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ABSTRACT In this paper, we propose an efficient continuation method for locating multiple power flow
solutions. We adopt the holomorphic embedding technique to represent solution curves as holomorphic
functions in the complex plane. The holomorphicity, which provides global information of the curve at
any regular point, enables large step sizes in the path-following procedure such that non-singular curve
segments can be traversedwith very few steps.When approaching singular points, we switch to the traditional
predictor-corrector routine to pass through them and switch back afterward to the holomorphic embedding
routine. We also propose a warm starter when switching to the predictor-corrector routine, i.e., a large initial
step size based on the poles of the Padé approximation of the derived holomorphic function, since these poles
reveal the locations of singularities on the curve. The numerical analysis and experiments on many standard
IEEE test cases are presented, along with the comparison to the full predictor-corrector routine, confirming
the efficiency of the method.

INDEX TERMS Power flow problem, holomorphic embedding, continuation.

I. INTRODUCTION
The electric power grid is a critical energy infrastructure for
power generation, transmission, and distribution in modern
society. The inherent nonlinearity of power grid introduces
a great challenge to analyze its dynamical behaviors when
subject to disturbances, especially when penetrated with a
large amount of intermittent renewable energies. Identifying
the region of attraction about the operating condition, i.e.
a stable equilibrium point (SEP) of the underlying dynamical
system, can significantly improve the situational awareness
and, therefore, will be of great importance to avoid black-
outs. Characterizing this region requires the knowledge of
a special type of unstable equilibrium point (UEP) which
is called the type-1 UEP [1], [2]. Determining them usually
requires locating all nearby equilibria. In classical model [3],
equilibria are solutions to the power flow equations [4]–[6].
A high-voltage solution in the range of [0.9, 1.1]1 p.u.

represents a steady state under which the system can be

The associate editor coordinating the review of this manuscript and
approving it for publication was Md Apel Mahmud.

1A more restricted range may be assumed to be [0.95, 1.05] for
transmission systems.

well-operated. This solution is usually the SEP in transient
stability analysis, while other solutions are UEPs. For tree
structured networks, the high-voltage solution is unique [7].
However, it is possible that mesh networks can have mul-
tiple high-voltage solutions with either circulated flow [8]
or reversed power flow [9]. Although being avoided in the
normal operations, circulated flow can happen during fault
transients.Meanwhile, the reversal of power flow can become
very common in future power grids as distributed energy
resources (DER) keep penetrating into distribution networks.
To better characterize stability region and to examine other
high-voltage operating points, finding multiple power flow
solutions plays a key role.

Nowadays a single high-voltage solution can be
solved very efficiently. For example, systems with about
10,000 buses can be solved within a second [10]. However,
the largest system that can be provably solved for all solu-
tions is the 14-bus system [11]. The efficiency of solving a
single high-voltage solution comes from the knowledge of
a good initial guess for local solvers to converge. But it is
rather hard to acquire appropriate initial guesses for other
solutions. If using random seeds, the complexity increases
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exponentially as the system size increases. Therefore, a sys-
tematic method is required to find these solutions. Early
attempts to find multiple power flow solutions dates back to
1970s when [12] examined a 3-node system which admits
0, 2, 4 or 6 solutions. In 1989, [13], [14] introduced the
probability-one homotopy continuation method to find all
the complex-valued solutions to the power flow problem.
The homotopy continuation method requires estimating the
total number of solutions to the power flow problem, which
is still an ongoing research. In 1982, [15] sharpened the
solution number bound from the classic Bezout’s bound,
22Nbus−2, to a combinatorial bound, CNbus−1

2Nbus−2
, where Nbus is

the number of nodes in a power grid. Recently, [11] applied
a polyhedral homotopy continuation method to completely
solve the IEEE standard 14-bus system by the Bernstein-
Khovanskii-Kushnirenko (BKK) bound which is sharper than
the Bezout’s bound. However, evaluating the BKK bound
is very expensive. To further explore a simpler bound, [16]
introduced the adjacent polytope bound, which is sharper than
the BKK bound and more computable.

While progressive, the homotopy method usually ends
up with a huge amount of complex-valued solutions which
are fictitious power flow solutions. To only identify actual
power flow solutions, [17] introduced the idea of curve
design which connects different real solutions by some
1-dimensional curves. Following these curves power flow
solutions can be reached one by one.2 Though efficient, [19]
provided a counter-example for [17]. To rectify their method,
an elliptical formulation of the power flow problem is used
in [20] to restrict the curve design on high dimensional
ellipses. It helps solve all the standard IEEE test cases which
can be verified by the homotopy method in a reasonable
time,3 including the counter-example in [19]. The existence
and construction of elliptical formulation were provided
in [21] and extended to the optimal power flow problem to
find multiple local extrema for hard problems in [22].

The curve tracing routine performed in [20]–[22] is a
traditional predictor-corrector algorithm which adopted a
quadratic predictor [23], Newton’s method for corrector, and
an adaptive step-length control [24]. Many variations of
the predictor-corrector algorithm exist, however, most of
them depend only on the local information or previously
solved points. To accelerate the curve tracing, in this paper,
we design a new hybrid algorithm called the holomorphic
embedding based continuation (HEBC)method to replace the
traditional predictor-corrector algorithm during most of the
curve tracing periods. It applies the holomorphic embedding
technique to quickly pass through the non-singular curve
segments by utilizing the global information of that curve,

2A very special type of test cases can be solved much more efficiently
by some techniques from algebraic geometry. Interested readers are referred
to [18]. However, there is no such efficient algebraic geometry method for
solving a general power flow case at present.

3Currently, there is no rigorous theoretical guarantee to show that the
elliptical formulation can always connect all the real solutions. It is an
ongoing research.

and uses a predictor-corrector routine to travel across singu-
larities.

The holomorphic embedding method (HEM) was intro-
duced by Trias [25] in 2012 as a new power flow solver. The
basic idea is to parameterize a polynomial system by an extra
free variable and acquires the solution curve information
by power series. Early attempts to use parameterization and
power series for solving power flows started with [26] and
followed by [27], [28]. Recently, HEMwas extended to some
applications with different modelings [29]–[35]. In [36], dif-
ferent germs are designed for HEM, starting from each of
these germs can trace up to one extra power flow solution.
Unlike [36] which focuses on a special type of power flow
solutions, this paper indistinguishably finds as many as pos-
sible. A restarted HELMwas proposed in [37] to enhance the
speed of HELM when computing the high-voltage solution,
while a multi-stage scheme was proposed in [35] to eliminate
the precision issue of HELM. Among the above develop-
ments, two features of HEM are particularly useful in our
circumstance to improve searching efficiency. First, HEMcan
release us from local predictor-corrector scheme and provide
with very long arc steps on the solution curve. This can largely
reduce the burden of repeatedly solving linear systems in
the corrector part. Moreover, the smallest real-valued pole of
Padé approximation can be used to design an appropriate step
length when passing through singular point. It avoids overly
large step sizes to improve numerical stability, and keeps step
sizes progressive to maintain efficiency.

The contributions of this paper are summarized below.
1) Showed an equivalent curve design for the elliptical

formulation of the power flow problem.
2) Proposed a hybrid numerical continuation method

HEBC for finding multiple power flow solutions.
3) Proposed a warm starter to quickly initiate the

predictor-corrector routine for passing through singu-
larities.

4) Showed that HEBC outperforms the traditional
predictor-corrector algorithm [20] for all the tested
cases.

5) Computed solution sets4 for several large test cases
which currently are intractable by homotopy continu-
ation method or the similar.

II. DESCRIPTION OF POWER FLOW PROBLEM
Throughout this paper, we adopt the power flow formulation
in rectangular coordinates.

A. POWER FLOW EQUATIONS IN RECTANGULAR
COORDINATES
Consider a connected power grid with Nbus nodes. Let the
node voltage vector be

V := Vd + jVq (1)

4Several solution sets are available online [47].
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where V ∈ CNbus ; Vd ∈ RNbus and Vq ∈ RNbus are the real
and imaginary parts of V, respectively.
For the PQ bus, we have

V ?k

Nbus∑
n=1

Yn,kVn = S?k (2)

whereVk andVn are the corresponding entries ofV; Yn,k is the
(n, k)-th entry of the bus admittance matrix Y ∈ CNbus×Nbus ;
Sk ∈ C is the complex apparent power at bus k; superscript
star ? represents the conjugate operator.
Separating the real and imaginary parts of Equation (2)

gives the two equations about a PQ bus

Pk = Vd,k

Nbus∑
n=1

(
Gn,kVd,n − Bn,kVq,n

)
+Vq,k

Nbus∑
n=1

(
Gn,kVq,n + Bn,kVd,n

)
(3a)

Qk = Vq,k

Nbus∑
n=1

(
Gn,kVd,n − Bn,kVq,n

)
−Vd,k

Nbus∑
n=1

(
Gn,kVq,n + Bn,kVd,n

)
(3b)

where Pk ≤ 0 and Qk ≤ 05 are the fixed active and reactive
power loads at bus k;Gn,k and Bn,k are the (n, k)-th entries of
the bus conductance matrixG and the bus susceptance matrix
B6; Vd,k , Vd,n, Vq,k and Vq,n are the corresponding entries
of Vd and Vq, which are unknown variables that should be
determined.

For the PV bus we have

Pk = Vd,k

Nbus∑
n=1

(
Gn,kVd,n − Bn,kVq,n

)
+Vq,k

Nbus∑
n=1

(
Gn,kVq,n + Bn,kVd,n

)
(4a)

V 2
m,k = V 2

d,k + V
2
q,k (4b)

where Pk is a fixed active power injection at bus k which is
usually positive but can be negative; Vm,k is the fixed voltage
magnitude at bus k .
For the slack bus with an angle reference we have

V 2
m,s = V 2

d,s + V
2
q,s (5a)

0 = Vq,s (5b)

where subscript s is the slack bus number; Vm,s is the slack
bus voltage magnitude.

One can further substitute (5b) in (5a), (4) and (3) to
eliminate Vq,s. Finally, (3), (4), and (5) together are the power

5Usually a load absorbs reactive power, but it can possibly generate
reactive power. In that case Qk ≥ 0.

6Y = G+ jB

flow equations wewill investigate in this paper. Note that they
are in quadratic form, thus can be written succinctly as

PF(U) := {fi(U) = UTMiU− ri, i = 1, · · · , 2Nbus} (6)

where U := [VT
d VT

q ]
T is the unknown variable vector;

Mi ∈ SR2 Nbus×2 Nbus is a symmetric constant matrix for the
quadratic part; ri ∈ R is the constant scalar part.

B. EQUIVALENT CURVE DESIGN OF ELLIPTICAL
FORMULATION OF POWER FLOW EQUATIONS
We start our discussion with a given invertible linear map
E ∈ R2 Nbus×2 Nbus that sends Equation (6) to a set of high
dimensional ellipses EF(U). The construction of E can be
found in [20], [21]. Consider

E : PF(U)→ EF(U)

with

EF(U) := {gi(U) = UTHiU− γi, i = 1, · · · , 2 Nbus}

where Hi ∈ SR2 Nbus×2 Nbus and Hi � 0; γi > 0.
Let Z (h; x) be the operator that takes the projection of
{(x, y)|h(x, y) = 0} onto x; define

EFl−(U) := EF(U)− {gl(U)}

EFl,α(U, α) := EFl−(U) ∪ {gl(U)− α, α ∈ R}.

Since EF(U) defines a determined algebraic system,
its algebraic set is generically 0-dimensional in R2 Nbus .
By removing one equation from EF(U), EFl−(U) acquires
one degree of freedom and defines a 1-dimensional algebraic
set in R2 Nbus . On the other hand, adding one extra degree
of freedom to EF(U) makes the algebraic set of EFl,α(U, α)
1-dimensional in R2 Nbus+1. The following Lemma 1 shows
an equivalence between these two 1-dimensional algebraic
sets.
Lemma 1:

Z (EFl−;U) = Z (EFl,α;U)
The proof is trivial and omitted here. Next, we state

the equivalent curve design of elliptical formulation in
Theorem 1.
Theorem 1:

Z (EFl−;U) = Z
(
{PF(U)− αE −1el};U

)
where el ∈ R2 Nbus is a unit column vector with the j-th entry
being 1.

Proof: By definition, EFl,α(U, α) can also be expressed
as {EF(U)− αel}. Then we have

E −1
(
EF(U)− αel

)
= E −1

(
EF(U)

)
− αE −1el

= PF(U)− αE −1el .

Since E is an invertible linear map, it is a homeomorphism.
Hence,

Z (EFl,α;U) = Z
(
{PF(U)− αE −1el};U

)
.
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Finally, by Lemma 1 we conclude that

Z (EFl−;U) = Z
(
{PF(U)− αE −1el};U

)
.

�

III. HOLOMORPHIC EMBEDDING TECHNIQUE
Theorem 1 states that the 1-dimensional curves derived from
the elliptical formulation EFl− can be acquired alterna-
tively from a particular parameterized power flow problem
PF(U) − αE −1el . In Section II, this α is restricted to a
real-valued scalar to support one extra degree of freedom.
If we allow α to be a complex number, the parameter-
ized curve resides in the complex plane and becomes a
2-dimensional surface in the real space. If this complex-value
parameterized curve happens to be governed by holomorphic
functions, it is called the holomorphic embedding. The advan-
tage of being holomorphic is that the global information of the
embedded curve is determined and singularities on the curve
can be predicted by analytic continuation techniques.

A. HOLOMORPHIC EMBEDDING OF POWER FLOW
EQUATIONS
1) PQ BUS EMBEDDING
We start with the basic complex power balance equation for
PQ bus in Equation (2). Note that Sk = Pk + jQk we define

Pk (α) := (1+ Kp,kα)Pk,0 (8a)

Qk (α) := (1+ Kq,kα)Qk,0 (8b)

where α ∈ C; Kp,k and Kq,k are obtained from E −1el for
some l; Pk,0 andQk,0 are the fixed starting active and reactive
power which admit a known solution.

If we define a new variable Wk := V−1k for Vk 6= 0,
and restrict parameterized Wk (α) to be reflective such that
Wk (α) = Wk (α?), then Equation (2) can be written as

Nbus∑
n=1

Yn,kVn(α) =
(
(1+ Kp,kα)Pk,0 − j(1

+Kq,kα)Qk,0

)
W ?
k (α

?) (9a)

Vk (α)Wk (α) = 1 (9b)

Note that on the right hand side of (9a) we useW ?
k (α

?) instead
of W ?

k (α) since they are equal by the reflective property.
7

Since Vk (α) and Wk (α) are holomorphic [38], we can use
power series to represent them. Then, (9) can be re-written as

Nbus∑
n=1

(
Yn,k

∞∑
i=0

vn,iαi
)
=

(
(1+ Kp,kα)Pk,0 − j(1

+Kq,kα)Qk,0

) ∞∑
i=0

w?n,iα
i (10a)

7A more detailed discussion on the reflective requirement can be found
in [38].

∞∑
i=0

vn,iαi
∞∑
i=0

wn,iαi = 1 (10b)

where vn,i and wn,i are the power series coefficients.
Matching up coefficients for every monomial of α in (10a)

and (10b) we can solve (vk,1, vk,2, · · · ) and (wk,1,wk,2, · · · )
recursively as long as vk,0 and wk,0 are provided.

2) PV BUS EMBEDDING
Next, we consider the holomorphic embedding for PV bus
equations. To retain holomorphicity, we need to bring back
the reactive power balance equation (3b) to (4) and consider
reactive power input as a new variable. Again, by defining
Wk := V−1k for Vk 6= 0 and restricting parameterized Wk (α)
to be reflective we have the holomorphic embedded equations

Nbus∑
n=1

Yn,kVn(α)=
(
(1+Kp,kα)Pk,0−jQk (α)

)
W ?
k (α

?) (11a)

Vk (α)V ?k (α
?) = V 2

k,m + Kv,kα (11b)

Vk (α)Wk (α) = 1 (11c)

where Vk,m ∈ R is the fixed voltage magnitude at bus k;
Kv,k is obtained from the corresponding entry of E −1el .

By the holomorphic structure, we represent parameterized
unknowns Vn(α), Wk (α), and Qk (α) through their power
series. Then, (11) are re-written as
Nbus∑
n=1

(
Yn,k

∞∑
i=0

vn,iαi
)
=

(
(1+ Kp,kα)Pk,0

− j
∞∑
i=0

qk,iαi
) ∞∑

i=0

w?n,iα
i (12a)

∞∑
i=0

vn,iαi
∞∑
i=0

v?n,iα
i
= V 2

k,m + Kv,kα (12b)

∞∑
i=0

vn,iαi
∞∑
i=0

wn,iαi = 1 (12c)

where qk,i’s are the power series coefficients of Qk (α).
Matching up coefficients for every monomial of α in (12a),

(12b) and (12c) we can solve ui, wi, and qi as well.

3) SLACK BUS EMBEDDING
Consider the slack bus voltage magnitude equation (5a). Its
holomorphic embedded equation is

Vs(α)V ?s (α
?) = V 2

s,m + Ksα (13)

where Vs,m is the slack bus voltage magnitude, Ks is the
corresponding entry from E −1el .

Substituting the power series of Vs(α) into Equation (13)
and matching up each monomial of α we have

vs,i = −
( i−1∑
n=1

vs,nvs,i−n

)
/(2vs,0) for i ≥ 2 (14a)

vs,1 = Ks/(2vs,0) (14b)
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Combining the corresponding equations from the PQ bus,
PV bus and slack bus equations we finally solve the power
series coefficients for each degree-i. In practice, every degree
requires solving a real-valued linear system (sparse) with its
size (4Nbus + Ngen − 3) × (4Nbus + Ngen − 3) where Ngen
is the number of PV nodes. As i goes to infinity, the power
series converges to the actual curve in the convergence range.
To compromise accuracy and speed, we usually stop at a
given maximum degree imax .8

B. PADÉ APPROXIMATION
The above subsection shows that each node voltage (aswell as
reactive power at PV bus) can be embedded as a holomorphic
function, and demonstrates a recursive way to obtain the
coefficients. In practice the holomorphic function can only
be evaluated by a finite sequence of power series. Thus,
the accuracy of the sequence deteriorates when approaching
the singularities of the holomorphic function. To achieve a
better convergence performance and to predict the location of
singular point, we further compute the Padé approximation.
It approximates the holomorphic function by a rational func-
tion in which the numerator and denominator are polynomi-
als. According to [39], [40], the Padé approximation has the
maximum convergent domain if the degrees of its numerator
and denominator have the minimum difference. It provides
a criterion for determining the best degree(s) that should be
chosen.

Consider an embedded voltage variable vk (α) for some k .
Suppose its first N coefficients are known.

vk (α) =
∞∑
n=0

vk,nαn ≈
N∑
n=0

vk,nαn (15)

Let its Padé approximation be

N∑
n=0

vk,nαn =
Nn∑
n=0

uk,nαn/
Nd∑
n=0

lk,nαn (16)

where we specify Nn+Nd = N , Nn ≥ Nd , and Nn−Nd ≤ 1.
To reach a unique coefficient set, let lk,0 = 1. Matching up

the coefficients for each monomial, we can solve uk,n’s and
lk,n’s in a (N + 1) × (N + 1) complex-valued sparse linear
system. If we compute the power series to the maximum
degree imax , the system size in the real space is 2(imax + 1)×
2(imax + 1).
Once the Padé approximation has been calculated, we can

move along the parameterized curve by evaluating Padé
approximated values until a power mismatch threshold9 has
been reached. We can also compute the real-valued zeros
to the denominator function of Padé. These zeros reveal
the locations of singularities on the parameterized curve,
which can further assist us designing appropriate arc length

8 [25] claims that degree i will deplete double precision digits after
60. How to choose an appropriate imax is beyond the scope of this paper.
We choose imax = 15 in our numerical experiments by empirical experience
considering speed and accuracy.

9In our numerical experiments, this threshold is set at 10−3 p.u.

Algorithm 1 Outer Loop for Locating Power Flow Solutions
1: Solving for a power flow solution x1.
2: Generating elliptical mapping E by algorithms

in [20], [21].
3: S ← x1 F Initialize solution set
4: Nsolu← |S| F Initialize number of solutions
5: k ← 0 F Initialize counting number
6: while k 6= Nsolu do
7: k ← k + 1 F Update counting number
8: x0← xk F Update starting solution
9: for l = 1, 2, · · · , Neqn do
10: Compute E −1el F Equivalent curve design
11: Algorithm 2 F HEBC Algorithm
12: Return Snew F Return newly found solutions
13: if Snew is not in S then
14: S ← S ∪ Snew F Update the solution set
15: Nsolu← |S| F Update the number of

solutions
16: end if
17: end for
18: end while

for passing through these singular points by the traditional
predictor-corrector algorithm. Next section will discuss these
designs in detail.

IV. HOLOMORPHIC EMBEDDING BASED CONTINUATION
METHOD
The proposedHEBCmethod can be divided into an outer loop
part and an inner loop part. The outer loop focuses on new
solution updates and sequential curve designs; while the inner
loop primarily follows the curve fed by the outer loop and
returns the solution set found on that curve.

A. OUTER LOOP FOR SOLUTION SEARCH
To make this article self-sustained, we briefly explain the
search strategies in the outer loop and summarize it in
Algorithm 1. Interested readers can refer to [20].

We start Algorithm 1 with a known solution x1 which
can be solved by Newton’s method or other techniques.10

After several initialization steps, designing the curve {PF −
αE −1el} which is equivalent to {EFl−} for l. Following the
curve from l = 1 to the last one by Algorithm 2 (which will
be discussed shortly below) and collect new solutions. When
finished tracing curves, assigning the starting point x0 to a
newly found solution, say, x2, and repeating the procedure.
The whole loop terminates upon every solution having been
assigned to a starting point. Algorithm 1 presents a procedure
to follow each curve sequentially. However, the curve designs
at the same starting solution are independent with each other,
suggesting a parallel computing framework to simultaneously
trace these curves. The parallel computing is not performed

10This step relies on the past extensive research of solving a high voltage
solution to the power flow problem. Many mature solvers are able to do this
job for very large systems.
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FIGURE 1. Holomorphic Steps and Preditor-Corrector Steps.

in this article, but can be done with ease and increase speed
drastically.

B. INNER LOOP FOR CURVE TRACING
Instead of tracing a curve by the traditional predictor-
corrector algorithm, we apply the holomorphic embedding
technique to quickly pass through the regular curve segments.
The predictor-corrector algorithm is only executed for trav-
eling across singularities. It is switched back to the holo-
morphic embedding as soon as current steps leave a singular
point.

Figure 1(a) shows four holomorphic steps on a selected
curve from a 5-bus case [13]. They reach the singular point
very quickly. On the other hand, the blue curve in Figure 1(a)
was generated by the traditional predictor-corrector algo-
rithm. It took dozens of steps to reach the same singularity.

1) CRITERION TO ENTER PREDICTOR-CORRECTOR ROUTINE
Two indicators are considered to trigger the switch of the
algorithms in Algorithm 2. The first indicator appears when
the corrector steps fail to make the holomorphic prediction
converge within a certain number of iterations. Another indi-
cator comes when |αkh+1 − αkh | is smaller than a threshold
value dαh,min. Both suggest that current holomorphic step is
close to singular (or at least badly scaled with respect to α).

2) USING A WARM STARTER TO ACCELERATE
PREDICTOR-CORRECTOR STEPS
One can initiate the predictor-corrector routine from a min-
imum step size, and increase it gradually. We refer it to a
cold starter. To avoid slow ‘‘warming up’’ steps, a warm
starter is proposed and implemented. It relies on an estimated
distance dhp from the singular point to the last holomorphic
point. We specifically choose the initial step interval Spc to
be 1/5 of the estimated distance dhp and to be no greater
than 0.45 of the last holomorphic step size. Then, using Spc to
compute two backward steps to initiate a quadratic predictor.
For example, the first two green triangles on the upper curve
segment in Figure 1(b) are the backward points evaluated
by Padé approximation at the step length Spc. It makes the
predictor-corrector routine quickly pass through the singular
point as shown by the rest green triangles.

3) CRITERION TO EXIT PREDICTOR-CORRECTOR ROUTINE
When travelling across a singular point, the direction of
curve changes. Numerically, there exists a particular step mc

Algorithm 2 Holomorphihc Embedding Based Continuation

1: Input selected curve E −1el .
2: Initialize the 1st step.
3: for k = 1 : M do
4: for kh = 1 : Nh do
5: Initialize the 1st holomorphic step size δh.
6: Prepare parameters for holomorphic embedding.
7: Compute power series of holomorphic embed-

ding.
8: Compute Padé approximation.
9: Evaluate voltage values from Padé and update

αkh+1.
10: Evaluate power mismatch dPmis from computed

voltages.
11: while minimum pole pmin is not determined do
12: Compute roots {ζi} from Padé denominator.
13: pmin ← ζmin if the minimum real root ζmin

has correct sign.
14: end while
15: Increase δh while dPmis < dPmax and

|current point| < |pmin|.
16: Decrease δh while dPmis ≥ dPmax or

|current point| ≥ |pmin|.
17: Correct current holomorphic predicted point by

Newton’s method.
18: if Correction succeeds then
19: Record current point.
20: else
21: Delete current point and compute a starter for

switching algorithm.
22: Break.
23: end if
24: if αkh+1αkh < 0 then
25: Find a solution nearby.
26: if Fail to locate the solution then
27: Delete current point and compute a cold

starter for switching algorithm.
28: Break.
29: else
30: Record solution to solution set Snew.
31: Check completeness of the curve; jump

out Algorithm 2 if completed.
32: end if
33: end if
34: if |αkh+1 − αkh | < dαh,min then
35: Compute a starter for switching algorithm.
36: Break.
37: end if
38: end for
39: Execute predictor-corrector routine.
40: end for
41: Return solution set Snew

such that (αmc − αmc−1)(αmc+1 − αmc ) < 0. After this
moment, we continue the predictor-corrector routine for a
while until the curve’s slope value returns from infinity back
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to a tractable value. Instead of evaluating the actual slope of
the curve, wemonitor the maximum variable secant slope Rm.

Rm := max{|(Vk,m − Vk,m−1)/(αm − αm−1)|, ∀k} (17)

As long asRm drops to a thresholdRmax , say, 2×104, we jump
out of the predictor-corrector routine and start a new sequence
of holomorphic steps.

C. COMPUTATIONAL COMPLEXITY COMPARISON
The holomorphic prediction consists of two sub-routines:
1) construct the power series; 2) compute Padé approximation
based on the power series. Both sub-routines require solving
sparse linear systems. The sparsity reduces computational
efforts in practice but makes analysis hard. To get a rough idea
of the complexity, we simply assume the matrices are dense
in the analysis, but solve them in sparse form practically.

In Section III computing the power series coefficients
requires solving a sequence of linear systems up to the highest
degree imax . A favorable observation is that all these linear
systems share the same constant matrix. Thus, the LU factor-
ization only needs to be performed once, while forward and
backward substitutions need to be performed imax times to
generate coefficients for all degrees. Therefore, the computa-
tional complexity for the power series is

CTl=
2
3

(
4Nbus+Ngen−3

)3
+2
(
4Nbus+Ngen−3

)2imax (18)

In Padé approximation, the complexity is

CPd=
(
2
3

(
2imax+2

)3
+2
(
2imax+2

)2)(2Nbus−1) (19)

The total complexity of a holomorphic prediction is CHolo =
CTl + CPd .
On the other hand, in the traditional predictor-corrector

algorithm the Newton’s iterations in correctors are the most
computational complex part. Again, suppose a dense Jaco-
bian matrix (sparse in practice) the complexity of solving one
Newton’s iteration is

CNewton =
2
3

(
2Nbus − 1)3 + 2

(
2Nbus − 1)2 (20)

Suppose imax is fixed, Ngen = 0.2Nbus,11 and each cor-
rector takes 3 Newton’s iterations to converge for both the
holomorphic step and the traditional predictor-corrector step,
we have

R = lim
Nbus→∞

CHolo + 3CNewton
3CNewton

= 4.087 (21)

It suggests that one holomorphic step takes about four
predictor-corrector steps computations asymptotically with
the dense matrix LU factorization. So an average holomor-
phic step size which is greater than 4 times the average
step size of the predictor-corrector algorithm can potentially
reduce the computational time under the same assumptions.

11The number of PV buses usually occupies a small fraction of the total
number of buses.

D. REMARK ON DISTRIBUTION SYSTEM POWER FLOW
Power flow convergence is one of the major challenges in
modern distribution system analysis. As a non-iterative power
flow method free of divergence issue in theory, HELM was
initially proposed for three-phase balanced conditions, usu-
ally representing a transmission system. The development
of HELM to three-phase unbalanced conditions can extend
such a benefit to distribution systems [41], [42]. In addi-
tion, besides constant power load model, HELM can also
be extended to consider ZIP load [43] and induction motor
load [33]. These extensions can be directly integrated with
the proposed HEBC without any theoretical difficulty.

In future distribution grids, reversal power flow would be
a common phenomenon introduced by massive integration
of distributed wind and solar PV generations. It should be
noted that the reversal power flow can be fully represented
by traditional power balance equations with power injections
at load buses changed to small or even negative values. Such
a change may affect the number and distribution of the power
flow solutions as well as the run-time, while having no impact
on the convergence of the proposed HEBC at all, see our
recent work [44].

V. NUMERICAL EXPERIMENTS
This section presents a comprehensive numerical evalua-
tion of the proposed HEBC method on several standard
power system test cases including ‘‘case3TS’’, ‘‘case3’’,
‘‘case4gs’’,‘‘case4BBc’’, ‘‘case4BB0’’, ‘‘case5Salam’’,
‘‘case6ww’’, ‘‘case7Salam’’, ‘‘case9’’, ‘‘case14’’, ‘‘case30’’,
‘‘case33bw’’, ‘‘case39’’, ‘‘case57’’,12 which can be found in
the Matpower libary [45], and ‘‘case5loop’’ [19]. To avoid
numerical instability and structurally unstable solutions,
small resistance at 10−4 p.u. is added to lossless lines. The
HEBC method and the full predictor-corrector method are
coded in Matlab R2017b and executed on a PC with 2.8GHz
Intel i7-7700HQ CPU and 16GB RAM.

A. COMPARISON TO HOMOTOPY CONTINUATION
METHOD
To demonstrate the superiority of computational efficiency in
finding multiple power flow solutions, we begin with a com-
parison of the proposed HEBC method to the homotopy con-
tinuation method. The homotopy continuation is performed
by the PHCpack [46].

The HEBC method finds all the actual power flow solu-
tions in this comparison as well as case14.13 Figure 2
shows execution time (in logarithmic scale) comparison
between two methods. For test cases smaller than 5 buses,
the PHCpack runs faster than the proposed HEBC method.
However, for cases more than 5 buses, the HEBC outperforms
the homotopy continuation method substantially. Consider-
ing the HEBCmethod is coded inMatlab and is not optimized

12Tap ratios are removed in this case to reduce the number of solutions.
13No existing literature claims complete solution sets for larger IEEE test

cases.
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FIGURE 2. Comparison Between Homotopy Continuation and HEBC.

TABLE 1. Numerical results by predictor-corrector method.

TABLE 2. Numerical results by HEBC method.

to reach the most computational performance, the time reduc-
tions from HEBC are impressive. Test cases larger than
9 buses cannot be solved by PHCpack within 24 hours, thus
are not considered in this comparison.14

B. COMPARISON TO FULL PREDICTOR-CORRECTOR
ALGORITHM
In this part, we testify the traditional full predictor-corrector
method from [20] and the proposed HEBC method on the
same set of test cases, and compare their numerical perfor-
mances. Both methods provide the same solution sets for

14A more recent progress in [16] successfully reduced the computational
time of case14 to 5minutes, however, the proposedHEBC is still much faster.

FIGURE 3. Steps needed for different cases with full predictor-corrector
and HEBC.

FIGURE 4. Execution times with full predictor-corrector and HEBC.

FIGURE 5. Equivalent no. random seeds for each variable.

all cases, but the HEBC method is more efficient than the
traditional predictor-corrector method. Some hard15 sample
curves are presented in Appendix. One can see from the left
plots of Figure 6 that the traditional full predictor-corrector
method, though with quadratic predictor and automatic step
length adaption, takes very dense points to trace curves.
On the other hand, the right plots of Figure 6 are primarily
sparse. Small dense point periods only occur around sin-
gularities when HEBC switches to the predictor-corrector
routine for passing through those singularities. Summaries of
the numerical results are collected in Table 1 and 2. Sample
curves from simulations are provided in Figure 6.

Comparing the results in Figure 3, the total number of
steps for HEBC is about 1/6 to 1/3 of the total number
of steps for the full predictor-corrector method. This ratio,
not surprisingly, should depend on the problem structure.

15A curve is hard to follow in the sense that it contains too many singu-
larities or some singular points are very sharp when turning directions.
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FIGURE 6. Sample curves followed by predictor-corrector (Left) and HEBC (Right).

In general, fewer singularities and longer horizontal curve
segments favor the HEBC more.

To reveal the efficiency of HEBC, we compute the equiva-
lent number of predictor-corrector steps Neqv

Neqv := (Npc − Nhe,pc)/Nhe,holo (22)

where Npc is the number of full predictor-corrector steps;
Nhe,pc is the number of predictor-corrector routine steps
in HEBC; and Nhe,holo is the number of holomorphic rou-
tine steps in HEBC. From Table 1 and 2 we calculate
that one holomorphic step on average can represent 8.5
predictor-corrector steps, with the worst case of 7 steps and
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the best case of 15 steps. In Figure 4 the first 9 small cases
up to case7Salam show a limited time saving by HEBC.
However, starting at case9 the HEBCmethod outperforms the
full predictor-corrector method by up to 50% of the execution
time. Larger cases also exhibit at least 30% time saving in the
lower plots of Figure 4.

C. AVERAGE NUMBER OF STEPS ON EACH DIMENSION
Recall that the HEBC method calls the Newton’s method
at each step to correct the predicted point. These predicted
points are sequentially determined over the curve tracing
process. Thus, the HEBC method can be regarded as a sys-
tematic way to choose initial points for solving the power
flow equations, where the number of initial points equals the
number of steps in Table 2, i.e. the sum of entries in the second
and forth columns for each case. From this point of view, one
can assess the efficiency of HEBC by computing the average
number of initial points (or steps) allocated in each dimension

Req := N 1/d (23)

where N is the total number of initial points, d is the dimen-
sionality of the problem. Req represents the number of points
required in each single dimension such that the total num-
ber of initial points composed by their direct combinations
achieves the same amount of initial points N for the whole
d-dimensional problem. Specifically for our problem, Req is
computed as

Req = (Nhe,pc + Nhe,holo)1/(2Nbus−1) (24)

Figure 5 depicts the trend of Req as system size increases.
One can clearly see that the average number of steps dis-
tributed on each dimension decreases to nearly 1. Hence,
despite the increase of total number of steps, the average
number of steps on each dimension seems to decrease in an
asymptotic sense.

VI. CONCLUSIONS
In this paper, we proposed an efficient hybrid method to solve
multiple power flow solutions. We derived an equivalent
curve design to the elliptical formulation of the power flow
equations. Based on this design, a holomorphic embedding
continuation method was introduced to replace the tradi-
tional predictor-corrector algorithm for regular curve tracing.
Singular points were passed by the predictor-corrector rou-
tine. The complexity of one holomorphic step is around
four times the complexity of a predictor-corrector step
under certain assumptions. Numerical simulations showed
that one holomorphic step size is equivalent to over eight
predictor-corrector step size on average, and saved up to half
of the computational time for some large test cases.

Investigation on the distribution of multiple power flow
solutions and how they change over discrete events are our
ongoing research [44]. A possible future direction of research
can use the proposed method to find multiple power flow
solutions for dynamic stability analysis, especially in charac-
terizing the stability boundary of a stable equilibrium point.

Another interesting topic would be using this method for
solving optimal power flow problems.
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