IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 13, 2019, accepted June 24, 2019, date of publication June 27, 2019, date of current version July 17, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2925364

3D Surface Matching by a Voxel-Based
Buffer-Weighted Binary Descriptor

RUQIN ZHOU 1, XIXING LI2, AND WANSHOU JIANG'-3

I'State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072, China
2China National Digital Switching System Engineering and Technological Research Center, Zhengzhou 450000, China
3Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430072, China

Corresponding author: Wanshou Jiang (jws @whu.edu.cn)

This work was supported by the National Key R&D Program of China under Grant 2018 YFB0504801.

ABSTRACT 3D surface matching by local feature descriptors is a fundamental task in 3D object registration,
recognition, and retrieval. In view of 2D projected descriptors’ information compression and 3D directly
voxelized descriptors’ sensitivity to density variation and boundary, this paper first proposes a voxel-based
buffer-weighted binary descriptor, named VBBD. After local surfaces of detected keypoints are voxelized,
each voxel’s buffer region is established, and the buffer-weighted Gaussian kernel density is calculated. If the
current voxel’s buffer-weighted density is larger than its local surface’s average density, the voxel is labeled 1,
otherwise, it is 0. The proposed descriptor has several merits: 1) direct acquisition of 3D information without
projection, the neighbor information is less compressed. 2) voxels are labeled and binarized according to
the buffer-weighted density, which improves the robustness to boundary effect, noise and density variation.
Based on the VBBD, a global optimal surface matching method based on a Kuhn_Munkres (KM) algorithm
is adopted. The strategy has several advantages: 1) by calculating the descriptors of large-scaled surfaces
which are down sampled, the number of the point cloud is reduced, and meanwhile, large-scaled information
is obtained; and 2) KM algorithm is adopted to find matching pairs to achieve final maximum weight sum of
all matching pairs, which can efficiently avoid local optimum. The experimental results show that, compared
with other state-of-the-art descriptors, the VBBD has better descriptiveness and robustness, and the surface
matching strategy by the VBBD can achieve both high recall and precision.

INDEX TERMS Voxel, Gaussian kernel density, binary descriptor, Kuhn_Munkres matching.

I. INTRODUCTION

In recent years, artificial intelligence (AI) technologies,
which is mainly centered on robots and pattern recog-
nition, have been greatly studied with the development
in the data acquisition technology, computer processing
capacity and the accumulation of big data [1]. As one of
the fundamental but challenging issue in computer vision,
robotic and remote sensing [2], [3], 3D surface matching by
local feature descriptors has been widely used in various
applications [4], for instance, 3D object registration [5], 3D
model retrieval [6], [7], 3D object recognition [8], [9], and
3D model reconstruction [10], [11].

The definition of 3D surface matching by local feature
descriptors is to find correspondences through two sets
of local feature descriptors [12]. Traditionally, this scheme
involves two main steps: descriptor generation and feature
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matching. To obtain a fine matching result, besides a
matching strategy which can efficiently reduce or avoid
local optimum, a qualified local feature descriptor with high
descriptiveness and robustness is also a necessary require-
ment. The descriptor should contain as much neighbor infor-
mation as possible to achieve a high discrimination [13];
moreover, it should be robustness to a set of nuisances, such
as density variation, noise, and occlusion [14].

A. RELATED WORK

In addition to some classical descriptors (such as SI[15],
3DSC [16], FPFH [17], SHOT [18], RoPS [19]), a large
number of new studies domestic and overseas have emerged
in recent five years to improve descriptors’ performance.
B-SHOT [20] is the first 3D binary feature descriptor
developed on the SHOT descriptor, which was gener-
ated by quantizing the real valued SHOT descriptor to a
binary vector. Although its matching efficiency and storage
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requirement are improved, there is a loss of informa-
tion through quantization [21]. Similarly, Shen et al. [22]
proposed a hybrid descriptor named Frame-SHOT, which
combined global structural frames with local signatures
of histogram (SHOT). It is more descriptive than local
descriptors and more robustness than global descriptors [22],
but the float descriptor requires for more storage [20].
Yang et al. [23] proposed a local feature statistic histogram
named LFSH, which coded on the local depth, point density,
and angles between the normal. However, the statistical-
based descriptor inevitably loses neighbor information in
quantification. 3DBS [21] is a binary descriptor which
encoded normal differences among nearest neighbors of a
keypoint, but it is sensitive to noise [3]. Prakhya et al. [24]
introduced a low dimensional descriptor named 3DHoPD,
which respectively projected local surfaces onto three coor-
dinate axes of LRF and quantitatively coded the projected
density into 15 bins. It requires dramatically low computa-
tional time, but the information is much lost by projected
on one dimension. Yang ef al. [25] proposed a novel triple
orthogonal local depth images named TOLDI. The descrip-
tor was obtained by concatenating three local depth images
which were projected on three orthogonal planes of LRF.
Dong et al. [3] proposed a binary shape context called BSC,
which calculated Gaussian kernel density and distance on
three orthogonal projection planes, and then the BSC was
formed by generating random point pairs. BRoPH [26] pro-
jected local surfaces on three coordinate axis planes and
calculation of depth images and density image. The above
three descriptors are 2D projection-based. Although they
can effectively reduce the computational complexity and the
length of descriptors, but the information is compressed due
to the projection. Quan et al. [4] proposed a local voxelized
structure called LoVS, which encoded the local surfaces into
bit strings without computing complex geometric features,
but the directly voxelized descriptor is sensitivity to density
variation and boundary. Furthermore, there are series of com-
prehensive summaries in each sub-step [27]-[31], which can
provide a quick overview of current research status for new
researchers in this field.

However, in terms of feature matching strategies,
the researches are still deficiency compared to local descrip-
tors. Generally, there are three essential strategies among
current feature matching methods [12]: (1) threshold match-
ing, simply choosing pairs with similarities larger than a
threshold; (2) nearest neighbor (NN)-based matching, which
directly chooses pairs with the maximum similarity; (3) near-
est neighbor distance ratio (NNDR)-based strategies, where
the ratio of the maximum similarity to the sub-maximal
similarity is required. The research of Mikolajczyk and
Schmid [32] showed that the matching strategy of NN and
NNDR can achieve better results than the threshold method.
In order to improve the accuracy of feature matching, there
are some improvements of these essential strategies. For
example, Xiong and Han [12] adopted a bidirectional near-
est neighbor distance ratio (BNNDR)-based strategy, which
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can obtain better feature matching than the NN-based and
NNDR-based strategy. However, the above strategies do not
take the global information into account, and it is easy to trap
in local optimum, where many-to-one matching often occurs.

B. OUR CONTRIBUTION

Thus, this paper proposes a global optimum surface matching
method by a voxel-based buffer-weighted binary descriptor
(VBBD). The main contribution of the paper contains two
aspects:

(1) A voxel-based buffer-weighted binary descriptor
named VBBD is proposed. Firstly, each local surface of
detected keypoints is voxelized; then, the buffer region
is established according to each voxel’s center, and the
buffer-weighted Gaussian kernel density of each voxel
is calculated. If the current voxel’s buffer-weighted
density is larger than the local surface’s average den-
sity, the voxel is labelled 1, otherwise it is 0. The
proposed descriptor has several merits: (a) direct acqui-
sition of 3D information without projection, the third-
dimensional information is less compressed. b) buffer
region is established and voxels are labelled and bina-
rized according to the buffer-weighted density, which
improves the robustness to boundary effect, noise and
density variation.

(2) Based on the VBBD, a global optimum feature match-
ing method based on Kuhn_Munkres (KM) algorithm
is adopted with a hamming-based distance. The strat-
egy has several advantages: (a) by calculating the
descriptors of large-scale surfaces which are sampled,
the number of point cloud is reduced, and meanwhile,
large-scaled information is obtained; (b) the KM algo-
rithm is adopted to find matching pairs to achieve final
maximum weight sum of all matching pairs, which can
efficiently avoid local optimum and obtain both high
recall and precision.

C. PAPER ORGANIZATION

The paper is organized as follows. Section.Il presents the
details of VBBD generation and the KM-based feature
matching method. In Section.IIl, the datasets and criterion
for accuracy analysis are introduced. The related parameters
in the proposed descriptor are analyzed and recommended
values are given in Section.IV. The experimental results
and evaluations of the proposed binary descriptor and fea-
ture matching method are shown in Sections.V. Section.VI
shows the performance on registration with RANSAC algo-
rithm. And the effect of different keypoint detectors is
analyzed in Section.VII, respectively. Finally, a conclusion
of the paper and some future researches are presented in
Section. VIII.

Il. METHODOLOGY
As mentioned above, the proposed surface matching method
by the local descriptor VBBD are composed of two steps:
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descriptor generation and feature matching. In this section,
the generation of the voxel-based buffer-weighted binary
descriptor VBBD (as shown in Figure 1) is introduced in
Section A; and then, a KM-based global optimal feature
matching method (as shown in Figure 2) is presented in
Section B.

FIGURE 1. Descriptor generation.

FIGURE 2. Feature matching.

A. VBBD GENERATION

In this section, a voxel-based buffer-weighted binary descrip-
tor named VBBD is introduced. As shown in Fig.1,
the scheme of descriptor generation mainly includes five
steps: keypoint detection, local reference frame (LRF) con-
struction, voxelization, feature computation and binariza-
tion, which are respectively presented in the following
sections.

VOLUME 7, 2019

1) KEYPOINT DETECTION

Keypoint detection is a basic but important step in many
applications [33], such as registration [5], recognition [10],
retrieval [34] and simultaneous location and mapping
(SLAM) [35]. An appropriate keypoint detector has a rea-
sonable effect on the descriptors’ performance [36] (it will
be discussed in the Section.VII). There are two necessary
requirements for the detected keypoints: (1) they should
be highly repeatable; (2) they should be discriminative
and less computational. At present, there are some widely
used keypoint detectors, such as voxel sampling, uniform
sampling, Harris3D [37], SIFT 3D [38], NARF [39], and
ISS [40]. Since the extraction of keypoints is not the focus
of this paper, their principles are not described in detail.
From experiments in the Section.VII, it is observed that ISS
outperforms other keypoint detectors in the Recall versus Pre-
cision curve (RP curve). Therefore, through comprehensive
consideration [13], ISS is chosen as the keypoint detector for
further experiments in this work.

2) LRF CONSTRUCTION

A unique and stable LRF plays a significant role in both
robustness and descriptiveness of a descriptor [3]. The invari-
ance to rigid transformation of a descriptor can be achieved
by a robust LRF [3], [20]. In this paper, similar to SHOT [18]
and B-SHOT [20], the LRF of VBBD is estimated from the
eigenvectors of the modified covariance matrix, which is
calculated from points in a local surface.

After keypoints p; are detected, each local surface S; =
{gij» || gij- pill < R} of the keypoint p; is determined by the
support radius R to construct the LRF (as shown in Eq.1),
where g;; is a point in the local surface of keypoint p; and]]|
gij- pill is the distance between g;; and p;.

1
C =
> R—llgij —pil)

qij€Si

D R—llgi —pilDgg — pgi —pd" (1)

qij€Si

Usually, the maximum vector of the eigenvectors is directly
chosen as the Z axis, while the minimum is chosen as the X
axis. To remove the ambiguity of LRF, the X and Z axes are
oriented towards the majority direction of the vectors [25].
And then, the local Y axis is obtained by the cross-product
operation of the Z and X axes (Y = Z x X).

3) VOXELIZATION

Voxelization is a good surface representation method with
high time and space efficiency [41]. Therefore, voxeliza-
tion has been widely applied in the robotics and computer
vision field [41], [42]. However, in the field of 3D local sur-
face description, limited researches have been conducted [4],
as most existing feature descriptors projected 3D local sur-
faces onto 2D planes for feature coding (such as TOLDI [25],
BSC [3], BRoPH [26]) or utilized a spherical volume (such
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as SHOT [18], B-SHOT [20] and 3DSC [16]). Quan et al. [4]
proposed a local voxelized structure (LoVS) for 3D binary
feature representation, which has been proved that can effec-
tively handle the challenges existed in low-cost sensors, such
as noise and varying data resolutions. Similarly, in the VBBD,
voxelization is applied to splitting local surfaces uniformly
and efficiently.

After the LRF of each keypoint is constructed, for each
keypoint p;, its local surface S; are firstly transformed to
a new coordinate system based on its LRF [24]. And then,
as shown Fig.3, the keypoint p; is taken as the center, and the
transformed local surface S; is divided into voxels according
to the voxel number (g * g * g).

@ ' (b)°

FIGURE 3. Voxelization. (a) is the 3D view. (b) is the front view.

After voxelization, according to a voxel’s index (i, j k),
it center’s coordinates (x, y, z) can be quickly calcu-
lated according to Eq.2, which will be used in further
buffer-weighted feature computation.

X = current_key.x + (i-g / 2) * _s;
y = current_key.y + (j- g/ 2) * _s; 2)
z = current_key.z + (k- g/2) * _s;

where current_key is the transformed coordinate of the key-
point p; in current local surface, and the size _s of each voxel
can be obtained as 2 * R/g.

4) FEATURE COMPUTATION AND BINARYZATION

The commonly used coding strategy for voxels is to directly
label 1 or O according to whether it contains points or
not [4], [41]. However, it is sensitive to density variation and
boundary effect. To improve the robustness of the voxel-
based descriptor, a Gaussian kernel density, which has been
proved to improve the robustness to noise, varying point
density, and boundary effect in BSC [3], is adopted for feature
calculation in buffer region. It is worth noting that, differed
from BSC, VBBD calculates the weighted density of each
voxel rather than the weighted density of each point, which is
more time efficiency.

Firstly, each voxel’s buffer region is established, where
the voxel’s center is as the origin and the bandwidth 4 is
as the radius (as shown in the yellow circle in Fig.4). Then,
the Gaussian kernel density (i, j,k) of current voxel is
calculated by points in the buffer region according to Eq.3.
Meanwhile, the average Gaussian weighted density ¥aye of
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all voxels in the local surface S; is calculated according to
Eq.4. If the current voxel’s buffer-weighted density (i, j,k) is
larger than the local surface’s average density Y,ve, the voxel
is labelled 1, otherwise it is 0.

1 % 1wl
o(i, j k)= — e sty = vijkll < h
m; — V2mh
3)
Y ¢li,j k)
v,-.j.kesg
ST N

where m; is the number of points in current buffer region,
vijk is the center of voxel (i, j, k), t, is the neighbor point in
the buffer region, g*g*g is the voxel number.

Taking a 2D local surface as an example. Fig.4 illustrates
the differences between LoVS and VBBD for the same local
surfaces in three different situations: the original local surface
(Fig.a), the same surface with boundary effects (Fig.b) and the
same surface with density variation (Fig.c). The one differing
from the original description is colored in green. It can be
seen from the descriptions that in the three situations, there
are slight changes (4/25) in LoVS when boundary affected
and density varied. However, for VBBD, the descriptions are
mostly not change, which shows its robustness to density
variation and boundary effect owing to the buffer-weighted
feature computation and binarization.

B. KM-BASED FEATURE MATCHING

The task of feature matching is to find a set of corre-
spondences between two sets of feature descriptors [12].
To improve the matching accuracy, descriptors of large-scaled
local surfaces are generated after down sampling, there-
fore, the number of point cloud is reduced, and meanwhile,
large-scaled information is obtained. Then, similarities of two
sets of descriptors are evaluated by a hamming distance, and
finally, the KM algorithm is adopted to find matching pairs
to achieve final maximum weight sum of all matching pairs.

1) SIMILARITY CALCULATION

There are many similarity measurements between two
descriptors in both mathematics and information science
[43]-[45], for example, cosine similarity, Euclidean dis-
tance, Dice distance, Jaro-Winkler Distance and Leven-
shtein distance [45]. A comprehensive survey has been given
in [44]. In this paper, a hamming distance is used to measure
the similarity, which is time efficiency and easy to implement.
For two binary descriptors x and y, the hamming distance
is the number of ‘1’ in x XOR y. However, the hamming
distance is not proportional to the similarity. To make it
proportional, we define the length of the descriptor minus
hamming distance as the similarity score.

2) KUHN_MUNKRES ALGORITHM
Feature matching between two sets of descriptors can
abstracted as an issue of graph matching [7], which is a basic
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FIGURE 4. Comparison between LoVS and VBBD.

Similarity
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FIGURE 5. Initial matching.

theory in computer field [46]. In this section, a KM algo-
rithm is adopted to find correspondences between two sets of
descriptors. As a classical global optimal algorithm to solve
the matching problem of weighted bipartite graphs [46], [47],
KM algorithm achieves final maximum weight sum of all
matching pairs, which can reduce local optimum.
Theoretically, a weighted bipartite graph G is composed of
three parts: vertices X, vertices Y, and weighted matrix W.
As shown in Fig.5, in this paper, the weight matrix W is the
similarities between two sets of descriptors, vertices X are
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the indexes of model’s keypoints, while vertices Y are the
indexes of scene’s keypoints. It is worth noting that the KM
algorithm is suitable for matching between graphs with the
same number of nodes. However, the number of keypoints
are usually not equal in the model and the scene. In order to
adapt it to different node graphs, the low-dimensional data is
expanded by adding some vertices or edges of 0 [46], which
makes dimensions of both the row and column dimension be
the same, and achieves one-to-one matching of all nodes in
the algorithm.

Let the labels of vertex x; € X and y; € Y respectively
be Al[i] and BJi], and the weight between vertex x; and y; be
wli, j]. Initially, for x; € X, let A[i] is the maximum weight
of all weights associated with vertex x;, while for y; € Y,
B[j] = 0. And then, the schedule of KM algorithm works as
follows (Algorithm 1):

lIll. DATASET AND CRITERIAL

In this section, datasets (including Stanford 3D Scanning
Repository and Kinect Views) and criterions (Recall ver-
sus Precision curve) to test and assess the proposed feature
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Algorithm 1 KM Algorithm

Input: bipartite graph G=(X,Y, W)

Output: maximum weighted matching M

(1) Initialize the labels A[i] and B[j] of vertices X and
vertices Y

(2) Adopt Hungarian algorithm [48] to find a perfect
matching (as Fig.6);

(3) If perfect matching is found, stop; otherwise, modify

the labels’ value of vertices;

(4) Repeat (2) (3) until a complete match of equal
subgraphs is found.

Similarity

[

<]

OO0

OO0 Q9

FIGURE 6. Perfect matching.

matching method are respectively introduced in Section.A
and Section.B.

A. DATASET

To prove the feasibility of the proposed surface match-
ing method by VBBD, two different kinds of datasets (an
overview of benchmark datasets in computer vision has
been given in [49]) are utilized: Stanford 3D Scanning
Repository  (http://graphics.stanford.edu/data/3Dscanrep/)
and Kinect Views (http://vision.deis.unibo.it/research/78-
cvlab/80-shot).

The Stanford 3D Scanning Repository used in the experi-
ments contains 4 models: Armadillo, Happy Buddha, Bunny
and Dragon, which were scanned by a Cyberware 3030 Scan-
ner. For each model, there are several views, for example,
stand, side, up, back, and backdrop (Bunny model only has
one view). For a fixed view, a set of scans are collected at
a fixed rotation angle. In addition, all models are aligned
by a modified ICP (Iterative Closest Point) algorithm, and
their alignments are stored in ““.conf” files with a translation
and a rotation. Examples of four models are shown in Fig.7.
For better visualization, different scans are colored in dif-
ferent color. More details about the dataset can be found in
http://graphics.stanford.edu/data/3Dscanrep/.

The Bologna Kinect Views, collected by a Microsoft
Kinect sensor, includes six groups of partial views captured
from the Squirrel, Duck, Frog, Mario, Peter Rabbit, and
Doll models. Specifically, there are 15, 16, 20, 13, 16, and
15 scans for these models, respectively. Examples of all scans
of six models are shown in Fig.8. It is worth noting that
only 3D information is utilized and the RGB information
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(b)

(©) (d)

FIGURE 7. Scans of four models in Stanford 3D Scanning Repository.
(a) Armadillo; (b) Happy Buddha; (c) Dragon; (d) Bunny.

is not used. More details about the dataset can be found in
http://vision.deis.unibo.it/research/78-cvlab/80-shot.

B. CRITERION

To quantitatively evaluate the performance of the proposed
descriptor and surface matching method, Recall versus Pre-
cision curve (RP curve) is adopted in the experiments. As one
of the widely used measurements in the literature to assess a
descriptor [3], [4], [12], the RP curve is calculated as follows:
the precision is calculated as the number of correct descrip-
tor matches with respect to the total number of descriptor
matches (as shown in Eq.5), while the recall is calculated as
the number of correct descriptor matches with respect to the
number of corresponding keypoint pairs (as shown in Eq.6).
“#” is represented to the total number.

. # correct descriptor matches
precision = - ®)
#descriptor matches

#correct descriptor matches
recall = - : : (6)
# corresponding keypoint pairs

When the distance ||g; — Tp;|| between the keypoint p;
in a model and the keypoint g; in a scene is smaller than
a threshold s, the p; and g; is considered as a correspond-
ing keypoint pair (T is the truth transformation matrix).
A descriptor match is considered as correct when the corre-
sponding descriptors’ keypoints are corresponding keypoint
pairs [3]. By varying the threshold s, a RP curve can be
generated. Ideally, if the area under the RP curve is larger,
it means that this method achieves both higher recall and
precision [29].
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FIGURE 8. Bologna kinect views. (a) Squirrel; (b) Duck; (c) Frog; (d) Mario; (e) PeterRabbit; (f) Doll.

IV. PARAMETER ANALYSIS

The proposed VBBD mainly has four parameters: the sup-
port radius R for local surface searching, the voxel number
g for voxelization, the distance d for down sampling, and
the bandwidth & for buffer-weighted density computation.
Following, the influence of each parameter will be discussed
by a variable-controlling approach, and recommended values
of parameters will be given according to experiments.

A. THE SUPPORT RADIUS R FOR LOCAL

SURFACE SEARCHING

The support radius R is used to search the neighborhood of
keypoints and construct their local surface. It is a crucial
parameter in the process of feature descriptor generation.
Large-scaled surface can obtain more abundant information,
but the computational complexity is higher; small-scaled sur-
face is of lower computational complexity, but the obtained
information is limited, and it is sensitive to noise and
occlusion [29]. To test the influence of different support
radius R on the descriptor, the RP curves of varying support
radius R ranging from 5 mr to 70 mr are evaluated with an
interval A = 5 mr (mr is the model resolution).

Fig.9 shows the RP curves of different support radius R
when voxel number g = 9, sample distance d = 1 mr and
bandwidth &~ = 2 * R/g. It can be seen from the figure that
when the support radius is small (R = 5 mr), its RP curve is
much lower than others. This is because limited information
is included in the descriptor, resulting in poor descriptiveness
and robustness. With the support radius varying from 5 mr
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FIGURE 9. RP curve of varying support radius.

to 60 mr, the recall and precision of the RP curves increase
basically. When the support radius is larger than 60 mr,
the recall and precision of the RP curve are not improved with
the radius increasing, as it becomes more sensitive to partial
overlap. Therefore, considering the richness of information
and the computational efficiency, the support radius R =
60 mr is selected to construct local surfaces in the following
experiments.

B. THE VOXEL NUMBER G FOR VOXELIZATION

The voxel number g for voxelization is directly related to the
descriptiveness and robustness of the descriptor. For a given
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support radius, if the voxel number is too large, it is of high
descriptiveness, but it is not robust enough; when the number
for voxelization is small, its robustness is improved, but the
descriptiveness is decreased. To find a balance between the
descriptiveness and robustness, in this section, varying voxel
number g for voxelization are tested from 5 to 17 with an
interval A = 2.

FIGURE 10. RP curve of varying voxel number.

Fig.10 shows the RP curves of varying voxel number when
support radius R = 60 mr, sample distance d = 1 mr and
bandwidth # = 2 * R/g. It can be seen that when the voxel
number g is 5, its RP curve is lower than other numbers’
RP curves. This is because one voxel contains many points,
resulting in low descriptiveness. With the voxel number vary-
ing from 5 to 9, the recall and precision are increased. This
is because more details about the point distribution of the
local surface are encoded into the descriptor. However, the
performance slightly degrades with the number continues to
increase. This is because a large voxel number means a small
voxel size, although the local surface feature can be fully
expressed, but it is sensitive to noise and voxel partition.
On the other way, with voxel number varying from 7 to 17,
the differences of RP curves in both recall and precision are
less than 0.1, which also shows the method’s robustness to
voxel partition. Thus, considering both the length of descrip-
tor and the RP curve, we choose g = 9 in the following
experiments.

C. THE DISTANCE D FOR DOWNSAMPLING
To obtain more surface information, large-scaled radius is
adopted. However, when the radius becomes large, the num-
ber of neighbor points increases, which lead to low com-
putational efficiency. Therefore, to reduce the number of
point cloud, a uniform sampling of local surfaces is utilized.
In order to explore the influence of sampling distance d on
the performance of the descriptor, experiments of different
sampling distances d varying from 1 mr to10 mr are carried
out.

Fig.11 shows the RP curves of different sampling distance
d varying from 1 mr to 10 mr, when the support radius
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FIGURE 11. RP curve of varying sampling distance.

R = 60 mr, the voxel number g = 9, and the bandwidth
h =2 * R/g. As can be seen from the graph, the trend of RP
curves are basically consistent. With the sampling distance d
increasing, the differences among RP curves are slight, which
also shows that the descriptor is insensitive to the density
variation. However, when the sampling distance d continues
to increase, some local surface information is lost, resulting
in accuracy decreasing. Therefore, considering both compu-
tational efficiency and accuracy of the descriptor, we choose
sample distance d = 5 mr in the following experiments.

D. THE BANDWIDTH H FOR BUFFER-WEIGHTED
DENSITY COMPUTATION
The bandwidth / is mainly used to calculate the Gaussian ker-
nel density in buffer region. Direct voxelization is sensitive to
density, boundary effect and voxel partition. By establishing
a buffer region, this problem can be effectively reduced.
To improve the robustness to Gaussian noise, density varia-
tions, boundary effects, and LRF perturbations, the proposed
descriptor adopts the Gaussian kernel density for feature
computation in buffer region. To test the performance of the
varying bandwidth A, experiments are conducted, while the
other three parameters are set as R = 60 mr and g = 9,
sampling distance d = 5 mr, and _size = R/g.

Fig. 12 illustrates the RP curves for varying bandwidth
h from 1*_size to 7*_size with an interval A =_size. As
shown in Fig. 13, when h = 1*_size, the buffer-weighted
density only considers the points inside the current voxel,
not considers the information of adjacent points outside the
voxel, therefore, the recall and precision are much lower than
others. It shows that when the bandwidth % varying from
1*_size to 4*_size, the larger the buffer region, the better
accuracy. And when the buffer region continues to increase
from 5*_size to 7*_size, the performance degrades as too
much neighbor information is taken into account. It is obvious
that when A = 4*_size, the RP curve is obviously higher
than other curves. Therefore, in the following experiments,
the bandwidth A for buffer-weighted density calculation is set
to 4* _size.
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FIGURE 12. RP curve of varying bandwidth.

V. PERFORMANCE OF VBBD AND SURFACE

MATCHING METHOD

To test the efficiency of the proposed descriptor and fea-
ture matching method, experiments are conducted on two
datasets, and the descriptiveness and robustness of the
descriptor and the global optimum of feature matching strat-
egy are respectively analyzed in Section.A, Section.B and
Section C. To provide the fairest comparison as possible, for
the compared feature descriptors, any needed parameter (such
as support radius, voxel number) is set according to equiva-
lent values of our proposed descriptor analyzed in Section.IV.

A. DESCRIPTIVENESS

A descriptor is of high descriptiveness if it can provide
sufficient information to distinguish one local surface from
another [3]. In this section, to test the descriptiveness of
the proposed VBBD, we compare it against the state-of-the-
art descriptors (BSC [3] represents 2D projected descriptors,
3DHoPD [24] represents 1D projected descriptors, LoVS
represents 3D descriptors [4], 3DSC [16], USC [50], and
SHOT [18] represents classical descriptors) on both the Stan-
ford 3D Scanning Repository and Kinect Views, which
has been proved to be efficiently successful in the liter-
ature for surface matching. Especially, 3DSC, USC and
SHOT have been implemented in Point Cloud Library (PCL,
http://docs.pointclouds.org), and 3DHoPD can be download
from https://sites.google.com/site/3dhopd/.

Due to the data quality of the two datasets are quite differ-
ent, the performances of RP curves are different. As shown
in Fig.13 and Fig.14, the proposed VBBD descriptor out-
performs all the other proposed descriptors by a large mar-
gin on both Stanford 3D Scanning Repository and Kinect
Views. The differences are caused as follows: (1) the RP
curves of 3DSC are much lower than others. This is because
only a LRA (Local Reference Axis) is constructed in 3DSC,
leading to ambiguity in longitude division direction, while
the others all construct a stable LRF, which shows the
importance of building a stable LRF for descriptors; (2) the
RP curves of 3DHoPD are very low. This is because that

VOLUME 7, 2019

FIGURE 13. RP curves of the stanford 3D scanning repository.

FIGURE 14. RP curves of kinect views.

3D information are greatly compressed by projecting fea-
tures onto one dimension, while others code features on
projected two dimension or direct three dimension. (3) BSC
is the 2D projected descriptor, but it outperforms LoVS. This
is because the BSC calculates weighted projection density
and distance, while LoVS directly labels after voxelization,
which is sensitive to density variation and boundary effect.
(4) SHOT and VBBD are both three-dimensional descriptors,
but the performance are different. This is because SHOT com-
putes the normal’ angle, which is sensitive to noise, and its
descriptiveness is compressed by quantifying in the process
of feature coding. The proposed VBBD extracts 3D informa-
tion directly, and calculates the Gaussian kernel density in
the buffer region, and considers the average weighted density
of local surface in the process of binarization, which is more
robustness. Therefore, its recall and precision are higher.

B. ROBUSTNESS

A descriptor is of high robustness if it can be insensitive
to a number of disturbances that can affect the data, e.g.,
noise and density variations [36]. To test the robustness of
the proposed descriptor, a set of experiments are conducted
on Stanford 3D Scanning Repository with respect to a set of
disturbances, including different Gaussian noise and varying
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FIGURE 15. RP curve of varying gaussian noise.

density. The RP curve is also used to evaluate the robustness
of the proposed descriptor, with the comparison to the most
similar descriptor LoVS [4] and BSC [3].

To evaluate the robustness of the proposed VBBD to dif-
ferent levels of Gaussian noise, five levels of Gaussian noise
(0 mr, 0.1 mr, 0.2 mr, 0.3 mr, 0.5 mr) are added on Stanford
3D Scanning Repository. Fig.15 shows the RP curves of an
example. As can be seen from the figure, whether itis VBBD,
LoVS or BSC, the existence of noise does have a deep impact
on the RP curves (on both recall and precision), especially
the recall. This is because by adding noise, more points
without obvious feature are detected as keypoints, result-
ing in the increase of “#corresponding keypoint pairs” and
“#corresponding matches” , while “#correct corresponding
matches” is almost unchanged, so the recall and precision
of the descriptor are greatly reduced. In addition, the recall
decreases with the continuous increase of noise, but the RP
curves’ trend of the VBBD is consistent, and their decline
of recall is less than BSC and LoVS (their recall declines of
recall is less than BSC and LoV (their recall declines greater
than 0.3).

To evaluate the robustness of the proposed VBBD to den-
sity variation, five levels of density variation (1 mr, 6/5 mr,
7/5 mr, 8/5 mr, 9/5 mr and 2 mr) are sampled on Stanford 3D
Scanning Repository. Fig.16 shows the performance of three
descriptors, VBBD, LoVS and BSC, at difference density lev-
els. Overall, the trend of all RP curves is consistent as a whole,
and the RP curves’ fluctuation of BSC and LoVS is obviously
larger than VBBD on both recall and precision (> 0.15),
which means the density variation has less effect on VBBD
than BSC and LoVS. When the precision of VBBD is higher
than 0.9, their recall in all RP curves changes a little. When
the density varies to 6/5 mr, the RP curves of BSC and LoVS
decreases to a certain range. This is because with the density
decreases, the local surface becomes flatter, resulting in some
details being ignored and their distinctiveness decreasing.
However, as the density continues to decrease (7/5 mr),
the local surface becomes much smoother, which begins to
affect the detection of keypoints. The detected keypoints are
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FIGURE 16. RP curve of varying density.
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FIGURE 17. Efficiency of different descriptors.

the points with obvious features, and discrimination becomes
higher, so the recall slightly increases. The experiments show
that the buffer-weighted density computation and binarization
improves the descriptor’s robustness to density variation.

C. EFFICIENCY

To evaluate the efficiency of the proposed VBBD and
surface matching method, experiments are conducted with
other descriptors mentioned above. For fairly comparison,
the related parameters are set as the same. The detailed infor-
mation about these descriptors [29] are listed in Tab.1. It is
worth noting that the normal used in related descriptors is
computed by searching nearest 50 points.

Figure.17 shows the computational time of different
descriptors on the same two data, where the number of
keypoints on the two data are respectively 163 and 135.
As shown in Figure.17, the computational time of BSC,
3DSC and USC are much higher than others. This is because
the although BSC is 2D projected descriptor, it computes the
weighted density and distance of each points, which need
lots of calculations. As for the 3DSC and USC, the bin
number is much larger than others, which makes the effi-
ciency decrease. LoVS directly labels 1 or 0 according to
whether a voxel contains points or not, without computing
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(a) RP Curves.

FIGURE 18. Performance of different feature matching strategies.

TABLE 1. Information about descriptors.

Descriptor Dimension Type Implementation
SHOT 2%8%2%11 =352 float PCL 1.8.0
3DSC 15*12*11 = 1980 float PCL 1.8.0
UsC 15%12*11 = 1980 float PCL 1.8.0
3HoPD 3*5=15 float C++

BSC 3%2%0%9 = 486 bit CHt
LoVs 9%9%9 =729 bit C++
VBBD 9%9*9 =729 bit C++

complex feature. Therefore, it is more efficient than other
feature-based descriptors. Although both BSC and VBBD
compute the weighted feature, the difference is that VBBD
calculates the weighted density of each voxel rather than the
weighted density of each point, which is more time efficiency
than BSC. Additionally, although the support radius is large,
through down sampling, the number of point cloud is reduced,
and meanwhile, large-scaled information is obtained.

D. GLOBAL OPTIMUM

A feature matching method is considered as global optimum
if it comprehensively considers the global information. To test
the superiority of the KM matching algorithm compared to
NN matching strategy, experiments are conducted on the
Stanford 3D Scanning Repository, where the performance
of different Gaussian noise and density variation are also
considered.

Fig.18 shows the results of KM matching strategy and NN
matching strategy with different Gaussian noise and density
variation. To fairly compare the differences between the two
strategies, the proposed VBBD are generated with the same
relevant parameters, and the only difference is the matching
strategy. As can be seen from the figures, for the three sit-
uations, the recall and precision of KM are both higher than
that of NN matching. This is because for NN matching, it only
considers the maximum similarity and it is possible to trapped
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(b) NN matching.

(c) KM matching.

in a local optimum, and it produces a serious many-to-one
problem (as shown in Figure a), while for KM matching,
it considers the global optimal information. It finds the perfect
matching of weighted bipartite graphs, which the final weight
sum of all matching pairs can be maximized, and achieves
one-to-one matching of all nodes in the algorithm (as shown
in Figure b). In addition, when there exists noise interference
or density variation, the trend of change coincides with the
original two curves.

VI. PERFORMANCE ON REGISTRATION

Registration is one of the important applications for local
feature descriptors [51]. The widely used approach for coarse
registration is to use corresponding points to estimate the
transformation between two point cloud. To verify the valid-
ity of the VBBD and KM-based feature matching method,
several groups of data on both two datasets were tested with
RANSAC registration algorithm, which is implemented in
PCL [17] and can obtain both transformation matrix and
correspondences after errors eliminated (VBBD for descrip-
tor generation, KM for feature matching, and RANSAC for
coarse registration). Theoretically, » models can have n(n-
1)/2 registration results. Considering the overlap between
scans, we choose two continuous scans to register.

Fig.19 and Fig.20 respectively show the examples of reg-
istration results on both Stanford 3D Scanning Repository
and Kinect Views. For intuitive visualization, the original
point cloud is colored in red and the registered point cloud
is colored in blue. As can be seen from the graph, after
the RANSAC registration, the point cloud of two datasets
is basically coincided, even in the case of serious data loss.
This is due to the extraction of the large-scale feature and the
robustness to data missing. For two scans with larger overlap
degree, the registration results are better, which is due to more
correspondences with smaller error are matched and they
are uniformly distributed. Because the data quality of Kinect
Views is not as high as Stanford 3D Scanning Repository
(Kinect View’s density is smaller, and the local surface is less
distinctive), so the registration results are not as good as the
Stanford 3D Scanning Repository.

86645



IEEE Access

R. Zhou et al.: 3D Surface Matching by VBBD

Armadillo

Dragon

Buddha

FIGURE 19. Examples of registration results on stanford 3D scanning repository.

For comparison, two methods (VBBD + KM +RANSAC
and LoVS + NN + RANSAC) are applied to register all
the models in Kinect Views. To quantitatively evaluate the
registration result, registration accuracy [14] is introduced for
evaluation (as shown in Eq.7). A registration is considered to
be correct if the RMSE (Root Mean Squared Error) is smaller
than 7 mr. The definition of RMSE is showed in Eq.8. cé
and ¢! are two corresponding points and N is the number of
correspondence, Rgr and 7gr are respectively rotation and

translation matrix [4]. “#” is represented to the total number.
#correct registration

Reg.accuracy = - - (7)
#registration

N _ -
> ||Rar e ¢k + tor — ci||
=1

RMSE = N ®)

Tab.2 is the quantitative registration results of Kinect
dataset, and Fig.21 is the detailed distribution of the highest
recall of all correctly registered scans. As mentioned above,
there are 15, 16, 20, 13, 16, and 15 scans for six mod-
els on Kinect Views, respectively. Considering the overlap
between scans, two continuous scans are chosen to register.

86646

Therefore, for each models, the total registration number is
14, 15, 19, 12, 15 and 14. It can be seen from Tab.1 that
the method I (VBBD + KM + RANSAC) basically out-
performs the method II (LoVS + NN + RANSAC) in the
registration accuracy, especially on the doll and mario mod-
els. For the accuracy distribution of all correct registrations,
as shown in Fig.21, in general, the method I (VBBD +
KM + RANSAC) outperforms the method II (LoVS + NN +
RANSAC) on mostly situations, as there are 45 bars where
yellow is above, and 6 bars where only single yellow. It is
worth noting that, in Fig.21, if the yellow is above and the
blue is below in a bar, it means the method I outperforms the
method II; conversely, it means the method II outperforms
the method I. If the bar is only yellow, it means the method I
outperforms the method II; if the bar is only blue, it means the
method IT outperforms the method I. The black bar means the
recall of two descriptors is nearly equal.

VII. DISCUSSION

A. EFFECT OF DIFFERENT KEYPOINT DETECTORS

Through experiments, it is found that different keypoint
detectors have an important impact on performance of the
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Doll

Duck

Frog

Mario

Peter
Rabbit

Squirrel

FIGURE 20. Examples of registration results on kinect views.

descriptor and further feature matching. To test their effect on
RP curves, several widely used keypoint detectors (ISS, voxel
sampling, uniform sampling, SIFT 3D, NARF, Harris3D)
mentioned before are chosen as examples. It is worth noting
that all the above keypoint detectors are implemented in PCL.

Fig.22 is the results of six keypoint detectors with mostly
the same number of keypoints. Experimental results show
that the distribution of keypoints detected by ISS, voxel sam-
pling and uniform sampling detectors is more uniform than
NARF and Harris3D detectors, especially in surfaces with
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less features. For SIFT 3D detector, besides the regions with
obvious features, the keypoints are mainly concentrated on
the edge of the model.

For comprehensive comparison, the time efficiency of dif-
ferent keypoint detector is recorded. As can be seen in Tab.3,
to detect the same number of keypoints, the computational
time of the six detectors are quite different: the two sampling
detectors (voxel sampling and uniform sampling) are the two
most efficient detectors, as their principle are simple and the
amount of calculation is small. The SIFT 3D is much more
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Registration Results on Kinect View
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FIGURE 21. Distribution of registration accuracy on kinect views.

(b)

(d

®

FIGURE 22. Results of different keypoint detectors. (a) is the ISS detector;
(b) is the voxel sampling; (c) is the uniform sampling; (d) is the SIFT 3D
detector; (e) is the NARF detector; (f) is the Harris3D detector.

complex as the characteristics in multi-scale spaces need to
be computed.

Fig.23 shows the analysis of these keypoint detectors on
RP curves and the relationships between repeatability, recall
and Distance. Fig.a indicates the keypoints’ repeatability [33]

(2)

TABLE 2. Registration accuracy of kinect view.

Model Method II (LoVS Method I (VBBD
+NN+RANSAC) +KM +RANSAC)
doll 0.571429 0.714286
duck 0.666667 0.666667
frog 0.578947 0.578947
mario 0.5 0.666667
rabbit 0.8 0.8
squirrel 0.428571 0.5

TABLE 3. Efficiency of different keypoint detectors.

Detector Keypoint number Times (s)
1SS 135 0.3635
Voxel 167 0.002
Uniform 167 0.0035
SIFT 3D 138 0.7295
NARF 159 0.1455
Harris3D 124 0.18

with varied threshold values (distance). Obviously, with the
distance increasing, their repeatability is nearly in proportion
to the distance. Fig.b shows the relationship between the
recall and varying distance of different keypoint detectors.
It can be seen that, in different threshold values (distance),
their recall fluctuates greatly, except voxel sampling detector.
Fig.c shows the effect of different keypoint detectors on
RP curves. It is obvious that, although uniform sampling
and voxel sampling have high repeatability, their recall and
precision are not as high as ISS. This is because many of
the keypoints detected by voxel or uniform sampling are not
the points with obvious features, which is hard to distinguish.
However, their performances are better than SIFT 3D, NARF
and Harris3D, which thanks to the uniform distribution of
detected keypoints.

Therefore, to obtain a better performance of descriptor
generation and feature matching, when detecting keypoints,
there are two basic requirements: (1) the detected keypoints
should be the points with obvious features as far as possible;

©

FIGURE 23. Analysis of different keypoint detectors. (a) repeatability versus distance; (b) recall versus distance; (c) RP curves.
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(2) the detected keypoints should be uniformly distributed.
For comprehensive consideration, for those objects with obvi-
ous feature, such as Happy Buddha, ISS detector is better,
while for objects with smooth surface, such as Bunny model
and Kinect dataset, uniform sampling is better.

VIIl. CONCLUSION

In this paper, a global optimum surface matching method
by a voxel-based buffer-weighted binary descriptor (VBBD)
is proposed. This method has several advantages: (1) the
proposed VBBD is of high descriptiveness, as its direct
acquisition of 3D information without projection, the third-
dimensional information is less compressed; (2) the proposed
VBBD is of high robustness to voxel partition, noise and
density variation, as voxels are labelled and binarized accord-
ing to the buffer-weighted Gaussian kernel density; (3) the
KM-based global optimum feature matching method consid-
ers the global information and finally achieves a maximum
weight sum of all matching pairs, which can efficiently avoid
many-to-one matching. However, there are also some short-
comings. One is that there are four parameters in this method:
the support radius R for local surface searching, the voxel
number g for voxelization, the distance d for down sampling,
and the bandwidth & for buffer-weighted density computa-
tion. Experiments show that the performance of different
values of parameters varies greatly. Inappropriate parame-
ter settings will cause a bad effect for further 3D surface
matching. Additionally, the parameter settings are varied for
different datasets. Therefore, in our future work, self-adaptive
parameter setting method will be studied.
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