−1
GTα, (9)[

wT2 b2
]T
=

(
εI + GTG

)−1
HT γ, (10)

where ε is a very small number and it is set to be 10−5 in
TWSVM, I is an identity matrix of appropriate dimensions.

B. TBSVM
To address the above problem in TWSVM, by adopting the
regularization term, Shao et al. [12] proposed twin bounded
support vector machine (TBSVM). It implements the struc-
tural risk minimization (SRM) principle and the primal prob-
lem is expressed as

min
w1,b1,ξ2

1
2
c3(‖w1‖

2
+ b21)+

1
2
‖Aw1 + e1b1‖22 + c1e

T
2 ξ2

s.t. − (Bw1 + e2b1)+ ξ2 ≥ e2, ξ2 ≥ 0, (11)

min
w2,b2,ξ1

1
2
c4(‖w2‖

2
+ b22)+

1
2
‖Bw2 + e2b2‖22 + c2e

T
1 ξ1

s.t. (Aw2 + e1b2)+ ξ1 ≥ e1, ξ1 ≥ 0, (12)

where c1 ≥ 0 and c2 ≥ 0 are penalty parameters, c3 ≥ 0 and
c4 ≥ 0 are trade-off parameters, ξ1 and ξ2 are slack variables,
e1 and e2 are vectors with each element of the value of 1.
Similar to TWSVM, the Wolfe dual of QPPs (11) and (12)
can be represented as follows.

max
α

eT2 α −
1
2
αTG(HTH + c3I )−1GTα

s.t. 0 ≤ α ≤ c1e2, (13)

max
γ

eT1 γ −
1
2
γ TH (GTG+ c4I )−1HT γ

s.t. 0 ≤ γ ≤ c2e1, (14)

The nonparallel hyperplanes (1) can be obtained from the
solutions α and γ to the optimization problems (13) and
(14) by [

wT1 b1
]T
= −

(
c3I + HTH

)−1
GTα, (15)[

wT2 b2
]T
=

(
c4I + GTG

)−1
HT γ, (16)

Once the solutions of w1, b1 and w2, b2 are obtained from
(15) and (16), the nonparallel hyperplanes (1) are known.
A new data point x ∈ Rn is then assigned to positive class
W1 or negative class W2 by

x ∈ Wk , k = argmin
k=1,2

{
|wT1 x + b1|

‖w1‖
,
|wT2 x + b2|

‖w2‖
}, (17)

C. FTSVM
Different from TWSVM, a weighting parameter is utilized
to construct the classifier based on fuzzy membership values
in the case of linear FTSVM [50]. The formulation of linear
FTSVM can be written as

min
w1,b1,ξ2

1
2
‖Aw1 + e1b1‖22 + c1s

T
2 ξ2

s.t. − (Bw1 + e2b1)+ ξ2 ≥ e2, ξ2 ≥ 0, (18)

min
w2,b2,ξ1

1
2
‖Bw2 + e2b2‖22 + c2s

T
1 ξ1

s.t. (Aw2 + e1b2)+ ξ1 ≥ e1, ξ1 ≥ 0, (19)

where c1 ≥ 0 and c2 ≥ 0 are penalty parameters, ξ1 and ξ2
are slack variables, e1 and e2 are vectors with each element of
the value of 1, s1 and s2 represent fuzzy membership of each
type of sample points.

By introducing the method of Lagrangian multipliers,
the corresponding Wolfe dual of QPPs (18) and (19) can be
represented as

max
α

eT2 α −
1
2
αTG(HTH )−1GTα

s.t. 0 ≤ α ≤ c1s2, (20)

max
γ

eT1 γ −
1
2
γ TH (GTG)−1HT γ

s.t. 0 ≤ γ ≤ c2s1, (21)

where G = [B e2], H = [A e1] and α ∈ Rm2 , γ ∈ Rm1 are
Lagrangian multipliers.
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The nonparallel hyperplanes (1) can be obtained from the
solutions α and γ of (20) and (21) by[

wT1 b1
]T
= −

(
HTH

)−1
GTα, (22)[

wT2 b2
]T
=

(
GTG

)−1
HT γ, (23)

Once w1, b1 and w2, b2 are obtained from (22) and (23),
the two nonparallel hyperplanes (1) are known. A new data
point x ∈ Rn is then assigned to positive classW1 or negative
class W2 by

x ∈ Wk , k = argmin
k=1,2

{|wT1 x + b1|, |w
T
2 x + b2|}, (24)

where | · | is the absolute value.

D. EFTWSVM-CIL
Motivated by entropy-based fuzzy support vector machine
(EFSVM) [53], Gupta et al. [54] proposed an entropy-based
fuzzy twin support vector machine for imbalanced datasets
(EFTWSVM-CIL). In EFTWSVM-CIL, in order to enhance
the participation of the minority class in decision classifier,
the samples of majority class with lower entropy get larger
fuzzy membership values. And the entropy of any sample xi
is calculated as

Ei = −ppos_xi · ln(ppos_xi )− pneg_xi · ln(pneg_xi ), (25)

where ppos_xi and pneg_xi are the probability of minority class
and majority class of sample xi.

Further, the data points of the majority class are divided
into n subsets based on increasing order of entropy. Then,
the fuzzy membership of samples in each subset are calcu-
lated as

Fq = 1.0− β · (q− 1), q = 1, 2, · · · , n, (26)

The fuzzy membership function is written as

si=

{
1− β · (q− 1), if yi = −1 & xi ∈ qth subset
1, if yi = 1,

(27)

Thus, the primal optimal problem of linear EFTWSVM-CIL
is expressed as

min
w1,b1,ξ2

1
2
‖Aw1 + e1b1‖22 + c1s

T
2 ξ2

s.t. − (Bw1 + e2b1)+ ξ2 ≥ e2, ξ2 ≥ 0, (28)

min
w2,b2,ξ1

1
2
‖Bw2 + e2b2‖22 + c2s

T
1 ξ1

s.t. (Aw2 + e1b2)+ ξ1 ≥ e1, ξ1 ≥ 0, (29)

where c1, c2 are penalty parameters, ξ1, ξ2 are slack variables,
e1, e2 are vectors with each element of the value of 1, s1, s2
are vectors containing the entropy-based fuzzy membership
values of minority as well as majority, respectively.

By introducing the method of Lagrangian multipli-
ers, the corresponding dual of QPPs (28) and (29) are

represented as

min
α1

1
2
αT1 G(H

TH )−1GTα1 − eT2 α1

s.t. 0 ≤ α1 ≤ c1s2, (30)

min
α2

1
2
αT2 H (GTG)−1HTα2 − eT1 α2

s.t. 0 ≤ α2 ≤ c2s1, (31)

where G = [B e2], H = [A e1] and α1 ∈ Rm2 , α2 ∈ Rm1 are
Lagrangian multipliers.

The nonparallel hyperplanes (1) can be obtained from the
solutions α1 and α2 of (30) and (31) by[

wT1 b1
]T
= −

(
HTH

)−1
GTα, (32)[

wT2 b2
]T
=

(
GTG

)−1
HT γ, (33)

Once w1, b1 and w2, b2 are obtained from (32) and (33),
the two nonparallel hyperplanes (1) are known. A new data
point x ∈ Rn is assigned to positive classW1 or negative class
W2 by

x ∈ Wk , k = argmin
k=1,2

{|wT1 x + b1|, |w
T
2 x + b2|}, (34)

where | · | is the absolute value.

III. ENTROPY-BASED FUZZY TWIN BOUNDED SUPPORT
VECTOR MACHINE
As the evaluation of fuzzy membership is the key issue of
FSVM, in this section, we introduce the entropy-based fuzzy
membership at first. After that, by adopting the entropy-
based fuzzy membership, entropy-based fuzzy twin bounded
support vector machine (EFTBSVM) for binary classification
is presented.

A. ENTROPY-BASED FUZZY MEMBERSHIP
In information theory, entropy is the average amount of
information contained in each received message [57], which
characterizes the certainty about the source of information.
As you know, the smaller entropy indicates the information
is more certain. Thus, by utilizing entropy, we can evaluate
the class certainty of training samples and compute the fuzzy
membership of the training samples based on their class
certainty. It means that a sample with higher class certainty
will be assigned to larger fuzzy membership, and vice versa.
Therefore, we suppose the probabilities of training samples
xi belonging to the positive class and negative class are p+i
and p−i, respectively. The entropy of xi is defined as

Hi = −p+i · ln(p+i)− p−i · ln(p−i), (35)

where ln represents the natural logarithm operator. The key
point of calculating Hi by (35) is to evaluate the probability
of each sample belong to the positive class and negative class.
Specifically, we calculate the K nearest neighbors of sample
xi and compute the values p+i and p−i by (36) as follows.

p+i =
num+i
k

, p−i =
num−i
k

, (36)
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where num+i and num−i represent the number of positive and
negative samples in the selected K nearest neighbors, and
num+i + num−i = k .

According to (35) and (36), we compute the entropy
of the positive samples and represent as H+ =

{H+1,H+2, · · · ,H+m1}. Then, the data points of positive
class are divided into N+ subsets based on increasing order
of entropy and the fuzzy membership of positive samples in
each subset are calculated as

FM+j = 1.0− β × (j− 1), j = 1, 2, · · · ,N+, (37)

where FM+j is the fuzzy membership for positive samples
distributed in jth subset with fuzzy membership parameter
β ∈ (0, 1

N+−1
] which controls the scale of the fuzzy values

of positive samples.
Finally, the fuzzy membership of positive samples are

defined as

s+i=1− β × (j− 1), if xi ∈ jth subset (i=1, 2, · · · ,m1)

(38)

In the same way, the entropy of negative samples are
obtained and indicated as H− = {H−1,H−2, · · · ,H−m2}.
Data points of negative class are divided into N− subsets
based on increasing order of entropy and the fuzzy member-
ship of negative samples in each subset are calculated as

FM−j = 1.0− β × (j− 1), j = 1, 2, · · · ,N−, (39)

where FM−j is the fuzzy membership for negative samples
distributed in jth subset with fuzzy membership parameter
β ∈ (0, 1

N−−1
].

Finally, the fuzzy membership of negative samples are
defined as

s−i=1− β×(j− 1), if xi ∈ jth subset (i=1, 2, · · · ,m2).

(40)

B. LINEAR EFTBSVM
In this subsection, inspired by TBSVM and EFTWSVM-
CIL, we propose the entropy-based fuzzy twin bounded sup-
port vector machine (EFTBSVM) for binary classification.
The structural risk minimization principle is exploited by
adding a regularization term in our proposed EFTBSVM.
Thus, the primal optimization problems of EFTBSVM are
expressed as follows.

min
w1,b1,ξ2

c2
2
(‖w1‖

2
+ b21)+

1
2
(Aw1 + e1b1)T (Aw1 + e1b1)

+ c1ST−ξ2
s.t. − (Bw1 + e2b1)+ ξ2 ≥ e2, ξ2 ≥ 0, (41)

min
w2,b2,ξ1

c4
2
(‖w2‖

2
+ b22)+

1
2
(Bw2 + e2b2)T (Bw2 + e2b2)

+ c3ST+ξ1
s.t. Aw2 + e1b2 + ξ1 ≥ e1, ξ1 ≥ 0, (42)

where ci ≥ 0 are penalty parameters, ξ1 and ξ2
are slack variables, S+ = (s+1, s+2, · · · , s+m1 )

T and

S− = (s−1, s−2, · · · , s−m2 )
T are the entropy-based fuzzy

membership values of positive class and negative class, e1
and e2 are the vectors of 1 with appropriate dimensions.

To obtain the solutions to the problems (41) and (42),
we need to derive their dual problems, respectively. So,
at first, we consider the primal problem (41), by introduc-
ing the Lagrangian multipliers, the Lagrangian function is
given by

L(w1, b1, ξ2, α, β)

=
c2
2
(‖w1‖

2
+ b21)+

1
2
(Aw1 + e1b1)T (Aw1 + e1b1)

+ c1ST−ξ2 − α
T [−(Bw1 + e2b1)+ ξ2 − e2]− βT ξ2,

(43)

where α ∈ Rm2 and β ∈ Rm2 are Lagrangian multipliers.
By using Karush-Kuhn-Tucker (KKT) conditions, we obtain

∇w1 = c2w1 + AT (Aw1 + e1b1)+ BTα = 0, (44)

∇b1 = c2b1 + eT1 (Aw1 + e1b1)+ eT2 α = 0, (45)

∇ξ2 = c1S− − α − β = 0, (46)

− (Bw1 + e2b1)+ ξ2 ≥ e2, ξ2 ≥ 0, (47)

αT (Bw1 + e2b1 − ξ2 + e2) = 0, βT ξ2 = 0, (48)

α ≥ 0, β ≥ 0, (49)

Since β ≥ 0, from (46) and (49), we can get

0 ≤ α ≤ c1S−, (50)

Let H = [A e1] ∈ Rm1×(n+1),G = [B e2] ∈
Rm2×(n+1), u+ = [wT1 b1]

T
∈ Rn+1, (44) and (45) imply that

(c2I+ + HTH )u+ = −GTα, (51)

where I+ is an identity matrix.
Thus, we can obtain the augmented vector

u+ = −(c2I+ + HTH )−1GTα, (52)

Then, putting (52) into (43) and using (44)-(46), we can get
the Wolfe dual problem of (41) as follows.

max
α

eT2 α −
1
2
αTG(HTH + c2I+)−1GTα

s.t. 0 ≤ α ≤ c1S−, (53)

Similarly, we obtain the augmented vector u− =

[wT2 b2]T ∈ Rn+1 and the Wolfe dual problem of (42) as
follow.

u− = (c4I− + GTG)−1HT γ, (54)

max
γ

eT1 γ −
1
2
γ TH (GTG+ c4I−)−1HT γ

s.t. 0 ≤ γ ≤ c3S+, (55)

where γ ∈ Rm1 is Lagrangian multiplier and I− is an identity
matrix.

Once u+ = [wT1 b1]T ∈ Rn+1 and u− = [wT2 b2]T ∈ Rn+1

are obtained from (52) and (54), the nonparallel hyperplanes
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(1) are known. Then, a new data point x ∈ Rn is assigned to
positive class W1 or negative class W2 by

x ∈ Wk , k = argmin
k=1,2

{
|wT1 x + b1|

‖w1‖
,
|wT2 x + b2|

‖w2‖
}, (56)

where | · | is the absolute value.
Finally, we summarize the pipeline of linear EFTBSVM

classifier in Algorithm 1.

Algorithm 1 Linear EFTBSVM Classifier

Step 1.Give the positive training samples A ∈ Rm1×n and
negative training samples Bm2×n.
Step 2. Select the appropriate neighborhood size k

and then construct the entropy-based fuzzy member-
ship value S+ = (s+1, s+2, · · · , s+m1 )

T and S− =

(s−1, s−2, · · · , s−m2 )
T by using (38) and (40).

Step 3. Choose the proper penalty parameters ci (i =
1, 2, 3, 4) and then obtain the solutions u+ = [wT1 b1]T ∈
Rn+1 and u− = [wT2 b2]T ∈ Rn+1 form (52) and (54),
respectively.
Step 4. For a new sample x ∈ Rn, calculate the distances
|wT1 x+b1|
‖w1‖

and
|wT2 x+b2|
‖w2‖

, and assign it with positive or nega-
tive class label using (56).

C. NONLINEAR EFTBSVM
For the nonlinear case, firstly, we define C = [A;B] and
choose an appropriate kernel function K . Following the same
idea, the linear EFTBSVM classifier can be extended to its
nonlinear case by considering the following kernel-generated
surfaces.

K (xT ,CT )w1+b1 = 0 and K (xT ,CT )w2+b2 = 0, (57)

The primal problems of the nonlinear EFTBSVM can be
expressed as follows.

min
w1,b1,η2

1
2
(K (A,CT )w1 + e1b1)T (K (A,CT )w1 + e1b1)

+
c2
2
(‖w1‖

2
+ b21)+ c1S

T
−η2

s.t. − (K (B,CT )w1 + e2b1)+ η2 ≥ e2, η2 ≥ 0, (58)

min
w2,b2,η1

1
2
(K (B,CT )w2 + e2b2)T (K (B,CT )w2 + e2b2)

+
c4
2
(‖w2‖

2
+ b22)+ c3S

T
+η1

s.t. K (A,CT )w2 + e1b2 + η1 ≥ e1, η1 ≥ 0, (59)

Similar to the linear case, by using the Lagrangian method
and KKT conditions, we can obtain Wolfe dual problems as
follows.

max
α

eT2 α −
1
2
αT G̃(H̃T H̃ + c2 Ĩ+)−1G̃Tα

s.t. 0 ≤ α ≤ c1S−, (60)

max
γ

eT1 γ −
1
2
γ T H̃ (G̃T G̃+ c4 Ĩ−)−1H̃T γ

s.t. 0 ≤ γ ≤ c3S+, (61)

where H̃ = [K (A,CT ) e1] ∈ Rm1×(m+1), G̃ =

[K (B,CT ) e2]m2×(m+1), Ĩ+ and Ĩ− are identity matrices.
According to (58)-(61), the augmented vectors can be

obtained by

v+ = −(c2 Ĩ+ + H̃T H̃ )−1G̃Tα, (62)

v− = (c4 Ĩ− + G̃T G̃)−1H̃T γ, (63)

where v+ = [wT1 b1]
T
∈ Rm+1, v− = [wT2 b2]

T
∈ Rm+1.

Once v+ = [wT1 b1]T and v− = [wT2 b2]T are obtained
from (62) and (63), the two nonparallel hyperplanes (57) are
known. Then, a new data point x ∈ Rn is assigned to positive
class W1 or negative class W2 by

x ∈ Wk , k=argmin
k=1,2

{
|K (x,CT )w1+b1|√
wT1K (C,CT )w1

,
|K (x,CT )w2+b2|√
wT2K (C,CT )w2

}

(64)

where | · | is the absolute value.
Similar to linear EFTBSVM, we summarize the nonlinear

EFTBSVM classifier in Algorithm 2.

Algorithm 2 Nonlinear EFTBSVM Classifier

Step 1.Give the positive training samples A ∈ Rm1×n and
negative training samples Bm2×n, and choose an appropri-
ate kernel function K based on cross-validation.
Step 2. Select the appropriate neighborhood size k

and then construct the entropy-based fuzzy member-
ship value S+ = (s+1, s+2, · · · , s+m1 )

T and S− =

(s−1, s−2, · · · , s−m2 )
T by using (38) and (40).

Step 3. Choose the proper penalty parameters ci (i =
1, 2, 3, 4) and then obtain the solutions v+ = [wT1 b1]T ∈
Rm+1 and v− = [wT2 b2]T ∈ Rm+1 form (62) and (63),
respectively.
Step 4. For a new sample x ∈ Rn, calculate the distances
|K (x,CT )w1+b1|√
wT1 K (C,CT )w1

and |K (x,CT )w2+b2|√
wT2 K (C,CT )w2

, and then assign it with

positive or negative class label using (64).

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
To validate the classification performance of the proposed
EFTBSVM, we investigate its classification accuracies on
various synthetic datasets and benchmark datasets. In our
experiments, we concentrate on the comparison between the
proposed EFTBSVM and several related classifiers, includ-
ing TWSVM [10], TBSVM [12], FTSVM [50], EFSVM
[53], EFTWSVM-CIL [54] and RFLSTSVM-CIL [56].
All methods are implemented in MATLAB R2018a on
a personal computer (PC) with an Intel (R) Core (TM)
i7-7700CPU (3.60GHz× 8) and 32GB random-access mem-
ory. The ‘‘Accuracy’’, which is used to evaluate the classifi-
cation performance of all classifiers, defined as Accuracy =
(TP+TN)/(TP+FP+TN+FN), where TP, TN, FP, and FN are
the number of true positives, true negatives, false positives
and false negatives, respectively. The QPP in EFSVM and
QPPs in TWSVM, TBSVM, FTSVM, EFTWSVM-CIL, and
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FIGURE 1. Four synthetic datasets. (a) XOR, (b) Complex XOR, (c) Two-moons-1 and (d) Two-monns-2.

our EFTBSVM are solved by the SOR algorithm, which is
also used to solve QPPs in reference [18]. And the 5-fold
cross-validation approach and grid search method are used
to find the optimal parameters such as the penalty parameters
ci, the kernel wide parameter σ and the neighborhood size
k . Specifically, the penalty parameters ci (i = 1, 2, 3, 4)
and the kernel wide parameter σ of Gaussian kernel func-
tion K (x, y) = e−‖x−y‖

2/2σ 2 in all methods are selected
from the set {2i|i = −8,−7, · · · , 7, 8}. The neighbor-
hood size k in EFSVM, EFTWSVM-CIL and our EFTB-
SVM are chosen from the set {1, 3, 5, · · · , 17, 19}. Besides,
the parameter C0 in RFLSTSVM-CIL is chosen from the set
{0.5, 1, 1.5, 2, 2.5}. For simplicity, the number of separated
subsets N+ and N− are set to 10 and the fuzzy membership
parameter β is set to 0.05, respectively.

A. SYNTHETIC DATASETS
In this subsection, four synthetic datasets, including the XOR
dataset, complex XOR dataset [18], Two-moons manifold
dataset [58], [59] have been used to demonstrate that the
proposed EFTBSVM can well deal with linearly insepa-
rable problems. In our experiments, XOR dataset contains
200 samples (100 positives and 100 negatives), complexXOR
dataset contains 260 samples (100 positives and 160 nega-
tives), Two- moons-1 manifold dataset contains 100 samples
(50 positives and 50 negatives) and Two-moons-2 manifold

dataset contains 200 samples (100 positives and 100 nega-
tives). Figure 1 shows the XOR, complex XOR and two kinds
of Two-moons datasets, respectively. Specifically, for XOR
and complex XOR datasets, we validate the performance of
linear classifiers of TWSVM, TBSVM, EFSVM, FTSVM,
EFTWSVM-CIL, RFLSTSVM-CIL and our EFTBSVM. For
Two-moons manifold datasets, we validate the performance
of all nonlinear methods with Gaussian kernel function. And
we randomly select 40% for training sets and 60% for test-
ing sets, each experiment repeat 10 times and the average
results are listed in Table 1. From Table 1, we can con-
clude that our proposed EFTBSVM achieves the best perfor-
mance on these four synthetic datasets. We take Two-moons-
1 dataset for example, the accuracy of nonlinear EFTBSVM
is 95.00%, while TWSVM is 93.83%, TBSVM is 94.67%,
EFSVM is 93.67%, FTSVM is 92.17%, EFTWSVM-CIL is
93.50%, and RFLSTSVM-CIL is 94.00%, respectively. Also,
the decision hyperplanes of the six nonparallel hyperplane
classifiers, i.e. TWSVM, TBSVM, FTSVM, EFTWSVM-
CIL, RELSTSVM-CIL, and our proposed EFTBSVM on
Two-moon-1 dataset are shown in Figure 2, respectively.

B. UCI DATASETS
To further compare our EFTBSVM with TWSVM, TBSVM,
EFSVM, FTSVM, EFTWSVM-CIL, and RFLSTSVM-
CIL, we choose 11 datasets from UCI machine learning
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TABLE 1. Classification accuracy on synthetic datasets.

FIGURE 2. Classification hyperplanes of nonlinear methods on Two-moons-1 datasets. (a) TWSVM, (b) TBSVM,
(c) FTSVM, (d) EFTWSVM-CIL (e) RFLSTSVM-CIL and (f) EFTBSVM.

repository [60]. They are Australian, Bupa-Liver, House-
Votes, Heart-c, Heart-Statlog, Ionosphere, Musk, PimaIn-
dian, Sonar, Spect, andWpbc, respectively. Table 2 shows the
characteristics of above-selected datasets.

Note that, we use the standard 5-fold cross-validation
method to evaluate the performance of seven algorithms.
That means the dataset is divided randomly into five subsets,
one of those sets is reserved as a test set, and the others
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TABLE 2. The characteristics of benchmark datasets.

are regarded as a training set. This process is repeated five
times, and then the average of five testing results is used
as the performance measure. Specifically, the experimental
results of their linear versions are listed in Table 3 and the
best accuracy is shown in boldface for each dataset. From
Table 3, we could find that the accuracies of the proposed
EFTBSVM are better than that of TWSVM, TBSVM,
EFSVM, FTSVM, EFTWSVM-CIL, and RFLSTSVM-CIL
in most of the datasets. We take Spect dataset for example,
the accuracy of linear EFTBSVM is 83.32%, while TWSVM
is 81.24%, TBSVM is 81.64%, EFSVM is 83.15%, FTSVM
is 81.67%, EFTWSVM-CIL is 81.68% and RFLSTSVM-
CIL is 82.66%, respectively. In addition, the experimental
results of their nonlinear versions are listed in Table 4 and
the best accuracy is shown in boldface for each dataset. From
Table 4, we also take Spect dataset for example, the non-
linear EFTBSVM obtains the recognition rate 84.30%,
which is 1.88% higher than TWSVM, 0.36% higher than
TBSVM, 1.52% higher than EFSVM, 1.15% higher than
FTSVM, 0.78% higher than EFTWSVM-CIL, and 0.76%
higher than RFLSTSVM-CIL, respectively. Thus, the results
in Table 4 are similar to those in Table 3, which confirms the
effectiveness of our EFTBSVM.

Moreover, in order to make a statistic comparison on the
effectiveness of the compared algorithms, the Friedman test
[61] is carried out. For this test, the average ranks of the
compared algorithms on the selected datasets are given in
the last row of Table 3 and Table 4. Here, we consider
L(= 7) number of compared algorithms and n (= 11) number
of datasets. Let r ji be the rank of the j-th algorithm on the
i-th datasets. Thus, we assume all the methods are equiva-
lent under null hypothesis and the average rank of the j-th

algorithm is calculated as Rj = 1
n

n∑
i=1

r ji . And the Friedman

statistic is defined as

χ2
F =

12n
L(L + 1)

∑
j

R2j −
L(L + 1)2

4

 , (65)

In fact, the Friedman statistic is distributed according to χ2
F

with (L−1) degrees of freedom, when n and L are reasonable
large. In addition, Iman and Davenport [62] has showed that
Friedman’s χ2

F presents a pessimistic behavior, and they have

FIGURE 3. Illustration of 10 subjects in the USPS database.

FIGURE 4. Illustration of 20 subjects in the COIL-20 database.

derived a better statistic as follows.

FF =
(n− 1)χ2

F

n(L − 1)− χ2
F

, (66)

which is distributed according to the F-distribution with
(L − 1) and (L − 1)(n− 1) degrees of freedom.
For the linear case, in Table 3, it is noticed that the proposed

EFTBSVM ranks the first with an average score of 1.8636.
To demonstrate that the measured average ranks are signifi-
cantly different from the mean rank by the null hypothesis,
according to (65) and (66), we can get

χ2
F =

12× 11
7× 8

[(5.59092 + 4.13642 + 5.36362 + 4.52

+ 2.68182+3.86362+1.86362)−
7× 82

4
] = 25.8782

FF =
10× 25.8782

11× 6− 25.8782
= 6.4499

In addition, for 7 algorithms and 11 datasets, FF is dis-
tributed according to the F-distribution with (7 − 1) = 6
and (7 − 1) × (11 − 1) = 60 degrees of freedom. Thus,
we find that the critical value of F(6, 60) is 2.254 for the
level of significance α = 0.05 and it is less than the value of
FF = 6.4499, which indicates the null hypothesis is rejected.
It means that the compared algorithms are significantly dif-
ferent on selected datasets.

In Table 4, it is noticed that the nonlinear EFTBSVM ranks
the first with an average score of 1.7727. According to (65)
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TABLE 3. Test results of linear TWSVM, TBSVM, EFSVM, FTSVM, EFTWSVM-CIL, RFLSTSVM-CIL and EFTBSVM.

TABLE 4. Test results of nonlinear TWSVM, TBSVM, EFSVM, FTSVM, EFTWSVM-CIL, RFLSTSVM-CIL and EFTBSVM.

and (66), we can get

χ2
F =

12× 11
7× 8

[(4.63642 + 4.18182 + 6.04552 + 4.77272

+ 3.54552+3.04552+1.77272)−
7× 82

4
] = 26.6322

FF =
10× 26.6322

11× 6− 26.6322
= 6.7650

Similarly, for 7 nonlinear algorithms and 11 selected
datasets, the critical value of F(6, 60) is equal to 2.254 for
the level of significance α = 0.05 and it is also less than the

value of FF = 6.7650. Thus, the null hypothesis is rejected
and then the compared nonlinear algorithms are significantly
different.

C. IMAGE RECOGNITION
In this subsection, we apply our proposed EFTBSVM
to image recognition problems. Three well-known and
publicly available databases corresponding to image clas-
sification, i.e., handwritten digit dataset (USPS), object
dataset (COIL-20) and recognition of face dataset (AR) are
adopted to validate our EFTBSVM with TWSVM, TBSVM,
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TABLE 5. The classification performance comparison on the USPS, COIL-20 and AR datasets.

FIGURE 5. Illustration of 14 images of one person from the AR database.

FIGURE 6. Accuracy of EFTBSVM with respect to k on the selected
datasets.

EFSVM, FTSVM, EFTWSVM-CIL and RFLSTSVM-CIL.
The USPS database [63] consists of gray-scale handwrit-
ten digit images from 0 to 9, where each digit contains
1100 images and the size of each image is 16 × 16 pixels
with 256 gray levels. An illustration of 10 subjects in the
USPS database is shown in Figure 3. COIL-20 [64] is a
database of grayscale images of 20 objects. The objects are

FIGURE 7. Accuracy of EFTBSVM with respect to σ on the selected
datasets.

placed on a motorized turntable against a black background.
Figure 4 shows an illustration of 20 subjects in the COIL-
20 dataset. And the images of the objects are taken at pose
intervals 5◦, which corresponds to 72 images per object.
Specifically, in our experiments, we have resized each of
the original 1440 images into 32 × 32 pixels. AR database
contains 100 subjects and each subject has 26 face images
taken in two sessions [65]. For simplicity, the 1400 images
are all cropped into the same size of 40 × 30 pixels in our
experiment. Figure 5 shows 14 images of one person from
the AR database.

For these datasets, we randomly partition the images of
each project into two parts with the same size such that one
part is selected for training and the remaining part is utilized
for testing. We consider the Gaussian kernel for these nonlin-
ear methods and the process is repeated 10 times. Table 5 lists
the experimental results of these nonlinear methods in USPS,
COIL-20 and AR datasets. We can conclude that, from USPS
to AR, the proposed EFTBSVM achieves the best classifi-
cation performance than the other six methods in most of the
cases. Although our EFTBSVM achieves lower classification
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FIGURE 8. Accuracy of EFTBSVM with respect to c1 = c3, c2 = c4 on the selected datasets. (a) Australian,
(b) Bupa-Liver, (c) House-Votes, (d) Ionosphere, (e) Spect and (f) Wpbc.

accuracy than EFTWSVM-CIL onCOIL-20 andAR datasets,
it also obtains higher classification accuracy than the other
five methods.

D. FURTHER DISCUSSIONS
In the proposed EFTBSVM, there are so many parame-
ters, such as the number of nearest neighbor k , the penalty
parameters c1, c2, c3, c4 and the kernel wide parameter σ for

nonlinear cases. In fact, these parameters significantly impact
the classification performance of the proposed EFTBSVM.
In order to demonstrate the influence of these parameters on
EFTBSVM, we select 6 datasets from Table 4 and discuss
their effects on the classification performance of EFTBSVM.
For simplicity, we assume the penalty parameters c1 = c3
and c2 = c4. Specifically, when we discuss the influence of
parameter k , other parameters are set to the best parameters
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FIGURE 9. Training times of nonlinear methods on six selected UCI datasets.

which are selected by 5-fold cross-validation. The influences
of other parameters are also discussed in the similar way. Take
Wpbc dataset for example, the best parameters of Wpbc are
k = 5, c1 = c3 = 2−3, c2 = c4 = 2−5 and σ = 2−1. When
discussing on k , k is selected from set {1, 3, · · · , 17, 19}
and other parameters are set to c1 = c3 = 2−3, c2 =
c4 = 2−5, σ = 2−1, respectively. When discussing on
σ , σ is selected from set {2−8, 2−7, · · · , 27, 28} and other
parameters are set to c1 = c3 = 2−3, c2 = c4 = 2−5, k = 5.
In addition, when discussing on ci, the parameter k is set
to 5, σ is set to 2−1 and c1 = c3, c2 = c4 are selected
from set {2−8, 2−7, · · · , 27, 28}. Therefore, the classification
accuracy of our EFTBSVMwith respect to k , σ and ci on the
selected datasets is shown in Figure 6, Figure 7 and Figure 8,
respectively.
Furthermore, from Table 1, Table 3, Table 4 and Table 5 we

can see, the training times of all classifiers are not given.
However, it does not mean that the training time is not
important. In fact, for the 7 classifiers, RFLSTSVM-CIL
has the least training time, EFSVM has the most and the
other five classifiers have almost the same training times.
The main reason may be that RFLSTSVM-CIL solves two
systems of linear equations, EFSVM solves a large size
quadratic programming problem (QPP) and the other five
methods only solve two small sizes QPPs. Thus, to further
illustrate this problem, we also select the above 6 datasets
from Table 4 and discuss the training times of all classifiers.
The training times of all nonlinear classifiers on the selected
datasets are shown in Figure 9. In specific, take Australian
dataset for example, the training times of nonlinear TWSVM,
TBSVM, EFSVM, FTSVM, EFTWSVM-CIL, RFLSTSVM-
CIL, and our EFTBSVM are 0.0279 second, 0.0276 second,
0.0971 second, 0.0294 second, 0.0291 second, 0.0218 sec-
ond, and 0.0283 second, respectively. From Figure 9, we can
conclude that our EFTBSVM has no obvious advantage in

training time. Thus, how to construct a fast and effective
algorithm may be our future work.

V. CONCLUSION
In this paper, a novel entropy-based fuzzy twin bounded
support vector machine (EFTBSVM) is proposed by utilizing
the entropy to evaluate the class certainty of each sample and
assigning the corresponding fuzzy membership value based
on the class certainty. Our EFTBSVM pays more attention to
the samples with higher class certainty to result in a more
robust decision surface, which improves the classification
accuracy and generalization ability. The experimental results
obtained on synthetic and benchmark datasets demonstrate
the effectiveness of EFTBSVM. However, we need to point
out that there are so many parameters in EFTBSVM. Thus,
parameter selection is a practical problem and should be
investigated in the future. Moreover, the extension of the
proposed EFTBSVM to multi-class [66]–[68], multi-label
[69], [70] and multi-view [71], [72] classification problems
are also interesting.
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