
Received May 9, 2019, accepted June 23, 2019, date of publication June 28, 2019, date of current version July 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2925623

Mobile Robot Path Planning in Dynamic
Environment Using Voronoi Diagram and
Computation Geometry Technique
BEN BEKLISI KWAME AYAWLI 1,2, XUE MEI1, MOUQUAN SHEN1,
ALBERT YAW APPIAH 1,3, AND FRIMPONG KYEREMEH 1,3
1College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 214000, China
2Computer Science Department, Sunyani Technical University, Sunyani 27091, Ghana
3Electrical and Electronic Engineering Department, Sunyani Technical University, Sunyani 27091, Ghana

Corresponding author: Xue Mei (seraph_mx@163.com)

This work was supported in part by the Beijing Advanced Innovation Center for Intelligent Robots and Systems under Grant 2018IRS20.

ABSTRACT This paper presents a novel path planning method for mobile robots in complex and
dynamic environments using Voronoi diagram (VD) and computation geometry technique (CGT) termed,
VD-CGT. An algorithm to categorize moving obstacles based on their positions, velocities, distances,
and directions to ascertain their collision threat level and possible replanning decision is introduced. The
initial path computation is done using morphological dilation, VD, A-star, and cubic spline algorithms.
Instead of considering the entire map of the environment, CGT is used to compute a small rectangular
region estimated to enclose a detected collision-threat obstacle and the current position of the robot. The
roadmap is computed in the geometrical shape using VD and nodes are added to the initial roadmap nodes
to compute a new path for replanning. To avoid increasing time and space requirements, these nodes are
discarded before subsequent replanning is done. The results indicate better path replanning performance
in complex and dynamic environments in terms of success path computation rate, path cost, time, and the
number of replanning computations compared with other five popular related path planning approaches. The
proposedmethod is efficient, and it computes safe and shortest replan path to goal with low computation time
requirement. Unnecessary replanning computations are avoided which aid in reducing time and distance to
get to the goal. With the performance results, the proposed method is a promising method for achieving safe,
less path cost, and time in path replanning computations in complex and dynamic environments.

INDEX TERMS Mobile robot, motion planning, path planning, unmanned autonomous vehicles, Voronoi
diagram.

I. INTRODUCTION
Research on mobile robot path planning in static environ-
ment has witnessed much progress [1]–[4]. However, path
planning in complex and dynamic environment is still a
problem [4], [5]. Safe and efficient path planning in complex
and dynamic environments is crucial for safe navigation of
autonomous mobile vehicles.

To achieve autonomous navigation in complex environ-
ment, mobile robots are expected to have accurate knowledge
of their environment to take wise navigation decisions. This
knowledge can be obtained by building a roadmap in the

The associate editor coordinating the review of this manuscript and
approving it for publication was Rui-Jun Yan.

environment of the robot. Voronoi diagram (VD) based algo-
rithms are popular for building such roadmaps. VD is noted
for not compromising path safety by computing roadmaps
which are equidistant between obstacles. Arguably, VD based
path planning has attracted the attention of many researchers
[6]–[11]. Based on generalized VD, electric circuit-based
path planning method for multiple robot path planning was
presented in [11] to address traffic jam problems. Moreover,
a motion planning approach with VD through a line-segment
map was presented in [9]. The VD was used to obtain
the way points from the line-segment-based map while
Dijkstra’s algorithm was employed to obtain the shortest path
on the roadmap. In [10], a modified ant colony optimiza-
tion (M-ACO) algorithm was combined with VD to propose

86026 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-1550-184X
https://orcid.org/0000-0002-2294-7516
https://orcid.org/0000-0002-5831-7508


B. B. K. Ayawli et al.: Mobile Robot Path Planning in Dynamic Environment Using VD and CGT

a path planning method for safe and shortest path by point-
to-point motion planning. The VD was employed to generate
the roadmap while the M-ACOwas used to generate the path.
The technique to provide safety for the robot was however
not given. Reference [8] proposed centroidal voronoi tessel-
lation based intelligent control algorithm for self-assembly
for swarm robots. There is however the challenge of ensuring
agents identifying their positions and orientations. Although
the aforementioned VD-based path planning methods have
collectively advanced mobile robot path planning, they are
limited to static environments.

Fortunately, the problem of mobile robot path planning in
dynamic environments has not been left unattended: A couple
of algorithms have been proposed. Reference [12] proposed
a two-way D∗ algorithm based on Witkowski’s algorithm to
compute path inweighted occupancy gridmaps. Another path
replanning method for vehicles on a road was presented by
generating path candidates from which a path is selected for
navigation [13]. In [14], firefly algorithm was used to present
mobile robot navigation method in uncertain environment
involving static and dynamic environment. Again, membrane
evolution artificial potential field approach was presented for
mobile robot path planning in static and dynamic environ-
ments [15]. Known static environments and partially known
dynamic environments were considered. Also, Bezier curve-
based technique using modified genetic algorithm was pro-
posed to improve path computation using the classical genetic
algorithm method [16]. Less complex environment was used
to evaluate the method. Additionally, based on A∗ algorithm,
a path planning method involving static and moving obstacles
was proposed for unmanned surface vehicles [17]. There
are other path planning methods for dynamic environments
presented in [13], [18]–[26].

Generally, these path replanning methods can be catego-
rized into two: incremental replanning and replanning that
considers the entire environment (full map) of the robot when
collision threat is detected [27]. The incremental replanning
approaches compute new path for navigation at every incre-
mental distance or time during navigation of the robot. Time
is spent on replanning even if there is no collision threat.
Incremental replanning is time consuming and may also
results in the computation of inefficient path. On the other
hand, path replanning computation that considers the entire
environment when collision threat is detected can produce
efficient path in terms of path length, but it is time consuming.
It should be noted that, execution time is very crucial for
robots in motion to take quick and intelligent decision before
they collide with obstacles especially in situations where the
speed of a vehicle is high and the environment is complex
and dynamic.Moreover, most replanning algorithms consider
replanning when obstacles are threat to the path without con-
sidering the dynamics of the specific obstacles to determine
the threat level to the vehicle and the needed replanning
response [28]. It is obvious that not all obstacles appearing
in the replanning zone of a vehicle are threat to the vehicle to
require replanning. Obstacles crossing the path of the vehicle

or those in the same direction with the vehicle may not be
a threat for collision. The position, distance, velocity and
direction of these moving obstacles play a role in determining
the level of threat to ensure safe replanning.

This paper presents a novel path planning algorithm,
VD-CGT for mobile robots in complex and dynamic envi-
ronment based on VD and computational geometry tech-
nique (CGT) for path replanning with low time computation
requirement. To provide intelligent replanning, the position,
distance, velocity, and direction of moving obstacles and
that of the robots are considered in determining the level of
collision threat. When an obstacle is detected during navi-
gation, the proposed algorithm analyses the behavior of the
obstacle from the robot to determine the level of collision
threat and a possible replanning decision before it reaches the
replanning zone of the robot. However, if no decision is taken
before it reaches the critical threat zone (CTZ) of the robot,
a reactive collision avoidance is done using a default replan
decision to replan the path. Instead of using the entire map,
a CGT is used to compute a small rectangular region of the
environment estimated to enclose a detected collision-threat
obstacle and the current position of the robot. A VD roadmap
is then computed in the rectangular region to obtain new
freeway nodes which are added to the existing nodes used for
the initial path to compute new path. After each replanning,
the new nodes are discarded when subsequent obstacles are
detected to avoid increasing computation time and space.

The main contributions of this paper include:
• An algorithm to categorize detected dynamic obstacles
based on their positions, distances, orientations, and
velocities to determine a possible intelligent replanning
decision. This algorithm helps to reduce unnecessary
replans and number of replanning computations to reach
goal. This reduction leads to a reduction in path cost to
reach goal.

• An algorithm to reduce path cost and time require-
ment for path replanning computation by introducing
a CGT to compute and select a small section of the
robot’s workspace that includes a detected collision-
threat obstacle and a current position of the robot for path
replanning computation.

II. PROBLEM FORMULATION AND ASSUMPTIONS
Workspace, W, of a mobile robot comprises sections termed
as freeway space, Wfree, and objects other than the vehicle
itself known as obstacles,Wobs. The obstacles are made up of
static and moving objects. The moving obstacles navigate at
different velocities and have different orientations. The posi-
tions, distances, velocities, and orientations of the dynamic
obstacles in the workspace of the robot occur randomly.
Assume the task of a mobile robot is to navigate from a given
start position to goal in a cluttered and dynamic environment
with these obstacles requiring low space and time usage.
To achieve this task, a robust replanning algorithm is required
to compute and replan the path efficiently by reducing the
number of replanning computations and aid the vehicle to

VOLUME 7, 2019 86027



B. B. K. Ayawli et al.: Mobile Robot Path Planning in Dynamic Environment Using VD and CGT

navigate from the start to goal at a shorter time. This is the
objective of this paper.

The path replanning method proposed in this paper con-
siders kinematics of a car-like robot installed with a laser
range sensor (S) (see Fig. 1). Computations to determine the
threat levels of dynamic obstacles and its subsequent replan
decisions are based on this kinematics. Fig. 1 illustrates a
car-like mobile robot with front and rear wheels with a laser
range sensor. The base frame representing the workspace of
the robot’s environment is represented as (XW ,YW ) while
the robot frame is represented as (XR,YR). The rear wheels
are aligned with the car but the front wheels spin about
the vertical axes. Assuming the wheels do not slip, system
constrains do occur as the wheels roll and spin [29]. From
Fig. 1, the pose configuration of the robot ξW with respect to
the base frame can be represented as [XA,YA, θr , ϕr ]T with
(XA,YA) indicating the location of the midpoint A of the rear
wheel axis. The orientation angle of the robot and the steering
angle of the wheels with respect to the body of the robot is
indicated by θr and ϕr , respectively.

FIGURE 1. Kinematics model of a car-like mobile robot.

Themapping, ξ̇R, between the base and the robot frame can
be represented as in (1).

ξ̇R = R(θ ) · [ẊA, ẎA, θ̇r ]T (1)

where R(θ ) is given as in (2)

R(θ ) =

 cos(θr ) sin(θr ) 0
− sin(θr ) cos(θr ) 0

0 0 1

 (2)

Two nonholonomic constraints can be obtained as given in
(3) and (4) [29].

−ẊA sin θr + ẎA cos θr = 0 (3)

−ẊB sin(θr + ϕr )+ ẎB cos(θr + ϕr ) = 0 (4)

XB and YB represent the location coordinates of the front
wheel midpoints B. Hence XB and YB can be computed as
in (5) and (6).

XB = XA + L cos θr (5)

YB = YA + L sin θr (6)

where L denotes the distance from midpoint A of the rear
wheel axis to midpoint B of the front wheel axis. Based on
(5) and (6), the nonholonomic constraints given in (4) can be
written as in (7).

−ẊB sin(θr + ϕr )+ ẎB cos(θr + ϕr )+ L(cosϕr )θ̇r (7)

Based on (5) and (6), we can obtain the pose of the sensor
S = [xs, ys, θs]T using (8).

S =

 xsys
θs

 =
XA + l cos θrXA + l sin θr

θr

 (8)

where l represents the perpendicular distance between the
midpoint of the sensor S and the midpoint A of the rear
wheels. Given a driving velocity v1 and a steering velocity vα ,
the kinematic equations of a control system [ẊA ẎA θ̇r ϕ̇r ]
can be represented as in (9).

ẊA
ẎA
θ̇r
ϕ̇r

 =


cos θr
sin θr

(1/L) tan ϕ̇r
0

 v1 +


0
0
0
1

 vα (9)

where vα = ϕ̇r . Given a distance d from the sensor S to an
obstacle b, the position of obstacle b = [xb, yb]T with respect
to the configuration space of the robot can be computed
using (10). [

xb
yb

]
=

[
xs + d cosψs
ys + d sinψs

]
(10)

where ψs = θs + ϕs and ϕs represents the angle of the sensor
S to the obstacle b with respect to the body of the robot.
At subsequent distance readings, the distance do = dist(b, b

′

)
between the initial b and current b′ position sensor readings
of an obstacle can be computed using (11).

do = dist(b, b
′

) =
√
(b′x − bx)2 + (b′y − by)2 (11)

where (bx , by) and (b
′

x , b
′

y) are the initial and current positions
of the obstacle. With ϕs being the orientation of the sensor
S to the obstacle, the estimated sensor direction to different
positions of a dynamic obstacle with respect to the robot
frame can be represented as ϕs(i) where i = {1, 2, 3, . . . , n}
with n representing the last orientation value.
Using this kinematics, detected obstacles are analyzed

to determine their collision threat levels and the required
path replanning decision. Based on the replanning decision,
a replanned path is computed using CGT, morphological
dilation (MD), VD, A∗, and cubic spline interpolation (CSI).
Fig. 2 shows step-by-step processes required in implementing
the method presented in this paper.

III. INITIAL PATH COMPUTATION
The initial path computation (shown in Fig. 2) is the first
path computed from the initial position of the mobile robot
to the goal. This includes obtaining and processing a map
using MD, computing the roadmap, shortest path, and path
smoothening.

86028 VOLUME 7, 2019



B. B. K. Ayawli et al.: Mobile Robot Path Planning in Dynamic Environment Using VD and CGT

FIGURE 2. Workflow diagram of the proposed VD-CGT method.

Safety of vehicles in navigation is very important. MD
is employed to inflate obstacles on the map using dilation
rate based on the dimension of the vehicle and a minimum
safety distance required for safety. This technique takes care
of noise and other uncertainties due to hardware kinematics
imbalances that could cause the robot to deviate from its
computed path during navigation. Based on MD algorithm
presented in [30], obstacles in a workspace of the robot in
this paper are inflated using (12).

imap(x, y) = (map⊕ qs) = max{map(tr − x)

+qs(x)|(tr − x) ∈ dmap(x,y)∧ ∈ dz}, (12)

where imap(x, y) is the results of the algorithm, map(x, y) rep-
resents the map of the workspace, qs denotes the structuring
element of the dilation, tr is the translated radius representing
the required safety distance, and dz symbolizes the dimension
of the structuring element. Before computing a roadmap and
a path, obstacles on the map are inflated using (12). Given a
map in Fig. 3a, Fig. 3b shows a map with inflated obstacles
obtained using (12) with tr = 3.

The safety distance is chosen based on the dimension of the
vehicle and other necessary safety distance considerations.
The safe zone, Szone, to compute the roadmap for subsequent
path computation can therefore be represented using (13).

szone = {map(x, y) ∈ Wfree ∩ map(x, y)

/∈ (map⊕ q)tr } (13)

FIGURE 3. (a). Original map (b). Map with Inflated obstacles using
MD with tr = 3.

In this paper, VD is considered for the roadmap computa-
tion to generate candidate paths. GivenPobs as sets of obstacle
points in a 2D geometrical plane, a voronoi region Vr (Pobs(i))
can be computed as in (14).

Vr (Pobs(i)) = {x ∈ W |dist(x,Pobs(i))

≤ dist(x,Pobs(j))∀i 6= j}, (14)

whereW represents the workspace,Pobs(i) and Pobs(j) are VD
sites. The VD comprises all the points with more than one
nearest neighbor [31]. In this paper, Fortune’s sweepline algo-
rithm [32] is considered for the VD roadmap computation
due to its efficiency as against other VD algorithms. While
sweepline algorithm requires O(n log n) time [32], half-plane
intersection, and divide and conquer methods require O(n3)

VOLUME 7, 2019 86029



B. B. K. Ayawli et al.: Mobile Robot Path Planning in Dynamic Environment Using VD and CGT

time each, and incremental method requires O(n2) time [7].
To maximize the efficiency of sweepline algorithm to com-
pute more efficient VD roadmap, a step-size ratio technique
is used in this paper to reduce the nodes of the map for the
computation of the roadmap. A step size is chosen such that
the selected nodes for the computation of the roadmap does
not affect the correct representation of the map. In this paper,
a step size, sz, range of sz ∈ Z : 6 ≤ sz ≤ 8 is considered.
Using the processed map imap(x, y) with inflated obstacles
as input, the VD roadmap is computed. Navigable way-
points nwxy are obtained by eliminating edges in Wobs using
K-Nearest Neighbor (KNN) technique. Duplicate waypoints
and points too close to each other are also removed to reduce
the waypoints to facilitate fast path computation. The edges
E and the intersection points, V of the edges form a graph,
G = (E,V ) representing the roadmap in the Szone. Fig. 7b
demonstrates a computed VD with discarded roadmaps
in Wobs.
The shortest path from the start to goal positions is com-

puted using A∗ heuristic function. A∗ is a search algorithm
good at finding a path on a graph with least cost provided
a path exist [33]. The A∗ algorithm used in this paper is
represented as in (15)

f (q) = g(q)+ h(q) (15)

where q = nwxy represents the waypoints of the roadmap,
f (q) is the estimated cost to reach the target, g(q) = c(q, q′)
is the actual cost from point q to q′ and h(q) is the heuristic
function to estimate the cheapest cost from node q to the goal.
h(q) is obtained using Euclidean distance metric. A∗ search
algorithm is known to be complete and optimal; hence, its
choice to compute optimal path from a given start position to
goal in this paper. It is complete because once a path exists in
the szone, A∗ can find it. A∗ is admissible and consistent which
are properties of optimality. Considering g(q) as actual cost to
get to node q′, f (q) would therefore not overestimate the cost
to reach the target. This makes A∗ admissible. With c(q, q’)
as the cost from point q to q′, consistency is achieved since
h(q) ≤ c(q, q′)+ h(q) and admissibility is achieved since for
all arcs of the path, c(q, q′) ≥ ε > 0.

The computed shortest path apathxy = f(nwxy) from the
nwxy usually contains sharp curves that poses difficulty in
smooth navigation. To eliminate these sharp curves, CSI
algorithm is adopted to smoothen the path to provide more
navigable path, spathxy. The CSI equation used is given
in (16).

spathxy =


Si(x) = ai+bi(x − xi)+. . .
ci(x − xi)2+di(x − xi)3 for xi ≤ x ≤ xi+1
Si(y) = ai+bi(y− yi)+. . .
ci(y− yi)2+di(y− yi)3 for yi ≤ y ≤ yi+1

(16)

where Si(x) and Si(y) symbolize the CSI for each i node
of the path apathxy. ai, bi, ci and di are the coefficients to
be computed for each i. The number of intervals between

points on apathxy determines the number of coefficients to
be computed.

The algorithm to compute the initial path is given
in Algorithm 1.

Algorithm 1 Initial Path Computation
Input: map(x, y), safety space s, scale factor f , constant
value cv
Output: spathxy
1: begin
2: Initialize tr , s,f,cv, counter = 1;
3: imap(x, y)← (map⊕ q)// Inflate obstacles (12)
4: for i = 1 to size(imap(x)), interval f
5: for j = 1 to size(imap (y) , interval f
6: if imap(x, y)==0;
7: xx← j;
8: yy← i;
9: counter++;
10: end if
11: end for
12: end for
13: dt = DT (xx, yy); //Delaunay triangulation
14: [vx, vy] = voronoi(dt)//compute VD [34]
15: [A,D]← KNN ([xx, yy], [vx, vy]);
16: inobs = (D, size(vx) < cv)//Eliminate roadmaps in

obstacles
17: nwxy = [vx(∼ inobs), vy(∼ inobs)]; //safe waypoints
18: nwxy← remove duplicates and points too close
19: apathxy← f (nwxy);//compute shortest path (15)
20: spathxy← CSI (apathxy)//compute smooth path (16)
21: End

IV. PATH REPLANING
This section introduces the proposed path replanningmethod,
VD-CGT, using CGT combined with VD. The proposed
method comprises obstacle tracking, categorization and
threat determination, computation of replanning area, and
new path computation.

A. OBSTACLE TRACKING, CATEGORIZATION
AND THREAT DETERMINATION
Range sensors are required to track obstacles in the obstacle
tracking and threat categorization zone, sh at a given distance
threshold, h. The category of an obstacle and its level of threat
to the robot is determined before it reaches the path replan-
ning zone, sr , where path replanning occurs. Decision is taken
by the vehicle before the obstacle reaches the CTZ distance
threshold, sc. CTZ is a distance between the robot and the
obstacle in the sensor spectrum which requires the robot
to take immediate obstacle avoidance decision to prevent
collision. Fig. 4 indicates the distance thresholds considered
for path replanning in this paper.

In Fig. 4, S is the origin of the sensor, c represents the
CTZ distance limit from S, the replanning distance limit from
the sensor is denoted by r , and h represents the maximum

86030 VOLUME 7, 2019



B. B. K. Ayawli et al.: Mobile Robot Path Planning in Dynamic Environment Using VD and CGT

TABLE 1. Computations to determine obstacle categorization, collision threat and replan decisions.

FIGURE 4. Distance threshold allocation structure.

distance from the sensor for obstacle tracking and threat cat-
egorization. Upon detecting an obstacle in the sh, the category
of the obstacle and its threat to the robot is determined.

The proposed algorithm (demonstrated in Table 1 based on
the kinematics in Fig.1, 4 and 5) considers four main catego-
rizations of dynamic obstacles for the replanning task which
has been sub divided into eleven moving obstacle categories.
These include (a) static obstacles on the path of the robot,
(b) obstacles in front and moving in the same direction as the
robot (three sub categories), (c) obstacles in front and moving
in the opposite direction of the robot and (d) obstacles in front
and moving across the path of the robot at different angles
(six sub categories). Obstacle categories, obstacle threats to
robot and their correspondent replan decisions are deter-
mined based on the satisfaction of the conditional statements
in Table 1.

Fig. 5 demonstrates trajectories of two obstacles in terms
of positions, distances, and directions to the robot during
navigation. dop is the minimum distance between an obstacle
and the available unnavigable path by the robot. This can be
computed using KNN.

VOLUME 7, 2019 86031



B. B. K. Ayawli et al.: Mobile Robot Path Planning in Dynamic Environment Using VD and CGT

FIGURE 5. Trajectories of two obstacles and distance measurement
model.

The distances dist(o, p), between the vertices of the obsta-
cles, o, and that of the path, p, are computed using (17).

dist(o, p) =

√√√√ n∑
i=1

(oi − pi)2 (17)

d1 represents the initial distance between the sensor and the
obstacle at timet. d2 is the next distance between the sensor,
S, and an obstacle at time t + 1. The distance covered by the
robot from one position at time t to the next position at time
t + 1 is denoted by dv. The direction of the obstacle to the
sensor position at time t and t + 1 can be represented as ϕs(i)
and ϕs(i+1), respectively. The estimated distance between two
positions of an obstacle based on the distances and angles
from the sensor to the initial and current positions of the
obstacle is indicated as do which can be computed using
(18a) or (18b).

do =
√
d21 + d

2
2 − 2d1d2 cos(ϕs(i) − ϕs(i+1)) (18a)

do = d1 − (dv + d2) (18b)

The distance, dop, is comparedwith safety-obstacle-to-path
distance threshold, sop, to determine the threat of an obstacle
to the path used by the robot. This is done at the initial point of
detection and just before a replanning decision is taken at sr .
However, it should be noted that a threat of an obstacle to a
path may not pose a threat to the robot. As a result, additional
conditions involving distance, velocity and direction between
the robot and an obstacle are considered in this paper in
determining collision-threat obstacles to the robot. Based on
computation information with regard to Fig. 4 and 5, Table 1
shows conditional computation statements to determine
obstacle category and the level of threat an obstacle poses to
a robot and the necessary replanning decision to be taken.

B. COMPUTATION OF THE REPLANNING AREA
After an obstacle is detected and threat analysis is done,
a decision is taken by the robot whether to replan or

FIGURE 6. Computing the replanning area.

not (see Table 1).When a decision is made to replan, the com-
putation of new path begins with the computation of the
replanning area. Fig 6 shows a computed replanning area
represented by �ABCD. sc represents the CTZ distance of
the robot.

Position c(x, y) along the path can be computed as in (19).

c(x, y) = [rx + sc cosϕ, ry + sc sinϕ] (19)

where (rx , ry) represents the position of the robot and ϕ indi-
cates the orientation of the robot to the obstacle. dro is
the distance between the sensor position of the robot to the
obstacle. dom is an estimated distance from point z on the
obstacle to position m. Position m is an estimated midpoint
for the geometric boarder that represents the replanning
area of the workspace of the robot. The estimated distance
between the position of the robot and point m is represented
by dm. This is computed using (20).

dm = dro + dom (20)

The position of the estimated origin m(x, y) of the geometric
boarder can be represented as in (21).

m(x, y) =
[
rx + dm cosϕ, ry + dm sinϕ

]
(21)

The x and the y-axis for each vertex are computed
using (22)-(25).

Axa = Bxa = m(x)− bdist (22)

Cxa = Dxa = m(x)+ bdist (23)

Aya = Dya = m(y)− bdist (24)

Bya = Cya = m(y)+ bdist (25)

where m(x) and m(y) represent the x and y-axes of the ori-
gin of the generated rectangular replanning area estimated
to enclose the obstacle. The estimated origin of the obstacle to
the rectangular border is denoted as bdist where bdist > dm to

86032 VOLUME 7, 2019



B. B. K. Ayawli et al.: Mobile Robot Path Planning in Dynamic Environment Using VD and CGT

ensure that at least the current position of the robot is included
in the replanning area. To be certain that the computed ver-
tices of the replanning area�ABCD are within the workspace
of the robot, (26) is used to refine and recompute the vertices
that fall outside the workspace of the robot.

A,B,C,D =



(w(x), 1) xa ≥ w(x) ∧ ya ≤ 0
(1,w(y)) xa ≤ 0 ∧ ya ≥ w(x)
(w(x),w(y)) xa ≤ w(x) ∧ ya ≥ w(y)

(xa,w(x)) xa ≤ w(x) ∧ ya ≥ w(y)

(w(x), ya) xa ≥ w(x) ∧ ya ≥ w(y)

(1, ya) xa ≤ 0 ∧ ya ≥ 0

(xa, 1) xa ≥ 0 ∧ ya ≤ 0
(1, 1) xa ≤ 0 ∧ ya ≤ 0

(xa, ya) otherwise

(26)

where w(x) and w(y) are the maximum size of the x and the
y axes of the workspace of the vehicle, xa and ya are the
computed x and y-axes for the vertices of �ABCD(Axa, Aya,
Bxa, Bya,Cxa,Cya, Dxa and Dya).
The given computations to obtain the replanning region

is based on the position of the robot at the time of obstacle
detection in theworkspace. To address pose errors of the robot
during navigation, the pose of the robot is checked against
the computed path using path tracking algorithm presented
in [34]. This check ensures that the angle of the robot, θr,
and that of the path, θp, are the same. The error, θε, can be
computed as θε = θr − θp. Using this information, the error
of determining the current pose of the robot to serve as input
to compute the replanning area and the path for replanning
is controlled. The replanning area is computed such that a
feasible path can be recomputed from the current position of
the robot to goal.

C. NEW PATH COMPUTATION
The replanning is done by computing a roadmap in the rect-
angular region of the replanning area. Before the computation
of the roadmap, the newly detected and other obstacles within
the rectangular region based on the original map are inflated
using MD to ensure safe path computation. The roadmap
is computed using VD. The computed feasible waypoints
are added to the initial computed freeway points nwxy to
obtain the nodes for the path computation. As demonstrated
in (27)-(29), rwxy represents the newly computed roadmap
nodes in the rectangular replanning area and cwxy is the
column concatenation of nwxy and rwxy.

nwxy =

 x1 y1
...

xn

...

yn

 ∈ Rnx2 (27)

rwxy =

 x1 y1
...

xk

...

yk

 ∈ Rkx2 (28)

cwxy =
[
nwxy(x, y)
rwxy(x, y)

]
∈ R(n+k)x2 (29)

To avoid incremental increase in space requirement, com-
puted replanning roadmap nodes rwxy are discardedwhenever
new replanning roadmap is computed. This helps to maintain
R(n+k)x2 nodes for replanned path computation.

Using cwxy as input, a new path rpath(x, y) is computed
using A∗ heuristic algorithm used in computing the initial
path ensuring that rpath(x, y) ∈ szone. Just as with the initial
path, CSI is used to compute a smooth path rspath(x,y) to
avoid sharp curves and edges using rpath(x,y) as inputs.
Navigation continues with the newly computed path until

a new collision-threat obstacle is detected that requires
replanning. The algorithm for the path replanning is given
in Algorithm 2.

Algorithm 2 Path Replanning
Input: map(x, y), safety space s, scale factor f , constant
value c,nwxy
Output: rspathxy
1: begin
2: Initialize tr , cr , sr , hr , sop, newsr = sr
3: while goal not reached
4: Track robot-obstacle distance dro
5: Track obstacle-path distance dop
6: if dro ≤ cr ∧ dop ≤ sop
7: Use default replan decision to avoid obstacle;
8: end
9: elseif dro ≤ hr ∧ dop ≤ sop
10: Determine collision threat //Table 1
11: if threat = True ∧ rdecision = True
12: Compute newsr ; //Table 1
13: if dro ≤ newsr
14: Compute replanning area�ABCD;//(19)-(26)
15: rimap(x,y)← InflateWobs in�ABCD;//(12)
16: rwxy← Compute roadmap//[34]
17: cwxy = (newxy; rwxy) ; //(29)
18: Compute shortest path f (cwxy)f(cwxy);//(15)
19: Compute rspathxy; //(16)
20: end if
21: Navigate on rspathxy;
22: end if
23: end if
24: end while
25: End

V. EXPERIMENTAL RESULTS AND DISCUSSION
This section presents environmental setup for the experiments
to validate the proposed method, results of the proposed
method, and comparison of the proposed path planning meth-
ods with other popular related methods.

A. ENVIRONMENTAL SETUP FOR THE EXPERIMENT
For effective validation of the performance of the proposed
method, simulation is carried out in 800 randomly gener-
ated dynamic environment maps of 500x500 grid size each.
Each map is made up of 23 static and varied number of

VOLUME 7, 2019 86033



B. B. K. Ayawli et al.: Mobile Robot Path Planning in Dynamic Environment Using VD and CGT

FIGURE 7. Stage1: Initial path computation (a) Initial map with static obstacles (b) Initial computed VD roadmap (c) Final initial path from S to
G with static obstacles only.

FIGURE 8. Stage 2: First replanning computation to avoid a moving obstacle (a) Navigated path in a dynamic environment towards the first
collision-threat moving obstacle (b) First moving obstacle (obs1) detected with a computed rectangular region (c) Previous navigated path and
the current computed path from S to G that avoids Obs1.

moving obstacles. The maps considered in the simulation
are categorized into four with each category having 200 dif-
ferent environmental setups in terms of obstacles positions,
distances, velocities and directions of movement but with the
same number of moving obstacles. In addition to the 23 static
obstacles for each map, each category has 20,50,100, and
150 moving obstacles, respectively. There is no control over
the movement of obstacles in the experiment. They can run
over each other. The random generation guarantees unpre-
dictable obstacles for effective validation of the proposed
method. Simulations were carried out using MATLAB.

B. RESULTS OF THE PROPOSED METHOD
This section presents path planning simulation results of the
proposed method with 23 static and 50 moving obstacles.
Fig. 7-11 present results of path computation at different
stages for replanning to avoid obstacles from the initial
path computation to the final path computation to reach
goal. Obstacle trajectories already covered by moving obsta-
cles are part of the Wfree. The goal is represented by G
while S denotes the current starting point of the robot.

Obstacle detection is based on distance measurement com-
pared to a distance threshold based on the proposed algo-
rithm. For real implementation of this method, range sensors
are required to detect and provide distance measurements
from the obstacles. Observations in each stage shown in
Fig. 7-11 are as follows:
• At the first stage, Fig. 7 shows the initial path com-
putation without moving obstacles. The original map,
the computed VD roadmap and the final initial path are
shown in Fig. 7(a) to 7(c), respectively.

• At the second stage, Fig. 8 presents the first replanning to
avoid a moving obstacle (obs1). It can be observed from
Fig. 8(a) that an obstacle was moving across the robot
path from left to the right of themapwith velocity almost
the same as the robot. It was detected as a collision threat
to the robot. Hence, upon reaching the replanning zone,
intelligent replanning was done through the left side of
the obstacle (Fig. 8(b)-8(c)). Though computing a path
through the right side of obs1 would be shorter, there
is danger of colliding with obs1 which is moving to the
right.

86034 VOLUME 7, 2019



B. B. K. Ayawli et al.: Mobile Robot Path Planning in Dynamic Environment Using VD and CGT

FIGURE 9. Stage 3: Second replanning computation to avoid a moving obstacle (a) Navigated path in a dynamic environment towards the
second collision-threat moving obstacle (b) Second moving obstacle (obs2) detected with a computed rectangular region (c) Previous navigated
path and the current computed path from S to G that avoids Obs2.

FIGURE 10. Stage 4: Third replanning computation to avoid a moving obstacle (a) Navigated path in a dynamic environment towards the third
collision-threat moving obstacle (b) third moving obstacle (obs3) detected with a computed rectangular region (c) Previous navigated path and
the current computed path from S to G that avoids Obs3.

• The third stage shown in Fig. 9 demonstrates the second
replanning to avoid a second moving obstacle (obs2).
In Fig. 9(a), an obstacle was moving at a higher velocity
compared to the robot towards the replanning zone of
the robot and it was detected as a collision threat to the
robot. Considering its direction, the safest direction to
replan is the right side of the obstacle. The algorithm
computed a new path through the right side of obs2 to
goal (Fig. 9(b)-9(c)).

• Fig. 10 depicts the fourth stage of a third replanning to
avoid a third obstacle (obs3). As indicated in Fig. 10(a),
during navigation from S, an obstacle was detected but
it was analyzed to have a lower velocity compared to
that of the robot. The algorithm identifies it not to be
a collision threat, hence no replanning was done. The
robot moved and bypassed the obstacle before the obsta-
cle got closer to the path and finally crossed over the
robot’s navigated path. In Fig. 10(a), another obstacle
was detected to be on the path of the robot and moving at

a velocity of almost zero. This posed a collision threat as
it reaches the replanning zone of the robot. A new path is
therefore computed to avoid obs3as shown in Fig. 10(b)
and Fig.10(c).

• At the final stage as in Fig. 11, the final navigation
from S to G is shown. In Fig. 11(a), during navigation
from S to G, an obstacle was detected but was seen not
to have posed a collision threat due to its low velocity
compared to that of the robot. Hence, no new path was
computed and the robot ended its navigation safely to
goal (Fig. 11(b)).

The results presented in Fig. 7-11 indicate intelligent path
replanning decisions of the proposed algorithm.

C. COMPARISON OF PATH PLANNING METHODS
To evaluate the performance of the proposedmethod, compar-
ison was made with other popular related methods including
RRT-based [35], PRM-based and A∗-based [17] techniques.
Most path replanning algorithms usually consider either

VOLUME 7, 2019 86035



B. B. K. Ayawli et al.: Mobile Robot Path Planning in Dynamic Environment Using VD and CGT

FIGURE 11. Stage 5: Final computed path (a) Navigated path in a dynamic environment towards goal without collision-threat
moving obstacles.(b) Final navigated path from the initial position to G.

replanning at incremental distance or time interval, or exe-
cute path replanning when an obstacle is detected using
the entire map [27]. Hence, the evaluation of the proposed
method also consider VD based on incremental (VD-INC)
and full map (VD-FM) in the comparison. The aforemen-
tioned five methods were implemented on the same platform
and datasets (described in Subsection A of this Section) as
the proposed method. Consideration was given to the number
of environments with successful replanning computations to
reach goal, computation time used, path cost in terms of
length, and the number of path replanning computations.
Table 2 shows results of the comparison. Since the moving
obstacles are generated randomly and are not controlled,
the inability to find a path may be due to obstacles running
over the robot and preventing it from further movement.
In addition, the high complexity of an environment may
make it impossible to compute a path from start to a goal
position. The results in Table 2 indicates that the proposed
method outperforms the RRT-based, PRM-based, A∗-based,
VD-INC and VD-FM replanning approaches. The perfor-
mance is measured in terms of number of successful path
planning computations in complex and dynamic environ-
ments, total number of replanned path computations to reach
goal, path cost and computation time required to compute and
replan the path. The following observations can bemade from
Table 2.
• Considering path replanning performance in complex
and dynamic environments with 20, 50, 100 and
150 moving obstacles, the proposed VD-CGT method
succeeded in computing 200 (100%), 181(90.5%),
168 (84%), and 119 (59.5%) paths, respectively. Among
the other methods, the highest successful path compu-
tations in environments with 20, 50 and 100 moving
obstacles were recorded by VD-FM as 194 (97%), 165
(82.5%) and 138 (69%), respectively. With 150 moving

obstacles, the highest success rate among the other five
methods is 141(70.5%), recorded by A∗ method.

• In environments with 20, 50, 100 and 150 moving obsta-
cles, the proposed method recorded 57, 152, 326 and
491 total number of path replanning computations to
reach goal, respectively. Among the other five methods,
the PRM-based method recorded the minimum total
number of path replanning computations to reach goal
for environments with 20, 50 and 100. The recorded
path replanning computations to reach goal for the PRM
were 308, 793, and 1407 for environments with 20,
50, and 100 moving obstacles, respectively. VD-INC
obtained the lowest total number (1448) of path replan-
ning computations to reach goal for the environment of
150 moving obstacles among the five other methods
considered in the comparison.

• The average computation time (in seconds) recorded in
environments with 20, 50, 100 and 150moving obstacles
by the proposed method were 4.18, 6.92, 10.14 and
13.81, respectively. The best average computation time
recorded among the other five methods in environ-
ments with 20 moving obstacles was recorded by RRT
method as 4.76s. In environments with 50, 100 and
150 moving obstacles, the best average computation
time (in seconds) among the other five methods were
recorded by PRM method as 11.33, 16.68 and 24.12,
respectively.

• The average path length recorded in environments with
20, 50, 100 and 150 moving obstacles by the VD-CGT
methodwere 493.84, 503.43, 512.90 and 520.86, respec-
tively. The lowest average path length for environments
with 20, 50, 100 and 150 moving obstacles among the
other methods were obtained by A∗ as 494.56, 501.73,
509.95 and 511.70, respectively. This indicates that in
an environment with 150 moving obstacles, A∗ recorded

86036 VOLUME 7, 2019



B. B. K. Ayawli et al.: Mobile Robot Path Planning in Dynamic Environment Using VD and CGT

TABLE 2. Path replanning results for 800 maps with different environmental configurations.

shorter path length, which is 9.16 less than that of
VD-CGT. However, A∗ used an average of 359.49s as
against 13.81s for VD-CGT to achieve the given path
length gain.

Performance in terms of path cost and computation time
for each map with 20 and 50 moving obstacles in addition
to 23 static obstacles for the comparison based on the maps
which all the six methods were successful in computing path
to goal is demonstrated in Fig. 12 and Fig. 13. Fig. 14 shows
the performance in terms of total number of replanning for
each map for the comparisons where all the six methods were
successful in computing path to goal as well as at least one
path replanning computation. Charts for the environments for
100 and 150 were not included because they recorded less
than five successful path computations common to all the six
methods used in the comparison. Fig. 12-14 indicate better
performance of the proposed method with respect to path

cost, computation time used to reach goal, and the number
of replanning computations for each map with both static and
dynamic obstacles.

To givemore insights based on the results of the simulation,
Table 3 demonstrates a summary of the performance of each
of the methods considered in the comparison including the
proposed method. Out of the 800 environmental configu-
rations, the proposed method obtained the highest success
rate of 83.5% (668) whereas VD-FM, A∗, RRT, PRM and
VD-INC obtained 75.9% (607), 69.1% (553), 59.6% (477),
39.5% (316), and 33.9% (271) success rates, respectively.
The proposed method had the efficient average replanning
per an environment of 1.54. With respect to the average path
cost, the A∗ method got the best path cost of 504.49 which
is a difference of 3.27 better than the path cost obtained by
the VD-CGT (507.76). However, A∗ used the worse average
computation time per an environment of 198.4s as against

VOLUME 7, 2019 86037



B. B. K. Ayawli et al.: Mobile Robot Path Planning in Dynamic Environment Using VD and CGT

FIGURE 12. Path costs recorded for each common successful trial using the proposed and other five methods (a) Map with
23 static and 20 moving obstacles (b) Map with 23 static and 50 moving obstacles.

FIGURE 13. Execution time recorded to reach goal for each common successful trial using the proposed and other five methods
(a) Map with 23 static and 20 moving obstacles (b) Map with 23 static and 50 moving obstacles.

FIGURE 14. Number of replanning computations recorded to reach goal for each common successful trial using the proposed and
other five methods (a) Map with 23 static and 20 moving obstacles (b) Map with 23 static and 50 moving obstacles.

8.76s for the proposed method. To sum it all, the best path
computation speed (cost/time) of 57.96 was obtained by the
proposed method as against 2.54 for A∗ method.

The performance of the proposed method is as a result
of the introduction of the algorithm to categorize and deter-
mine collision threat level to help choose appropriate replan
decisions. This also helps to record lower computation time.

The lower computation time recorded is also due to the
use of CGT to select small area of the environment as
the replanning area for the path computation. It is noted
from the results that the proposed method performed very
well with lower computation time requirement compared to
RRT-based, PRM-based, A∗-based, VD-INC and VD-FM
replanning approaches. Generally, computation time is

86038 VOLUME 7, 2019



B. B. K. Ayawli et al.: Mobile Robot Path Planning in Dynamic Environment Using VD and CGT

TABLE 3. Summary of path replanning results using 800 maps with different environmental configurations.

expected to increase as the number of replannings to reach
a goal increase. The higher time requirement to compute
replanned path using VD-INC method is not surprising since
incremental method recomputes path for replanning at a
given time or distance intervals even if there are no collision
threats. It is also noted from the results that; the proposed
approach comparatively performs better by successfully com-
puting path in the given complex and dynamic environmental
configurations at highest success rate (83.5%) and highest
computation speed (57.96) in the experiment.

VI. CONCLUSION
In this paper, a novel path planning algorithm for mobile
robots in complex and dynamic environments is presented
using VD and CGT. An algorithm to categorize moving
obstacles based on their positions, velocities, distances and
directions of movement to determine the collision threat level
of obstacles to a vehicle with reference to its kinematics to
provide possible intelligent replanning decision is given.

Comparative results against RRT-based, PRM-based,
A∗-based, VD-INC andVD-FM approaches demonstrate bet-
ter performance of the proposed method in terms of success
rate of path computation in complex and dynamic environ-
ments, lower number of replanning computations, low path
cost and low computation time. It can be concluded from the
simulation experimental results that the VD-CGT method is
efficient in determining collision-threat moving obstacles and
avoiding unnecessary replanning computations. This resulted
in low number of path replanning computations to reach
goal. Additionally, the method has good performance with
regard to safe, smooth and low path length computation with
low computation time for path replanning in complex and
dynamic environments. The proposed method is therefore
promising to providing low path replanning computation time
required for robots in motion to take quick decision before
they collide with obstacles.

Notwithstanding the positive results of the proposed
method, the size and shape of obstacles can affect its perfor-
mance. Situations where the computed rectangular region is
not large enough to accommodate the size of detected obsta-
cle may results in wrongful path computations. To address
this challenge, our future work would employ obstacle size

and shape algorithms similar to those in [36], [37] to include
the size and shape of moving obstacles in computing the rect-
angular region for the path replanning. Future consideration
is also given to implementing the algorithm to work withmul-
tiple robots in dynamic environments. Real implementation is
under consideration in our future work.

REFERENCES
[1] Y. Chen and J. Sun, ‘‘Distributed optimal control for multi-agent systems

with obstacle avoidance,’’ Neurocomputing, vol. 173, pp. 2014–2021,
Jan. 2016.

[2] A. S. Matveev, A. V. Savkin, M. Hoy, and C. Wang, ‘‘Biologically-
inspired algorithm for safe navigation of a wheeled robot among
moving obstacles,’’ in Safe Robot Navigation Among Moving and
Steady Obstacles, 1st ed. Oxford, U.K.: Butterworth-Heinemann, 2016,
pp. 161–184. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9780128037300000081

[3] M. Wang, J. Luo, and U. Walter, ‘‘A non-linear model predictive controller
with obstacle avoidance for a space robot,’’ Adv. Space Res., vol. 57, no. 8,
pp. 1737–1746, 2016.

[4] B. B. K. Ayawli, R. Chellali, A. Y. Appiah, and F. Kyeremeh, ‘‘An overview
of nature-inspired, conventional, and hybrid methods of autonomous vehi-
cle path planning,’’ J. Adv. Transp., vol. 2018, Jul. 2018, Art. no. 8269698.

[5] B. Kakillioglu, K. Ozcan, and S. Velipasalar, ‘‘Doorway detection for
autonomous indoor navigation of unmanned vehicles,’’ in Proc. IEEE Int.
Conf. Image Processing, Phoenix, AZ, USA, Sep. 2016, pp. 3837–3841.

[6] M. Candeloro, A. M. Lekkas, and A. J. Sørensen, ‘‘A Voronoi-diagram-
based dynamic path-planning system for underactuated marine vessels,’’
Control Eng. Pract., vol. 61, pp. 41–54, Apr. 2016.

[7] H. Dong, W. Li, J. Zhu, and S. Duan, ‘‘The path planning for mobile robot
based onVoronoi diagram,’’ inProc. 3rd Int. Conf. Intell. Netw. Intell. Syst.,
Shenyang, China, 2010, pp. 446–449.

[8] H.-X. Wei, Q. Mao, Y. Guan, and Y.-D. Li, ‘‘A centroidal Voronoi tessella-
tion based intelligent control algorithm for the self-assembly path planning
of swarm robots,’’ Expert Syst. Appl., vol. 85, pp. 261–269, Nov. 2017.

[9] Q. Hui and J. Cheng, ‘‘Motion planning for AmigoBot with line-segment-
based map and Voronoi diagram,’’ in Proc. Annu. IEEE Syst. Conf.
(SysCon), Orlando, FL, USA, Apr. 2016, pp. 1–8.

[10] N. Habib, D. Purwanto, and A. Soeprijanto, ‘‘Mobile robot motion plan-
ning by point to point based on modified ant colony optimization and
Voronoi diagram,’’ in Proc. Int. Seminar Intell. Technol. Appl. (ISITIA),
Lombok, Indonesia, 2016, pp. 613–618.

[11] Q. Wang, M. Langerwisch, and B. Wagner, ‘‘Wide range global path
planning for a large number of networked mobile robots based on gen-
eralized Voronoi diagrams,’’ in Proc. IFAC Symp. Telematics Appl., Seoul,
South Korea, 2013, pp. 107–112.

[12] M. Dakulović and I. Petrović, ‘‘Two-way D∗ algorithm for path planning
and replanning,’’ Robot. Auto. Syst., vol. 59, no. 5, pp. 329–342, 2011.

[13] X. Hu, L. Chen, B. Tang, D. Cao, and H. Hee, ‘‘Dynamic path planning for
autonomous driving on various roads with avoidance of static and moving
obstacles,’’Mech. Syst. Signal Process., vol. 100, pp. 482–500, Feb. 2018.

VOLUME 7, 2019 86039



B. B. K. Ayawli et al.: Mobile Robot Path Planning in Dynamic Environment Using VD and CGT

[14] B. K. Patle, A. Pandey, A. Jagadeesh, and D. R. Parhi, ‘‘Path planning
in uncertain environment by using firefly algorithm,’’ Defence Technol.,
vol. 14, pp. 691–701, Dec. 2018.

[15] U. Orozco-Rosas, O. Montiel, and R. Sepúlveda, ‘‘Mobile robot path
planning usingmembrane evolutionary artificial potential field,’’Appl. Soft
Comput. J., vol. 77, pp. 236–251, Apr. 2019.

[16] M. Elhoseny, A. Tharwat, and A. E. Hassanien, ‘‘Bezier curve based path
planning in a dynamic field using modified genetic algorithm,’’ J. Comput.
Sci., vol. 25, pp. 339–350, Mar. 2018.

[17] Y. Singh, S. Sharma, R. Sutton, D. Hatton, and A. Khan, ‘‘A constrained
A∗ approach towards optimal path planning for an unmanned surface
vehicle in a maritime environment containing dynamic obstacles and ocean
currents,’’ Ocean Eng., vol. 169, pp. 187–201, Dec. 2018.

[18] Y. Zhang, L. Wu, and S. Wang, ‘‘UCAV path planning by fitness-scaling
adaptive chaotic particle swarm optimization,’’ Math. Problems Eng.,
vol. 2013, Jun. 2013, Art. no. 705238.

[19] O. Montiel, U. Orozco-Rosas, and R. Sepúlveda, ‘‘Path planning for
mobile robots using bacterial potential field for avoiding static and
dynamic obstacles,’’ Expert Syst. Appl., vol. 42, no. 12, pp. 5177–5191,
2015.

[20] M. A. Hossain and I. Ferdous, ‘‘Autonomous robot path planning in
dynamic environment using a new optimization technique inspired by
bacterial foraging technique,’’ Robot. Auto. Syst., vol. 64, pp. 137–141,
Feb. 2015.

[21] P. Yao, H. Wang, and Z. Su, ‘‘Real-time path planning of unmanned aerial
vehicle for target tracking and obstacle avoidance in complex dynamic
environment,’’ Aerosp. Sci. Technol., vol. 47, pp. 269–279, Dec. 2015.

[22] W.-B. Xu, X.-B. Chen, J. Zhao, and X.-P. Liu, ‘‘Function-segment artificial
moment method for sensor-based path planning of single robot in complex
environments,’’ Inf. Sci., vol. 280, pp. 64–81, Oct. 2014.

[23] J. C. Mohanta, D. R. Parhi, and S. K. Patel, ‘‘Path planning strategy
for autonomous mobile robot navigation using Petri-GA optimisation,’’
Comput. Elect. Eng., vol. 37, no. 6, pp. 1058–1070, 2011.

[24] M. A. P. Garcia, O. Montiel, R. Castillo, R. Sepúlveda, and P. Melin,
‘‘Path planning for autonomous mobile robot navigation with ant colony
optimization and fuzzy cost function evaluation,’’ Appl. Soft Comput.,
vol. 9, no. 3, pp. 1102–1110, 2009.

[25] X. Zhang, Y. Zhao, N. Deng, and K. Guo, ‘‘Dynamic path planning
algorithm for a mobile robot based on visible space and an improved
genetic algorithm,’’ Int. J. Adv. Robot. Syst., vol. 13, no. 3, pp. 1–17, 2016.

[26] M. A. K. Jaradat, M. Al-Rousan, and L. Quadan, ‘‘Reinforcement based
mobile robot navigation in dynamic environment,’’ Robot. Comput. Integr.
Manuf., vol. 27, no. 1, pp. 135–149, Feb. 2011.

[27] J. Han and Y. Seo, ‘‘Path regeneration decisions in a dynamic environ-
ment,’’ Inf. Sci., vol. 450, pp. 39–52, Jun. 2018.

[28] A. Šelek, M. Seder, and I. Petrović, ‘‘Mobile robot navigation for com-
plete coverage of an environment,’’ IFAC-PapersOnLine, vol. 51, no. 22,
pp. 512–517, 2018.

[29] S. G. Tzafestas, ‘‘Mobile robot kinematics,’’ in Introduction to Mobile
Robot Control. Amsterdam, The Netherlands: Elsevier, 2014, pp. 31–67.

[30] R.C. Gonzalez and R. E. Wood, Digital Image Processing, 2nd ed.
Englewood Cliffs, NJ, USA: Prentice-Hall, 2002.

[31] Y.-J. Ho and J.-S Liu, ‘‘Collision-free curvature-bounded smooth path
planning using composite Bezier curve based on Voronoi diagram,’’
in Proc. IEEE Int. Symp. CIRA, Daejeon, South Korea, Dec. 2009,
pp. 463–468.

[32] S. Fortune, ‘‘A sweepline algorithm for Voronoi diagrams,’’ Algorithmica,
vol. 2, pp. 153–174, 1987.

[33] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2010.

[34] R. Lenain, E. Lucet, C. Grand, B. Thuilot, and F. Ben Amar, ‘‘Accurate
and stable mobile robot path tracking: An integrated solution for off-road
and high speed context,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Taipei, Taiwan, Oct. 2010, pp. 196–201.

[35] D. Connell and H. M. La, ‘‘Extended rapidly exploring random tree–based
dynamic path planning and replanning for mobile robots,’’ Int. J. Adv.
Robot. Syst., vol. 15, no. 3, pp. 1–15, 2018.

[36] H. Saito, ‘‘Estimating target-object shape using location-unknown mobile
fixed-direction distance sensors,’’ Nov. 2017, arXiv:1712.00382. [Online].
Available: https://arxiv.org/abs/1712.00382

[37] A. Pieropan, N. Bergström, M. Ishikawa, D. Kragic, and H. Kjellström,
‘‘Robust tracking of unknown objects through adaptive size estimation
and appearance learning,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
Stockholm, Sweden, May 2016, pp. 559–566.

BEN BEKLISI KWAME AYAWLI received the
B.Ed. degree in information technology from
the University of Education, Winneba, Ghana,
in 2008, and the M.Sc. degree in information tech-
nology from Sikkim Manipal University, India,
in 2011. He is currently pursuing the Ph.D. degree
in automation with the Nanjing Tech University,
Nanjing, China.

He was a Lecturer with the Computer Sci-
ence Department, Sunyani Technical University,

Ghana. He was the ICT Director of Sunyani Technical University, from
2013 to 2016. He is also aWeb Application Developer. His research interests
include robot path planning and navigation, deep learning, data mining, and
web applications.

XUE MEI received the B.S. degree in engineering
from the Harbin Institute of Technology, Harbin,
China, in 1998, the M.S. degree in engineer-
ing from Southeast University, Nanjing, China,
in 2004, and the Ph.D. degree in engineering from
Southeast University, Nanjing, China, in 2008.

She is currently an Associate Professor with
the College of Electrical Engineering and Control
Science, Nanjing Tech University. Her research
interests include pattern recognition, robot motion
planning, machine vision, and image processing.

MOUQUAN SHEN received the Ph.D. degree
in control theory and control engineering
from Northeastern University, Shenyang, China,
in 2011. He is currently a Professor with the
Department of Electrical Engineering and Control
Science, Nanjing Technology University, Nan-
jing, China. His current research interests include
Markov jump systems, robust control, adaptive
control, iterative learning control, sliding mode
control, and quantized control.

ALBERT YAW APPIAH received the B.Sc. and
M.Sc. degrees from the University of Mines and
Technology, Tarkwa, Ghana, in 2007 and 2014,
respectively. He is currently pursuing the Ph.D.
degree with Nanjing Tech University, Nanjing,
China. He was with the Electrical/Electronic Engi-
neering Department, Sunyani Technical Univer-
sity, as a Lecturer. His present research interests
include solar photovoltaics, deep learning, rein-
forcement learning, robotics, and fault diagnosis.

FRIMPONG KYEREMEH received the bachelor’s
degree in technology education from the Univer-
sity of Education Winneba, Ghana, in 2005, and
the M.Sc. degree in electrical engineering with
power electronics from Bradford University, U.K.,
in 2008. He is currently pursuing the Ph.D. degree
in electrical engineering and control science with
Nanjing Tech University, China. He is currently a
Lecturer with the Electrical/Electronic Engineer-
ing Department, Sunyani Technical University,

where he taught courses on basic electronics, power electronics, engineering
practice, and power systems. His current research interests include microgrid
control, machine learning, and multi-agent systems.

86040 VOLUME 7, 2019


	INTRODUCTION
	PROBLEM FORMULATION AND ASSUMPTIONS
	INITIAL PATH COMPUTATION
	PATH REPLANING
	OBSTACLE TRACKING, CATEGORIZATION AND THREAT DETERMINATION
	COMPUTATION OF THE REPLANNING AREA
	NEW PATH COMPUTATION

	EXPERIMENTAL RESULTS AND DISCUSSION
	ENVIRONMENTAL SETUP FOR THE EXPERIMENT
	RESULTS OF THE PROPOSED METHOD
	COMPARISON OF PATH PLANNING METHODS

	CONCLUSION
	REFERENCES
	Biographies
	BEN BEKLISI KWAME AYAWLI
	XUE MEI
	MOUQUAN SHEN
	ALBERT YAW APPIAH
	FRIMPONG KYEREMEH


