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ABSTRACT In recent years, user cooperative traffic forwarding is a popular study topic and broadly seen
as one of the important promising technologies to improve energy efficiency (EE) of the battery-driven
mobile terminal (MT). However, the battery-driven devices always suffer from a problem of limited working
time due to battery life. In this paper, we propose a simply machine learnable bandwidth allocation strategy
for user cooperation-aided wireless communication systems and evaluate the power consumption of the
systems via both theoretical and experimental approaches. By using the proposed bandwidth allocation
strategy, we first derive the mathematical expressions to evaluate the transmission power of the MTs for
non-cooperative and cooperative scenarios by a generalized channel model. In this generalized model,
the spatially correlated shadowing and frequency selective fading are considered as channel effects, and
this generalized model is mathematically analyzed for the consumed power via the proposed scenarios with
the long-term evolution (LTE) power model for smartphones. In the final stage, we evaluate the results by our
smartphone test-bed. The results obtained in this paper show that the benefits of the user cooperation-aided
traffic forwarding are significant. Unfortunately, according to the numerical analysis, because there are some
physical constraints for MTs, such as maximal transmit power, we cannot drastically obtain the benefits in
real application cases. Some interesting points, such as how to use a machine learning approach to reduce
the system complexity and thus improve transmission performances, are also discussed in this paper.

INDEX TERMS User cooperation, machine learning, device-to-device communication, frequency selective
fading, power consumption, energy efficiency, ergodic capacity.

I. INTRODUCTION
Because of the rapid and explosive development of wireless
applications [1], recently the mobile terminals (MTs) are
very popular and important to modern people for various
kinds of network communication demands in cellular sys-
tems, for example, high-definition video streaming, online
gaming for multiple users, and instant text messaging, etc.
As the MT applications are growing dramatically, the traffic
loading of network and the power consumption of each MT

The associate editor coordinating the review of this manuscript and
approving it for publication was Guan Gui.

become very important issues for modern mobile networks.
In order to lower this kind of transmission loading and
improve the performance of power saving for each MT in
an effective and efficient way, forwarding transmission by
utilizing cooperative wireless methods among MTs, which
is also called user cooperation or cooperative communica-
tions, is widely considered and investigated as a promising
approach to solve these issues [2], [3]. The cooperative traffic
forwarding can achieve higher spectrum utility and energy
efficiency (EE) [4] by using the device-to-device (D2D)
transmission methods. In current wireless technology stan-
dards like Long Term Evolution (LTE) direct and Wi-Fi
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direct [5], D2D communications has been realizable in prac-
tice cases [6], and have motivated industry standardization
efforts as well as a lot of academic researches [7].

In order to implement user cooperative traffic forwarding,
a series of processes, for example, link sensing and configura-
tion, especially, choice of a proper proxy, which is also called
aggregator or head-MT [8], are needed. For this topic, many
studies about how to select a proper proxy in wireless sensor
networks, for example, low energy adaptive clustering hierar-
chy, well known as the LEACH technology [9] and so on [10],
can be found in the literatures. In recent years, although
several proxy selection methods have already been proposed
and this topic have been widely researched, the existing
transmission schemes are less related to the issue about how
to use spectrum resource effectively. Besides, these schemes
cannot be implemented directly on cellular systems because
they are not designed for being applied on higher data rate
transmission applications, and cannot well take the advan-
tage of the channel state due to that base stations (BSs)
are hard to consistently control the nodes. Henceforth, user
cooperative communication technique adopted in cellular
systems has been very attractive to academic and industrial
groups.

In recent years, lots of studies, for example, [11]–[14], have
investigated the issue of consumed power by user cooperation
in cellular systems. In literature [11], the authors studied the
terminal cooperation based traffic downloading for content
distributing of MTs. From the results in [11], it can be known
that cooperative communication can considerably increase
the system EE. Because in download case, BS mainly
consumed the energy rather than MTs, the results and the
proposed method in [11] are useful for network operators.
In [12], in order to increase the EE of two-MT used cooper-
ative cognitive wireless networks with network coding, two
novel schemes about power allocation are proposed. Further,
the authors in [13] mathematically analyzed the tradeoff
between the throughput and consumed energy in cooperative
cognitive radio network. In [14], minimization of energy con-
sumption issue with the use of cooperative communication
for multi-hop networks have been investigated. Although the
authors of the papers mentioned above considered the for-
warding traffic in their papers, they all adopted a simple flat
fading model in their simulations as attenuation environment
for all the MTs.

It is well known that, because single carrier used com-
munication has low peak-to-average power ratio and thus
each MT can get great benefit in terms of the reduced cost
on the power amplifier and the transmit power efficiency,
such kind of communication technique has been adopted and
applied as an appropriate access scheme in uplink cellular
systems. By using the user cooperation aided forwarding
approach, when compared with non-cooperative schemes and
in order to deliver the total communication demands which
are collected from other MTs, the proxy tends to be allo-
cated more bandwidth or spectrum resource andmay undergo
frequency selective fading. As a result, proxy’s transmission

performance is worse than we expected. In our survey, there
is no previous work discussing about this issue, which is very
important and may affect the system performance signifi-
cantly.

In addition, for traffic forwarding issue, basically BS needs
to know uplink CSI of all MTs so that it can deal with
the tasks of proxy selection and results informing [15]. Due
to the delay in the network, it is difficult to deal with the
cases which are sensitive to mobile transmission. Fortunately,
with a growing development in artificial intelligence (AI),
machine learning (ML) technique, which is a subset of AI,
is going to become a good technology to provide alternative
solutions to various issues in many wireless communication
systems [16]–[21]. For example, in [18], the modulation
recognition problem for cognitive radio (CR) communica-
tions is solved by ML based method. Similarly, precoding
problem in millimeter-wave used multiple-input-multiple-
output (MIMO) systems with the use of massive antenna
deployment can be also solved in [19]. Therefore, introducing
machine learning methods is a good choice for the considered
traffic forwarding.

According to the discussion above, in this study, we pro-
pose a simply machine learnable bandwidth allocation strat-
egy for user cooperative traffic forwarding, and evaluate
the power consumption of the systems by both theoretical
and experimental methods. In order to fit the present study
to the real transmission environment closely, in this study,
we employ a generalized channel attenuation model in which
frequency selective fading channel and effect of spatially
correlated shadowing are considered. Besides, in order to ana-
lyze the user cooperation aided forwarding scenario, we also
introduce a recent LTE smartphone based power consumption
model, which can make the results more convincing. Finally,
a smartphone test-bed based experiment is also conducted to
conclude our study.

In summary, we list the contributions of this study as
follows.
• In this paper, we investigate the issue of user cooperative
traffic loading with a generalized channel model. In the
past, this issue is usually studied with some relatively
simple channel assumptions, which are not suitable and
are difficult to be applied on real wireless systems.
Therefore, to enhance the contribution of our work,
we adopt a generalized model including shadowing and
fading effects to investigate the user cooperative traffic
loading issue.

• To validate our proposed scenario, we evaluate the issue
by both theoretical and experimental ways. Firstly we
derive the related mathematical expressions and calcu-
late the numerical results. By setting basics transmis-
sion parameters like transmission power, bandwidth, and
number of MTs etc., the capacity over frequency selec-
tive channels with the use of proposed cooperative trans-
mission scenario can be simply calculated without huge
computational cost in simulation. Then we develop a
smartphone based testbed and conduct a real experiment
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by using this testbed to validate the EE performance of
the proposed scenario.

• To broaden the scope of our work, we reveal a struc-
ture which can accommodate AI or machine learning
based approaches to improve our work. It is well known
that, AI or machine learning based approaches can be
used to provide alternative ways to solve some difficult
problems which are not well solved in the past. There-
fore, in this work, we illustrate the structure which can
accommodate this kind of approach to solve the problem
mentioned in this paper.

The organization of this paper is shown as follows. The
machine learnable bandwidth allocation strategy based wire-
less forwarding systems with the use of user cooperation
and the assumptions about channel attenuation model are
described in Sec. II. In Sec. III, for both non-cooperative
and cooperative scenarios, we firstly derive two kinds of
capacity expressions by using the mentioned channel atten-
uation models, and then calculate the approximate results
for transmission power with the help of these expressions.
In Sec. IV, we further calculate the power consumption
by introducing a recent smartphone based power model.
In Sec. V, we summarize some key findings after pre-
senting some analysis results. In Sec. VI, a smartphone
test-bed based experiment is conducted to veridate afore-
mentioned analysis results. Discussion about how to use
machine learning approaches in the studied topic is described
in Sec. VII. Finally, some concluding remarks are given
in Sec. VIII.
Notation: In order to denote matrices and vectors, in this

paper, we use uppercase and lowercase boldface, respectively.
The (i, j)th element of a matrix A is denoted by [A]ij, and the
n × n identity matrix is denoted by In. The determinant of
matrix A is given by det(A), and the expectation value opera-
tor is written as E{·}. In order to denote an integer collection,
we use calligraphic fontA and |A| to indicate the size of this
collection. Cm×n and Rm×n denote the m × n dimensional
complex and real matrix space. The symbols (A)∗ and (A)H

represent the transpose and Hermitian transpose of matrix A,
respectively.

II. SYSTEM AND CHANNEL MODEL
A. SYSTEM DESCRIPTION AND MACHINE LEARNABLE
BANDWIDTH ALLOCATION STRATEGY
In this study, it is assumed that, there are a set U :=

{1, · · · ,U} of MTs (indexed with u ∈ U) and a BS existing
in the system. Further, the MTs are in close proximity of
each other, and can communicate with the BS. Each MT is
equipped with single antenna while the BS is equipped with
M antennas. The communications among BS andMTs use an
allocated bandwidth or spectrum resource B and can operate
data forwarding. EachMT has two radio interfaces which can
operate cellular and D2D transmissions. That is, one interface
is for sending data to the BS, in other words, the cellular
link, and the other one is for local data exchange with the
other MTs, in other words, the D2D link.

In the traditional non-cooperative transmission scenario,
it is assumed that, each MT directly sends its communica-
tion demand Cu ∀u to the BS via the equally allocated non-
overlapping bandwidth B/U . In the proposed cooperative
transmission scenario, a proxy, which is selected from the
MT set U , works as an aggregator and sends the total traffic
demands C =

∑U
u=1 to the BS via a partial bandwidth νB

by the cellular link. Other MTs, which are also called clients,
occupy the remaining non-overlapping bandwidth resource of
(1 − ν)B equally to communicate with the proxy by the use
of multiple D2D links.

In the aforementioned bandwidth allocation strategy, since
ν is a proportion coefficient ranged from 0 to 1, based on the
classical Shannon’s information theory, two extreme cases
of 0 and 1 will result in that transmit power at clients and
proxy goes to infinity. Therefore, we can infer that, there
exists an optimal ν value which can minimize the consump-
tion power of the whole system, and this optimal ν value indi-
rectly varies with the selected proxy and uplink CSI of MTs.
This fact therefore enables system simplification and char-
acteristic improvement by the machine learning approaches.
In brief, we can use the position and demand information of
each MT, to train neural networks of predicting proxy and
bandwidth proportion coefficient ν. We leave the details of
this machine learning approach described in Sec. VII, and
an illustrations of the considered non-cooperative and coop-
erative transmission scenarios, the corresponding bandwidth
allocation strategy are shown in Fig. 1.

FIGURE 1. An example of the non-cooperative and cooperative scenarios
under consideration and the related bandwidth allocation strategy for
U = 4.

B. CHANNEL MODEL
In this system, we consider U single-input multiple-
output (SIMO) wireless channels. Based on the results
in [22], for a wireless system, if the maximum Doppler
shift is very small when compared with the signal operation
bandwidth, we can accurately convert each continuous-time
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SIMO channel to discrete-time SIMO channel model with a
proper delay and the channel can be expressed as

y(t) =
L−1∑
l=0

h(l, t)x(t − l)+ n(t), (1)

where t ∈ {0, 1, · · · ,∞}, x(t) ∈ C is the transmitted
symbols, which comes from a zero-mean Gaussian codebook
with unit average power. The noise term

n(t) := (n1(t), n2(t), · · · , nM (t))∗ ∈ CM×1

is zero-mean with E{n(t)nH(t)} = N0IM ∀t , where N0 is the
noise power per Hertz. The output can be expressed as

y(t) := (y1(t), y2(t), · · · , yM (t))∗ ∈ CM×1,

and we denote L as the channel length which is depending
on the receive filter, the transmit filter, and the delay spread
power profiles. It should be noted that the channel attenuation
model becomes frequency flat model when the conditions of
L = 1 is established.
h(l, t) ∈ CM×1 is the lTs (Ts is symbol period) delayed

channel vector at time instant t and defined by

h(l, t) := (h1(l, t), h2(l, t), · · · , hM (l, t))∗ ,

where hm(l, t) is themth sub-channel’s lth tap coefficient with
time-varying index t , and can be written as

hm(l, t) =
(
d−ζ10

s
10

) 1
2
rm(l, t), (2)

where the path loss coefficient is modeled as d−ζ , and d is
used to denote the distance between BS and MT, ζ is defined
as the exponent of path loss.

We further use s ∈ R in decibel to represent the shadowing
random variable (RV) from a MT to M BS antennas, and
consider it follows the Gaussian distribution with meanµ and
variance σ 2. In the present study,M shadowing RVs for all of
MTs are spatially correlated with an exponentially correlated
matrix 2s ∈ RM×M without loss of generality, where the
(u, u′)th element is calculated by

[2s]uu′ = exp
(
−
duu′

dcor
ln 2

)
, (3)

where dcor is correlation distance [23], [24], and duu′ is the
distance between MT u and MT u′.

It should be noted that, the term rm(l, t) ∈ C captures the
small-scale fading attenuation, i.e., Rayleigh fading, which
is modeled as independent and identically distributed (i.i.d)
complex Gaussian RVs with zero mean and unit variance
for all of MTs and all of the M BS antennas. The reason
why we adopt this setting is because the distances among the
MTs and BS antennas are separated enough geographically,
which means generally they are all separated with distance
more than half the operation wavelength. However, due to
the convolution effects among the receive matched filter,
transmit pulse shaping filter, and physical fading channel,

discrete-time sampled channel rm(l, t) generally have inter-
tap correlations. That means, the RVs rm(l, t) and rm(l ′, t) for
l 6= l ′ are correlated with an inter-symbol interference (ISI)
inter-tap correlation coefficient matrix2ISI.

III. TRANSMISSION POWER CALCULATION
A. CAPACITY OVER FREQUENCY SELECTIVE CHANNELS
As the frequency selective channel attenuations are consid-
ered, it is necessary to analyzed the channel capacity based on
a block of T output symbols at receiver (or BS in this case).
The SIMO channel with ISI can be expressed as

Y = Hx+ N, (4)

where

Y :=
(
y∗(t+1), y∗(t+2), · · · , y∗(t+T )

)∗
∈ CMT×1,

x := (x(t+T ), x(t+T − 1), · · · , x(t − L+2))∗

∈ C(T+L−1)×1,

N :=
(
n∗(t+1),n∗(t+2), · · · ,n∗(t+T )

)∗
∈ CMT×1,

H :=
(
H∗1,H

∗

2, · · · ,H
∗
T
)∗
∈ CMT×(T+L−1),

and Hτ ∀τ ∈ {1, · · · ,T } is written as

Hτ :=
( τ−1︷ ︸︸ ︷
0,· · ·,0,

L︷ ︸︸ ︷
h(L−1, t+τ ),· · ·,h(0, t+τ ),

T−τ︷ ︸︸ ︷
0,· · ·,0

)
.

(5)

In this study, two types of ergodic capacities which are used
in non-cooperative and cooperative transmission scenarios
are considered, respectively. From the results in Shannon’s
information theory, if the channel H are perfectly known
to the BS for a large T � L, the ergodic capacity of a
SIMO channel without use of cooperative transmission can
be expressed as

Cns=E

{
lim
T→∞

B
T
log2 det

(
ITM+

Ptd−ζ10
s
10

N0B
RRH

)}
, (6)

where Pt denotes transmission power, R represents the
Rayleigh fading matrix which has the same form asH with a
replacement of h(l, t) to r(l, t). The r(l, t) can be defined as

r(l, t) := (r1(l, t), r2(l, t), · · · , rM (l, t))∗ ∈ CM×1.

The capacity used in cooperative forwarding scenario is
derived with the fact that the channel with best condition is
selected and used. When a MT with best channel condition is
selected as proxy, the ergodic capacity of the SIMO channel
for this MT can be written as

Cs = E
{

lim
T→∞

B
T
log2 det

(
ITM +

Pt
N0B

ĤĤ
H
)}

, (7)

where Ĥ :=
(
H1,û1 ,H2,û2 , · · · ,HT ,ûT

)∗, and ûτ ∀τ is
decided by

ûτ = argmax
u∈U

(
tr
(
Hτ,uHH

τ,u

))
. (8)

Hτ,u denotes the channel sub-matrix defined in (5) for MT u.
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Theorem 1: Under the effect of a frequency selective
SIMO channel, for non-cooperative transmission scenario,
if the transmission and its L sub-channels are also affected
by the shadowing and spatially i.i.d. Rayleigh fading, then its
ergodic capacity is given by (9), as shown at the bottom of
this page, where

8(ω) = 1+2
L−1∑
i=1

cos(iω)

(
L−1−i∑
l=0

2ISI(l, l + i)

)
, (11)

and the coefficient2ISI(l, l ′) is related to the channel fading
power delay profile, the transmit filter, and the receive filter,
and can be further simply calculated by (17) of [22].

Proof: For brevity, we defer the proof in Appendix A.

Theorem 2: With the consideration of U frequency selec-
tive SIMO channels with channel selection, for cooperative
transmission forwarding scenario, if each SIMO channel
and its L sub-channels experience spatially i.i.d. Rayleigh
fading and spatially correlated shadowing with correlation
matrix 2s, then the ergodic capacity is given by (10),
as shown at the bottom of this page, where 8(ω) is given
by (11), fλu (λ), Fλu (λ) can be calculated by the following
expression

fλu (λ) =
d̂−Mu λM−1e−d̂

−1
u λ

(M − 1)!
(12)

and

Fλu (λ) = 1−
M−1∑
m=0

1
m!

e−d̂
−1
u λ

(
d̂−1u λ

)m
, (13)

where d̂u is the normalized path loss of MT u and is obtained
by d̂u = d−ζu /||d||, d := (d−ζ1 , d−ζ2 , · · · , d−ζU )∗ ∈ RU×1.
su is given by

su =
√
2

U∑
u′=1

ξuu′zu′ + µu, (14)

where ξuu′ is the (u, u′)th element of 4sq and 4 = 4sq4
H
sq.

4 is the covariance matrix of U shadowing RVs and its
(u, u′)th element is calculated by [4]uu′ = σuσu′ [2s]uu′ .
µu and σ 2

u is the mean and variance of shadowing RV
on uth MT.

Proof: For brevity, we defer the proof in Appendix B.

B. APPROXIMATION ON TRANSMISSION POWER
In the above subsection, two types of ergodic capacities which
are corresponding to, (a) non-cooperative transmission sce-
nario, (b) cooperative transmission scenario with the use of
the best channel selection under the channel effects of fre-
quency selective channels, are derived. Because it is difficult
to calculate transmit power Pt from these complicated math-
ematical expressions of capacity, here we try to approximate
the expressions of transmit power for practical use.

Cns =
B

2π
3
2 (M − 1)!

∫ 2π

0

∫
∞

0

∫
∞

−∞

λM−1e−(λ+s
2) log2

(
1+

Ptd−ζ

N0B
10
√
2σ s+µ
10 8(ω)λ

)
dsdλdω (9)

Cs =
B

2π

(
1+U

2

)∫ 2π

0

∫
∞

0

∫
∞

−∞

· · ·

∫
∞

−∞

exp

(
−

U∑
u=1

|zu|2
)
log2

(
1+

Pt||d||8(ω)
N0B

λ

)( U∑
u=1

10−
su
10 fλu

(
10−

su
10 λ
) U∏
k=1,k 6=u

Fλk
(
10−

sk
10 λ
) U∏

u=1

dzudλdω (10)

PdBmt,ns ≈ 10 logN0B2
Cns
B

10 −
κ

√
π (M − 1)!

NG∑
nG=1

NH∑
nH=1

NL∑
nL=1

βG
nG
βHnHβ

L
nL

(
αLnL

)M−1
log2

(
αLnLd

−ζ10

√
2σαH

nH
+µ

10 8
(
2παG

nG

))
(16)

PdBmt,s ≈ 10 logN0B2
Cs
B

10 −κ

NG∑
nG=1

NL∑
nL=1

βG
nG
βLnLe

αL
nL log2

(
αLnL ||d||8

(
2παG

nG

)) NH∑
n1=1

· · ·

NH∑
nU=1

(
U∏
u=1

βHnu
√
π

)(
U∑
u=1

10−
qu
10 fλu

(
10−

qu
10 αLnL

) U∏
k=1,k 6=u

Fλk
(
10−

qk
10 αLnL

) (17)

PdBmt,s-c.c. ≈ 10 logN0B2
Cs-c.c.
B

10 −
κ
√
π

NG∑
nG=1

NH∑
nH=1

NL∑
nL=1

βG
nG
βHnHβ

L
nLe

αL
nL log2

(
αLnL ||d||10

√
2σαH

nH
+µ

10 8
(
2παG

nG

))
 U∑
u=1

fλu
(
αLnL

) U∏
k=1,k 6=u

Fλk
(
αLnL

) (18)
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Proposition 1: For scenario (a) and (b), the expressions of
transmit power in decibel-milliwatts (dBm) can be approxi-
mately calculated by (16) and (17), as shown at the bottom of
the previous page, respectively, where8(ω) is given by (11),
fλu (λ), Fλu (λ) can be obtained by (12) and (13).

qu =
√
2

U∑
j=1

ξujα
H
nj + µu, (15)

and κ = 10 log210. N
G , NH and NL are the Gauss,

Gauss-Hermite and Gauss-Laguerre quadrature order. The
abscissas αG and the associated weights βG of Gauss quadra-
ture for NG up to 8, the abscissas αH and the associated
weights βH of Hermite quadrature for NH up to 20, and
the abscissas αL and the associated weights βL of Laguerre
quadrature for NL up to 15 are tabulated in [27].

Proof: For brevity, we defer the proof in Appendix C.

Proposition 2: For the most probable case that all MTs
are affected by the completely correlated (c.c.) shadowing
with mean µ and variance σ 2, the transmit power in dBm
in scenario (b) can be approximately calculated by (18),
as shown at the bottom of the previous page.

Proof: For brevity, we defer the proof in Appendix D.

It should be noted that, the sum of transmit power and
channel gain in dBm is the average receive power and it can
be mathematically calculated by

PdBmr,i ≈
10Ci
B

log210+10 log10 (N0B) , (19)

where i is ns, s, or s-c.c. corresponding to the mentioned
different cases.

IV. POWER CONSUMPTION MODEL AND CALCULATION
A. POWER CONSUMPTION MODEL
To make our work more convincing, in this study, the LTE
model of smartphones is adopted to evaluate the total
consumed power of each MT approximately. Based on the
model specified in [28], the consumed power of the MT
which links to a cellular network is affected by the transmit
as well as receive power levels, the modulation and coding
scheme (MCS), and the data rate. In general, the consumed
power in Watt of each MT can be expressed as

Pcon

= Pon+ηRx×
(
PRx + PRxBB

(
CM
Rx

)
+ PRxRF

(
PdBmr

))
+ηTx ×

(
PTx + PTxBB

(
CM
Tx

)
+ PTxRF

(
PdBmt

))
, (20)

where ηRx and ηTx are binary variables representing whether
the MT is receiving or transmitting. The constants Pon, PRx,
and PTx are the consumption power of the cellular network,
the receiver, and the transmitter, respectively. PRxBB, PTxBB,
PRxRF, and PTxRF are liner functions of rate and power which
are listed in the TABLE1 [28]. In the following, we evaluate
consumed power of the MTs for different scenarios.

TABLE 1. Consumption power in mW [28].

B. POWER CONSUMPTION CALCULATION
It is straightforward to know that, the total power consump-
tion Pcellcon of U MTs in cellular system without user coop-
eration is the sum of consumed power per MT with SIMO
transmission in cellular system. Therefore, we have:

Pcellcon=

U∑
u=1

(
Pc1+PTxBB

(
CM
0

)
+PTxRF

(
PdBmt,ns,u

(
C0,

B
U

)))
,

(21)

where Pc1 = Pon + PTx, and Pcellcon is calculated by (20) for
ηRx = 0 and ηTx = 1, CM

Tx = C0 ∀u ∈ U in Mbps are
the capacities in the cellular links, and PdBmt = PdBmt,ns,u is
the transmission power level of MT u and be calculated by
(16) for Cns = C0, B = B/U , and the associated channel
attenuations.

The total power consumption Pcoopcon for cooperative trans-
mission forwarding is a function of the power consumption
of the clients Pclientscon and proxy Pproxycon . Therefore, we have
the following expression:

Pcoopcon = Pclientscon + Pproxycon , (22)

where Pclientscon and Pproxycon can be expressed as

Pclientscon =

∑
u∈U ,u6=up

(Pc1 + PTxBB(C
M
0 )

+PTxRF(PdBmt,ns-c,u(C0,
νB

U − 1
))) (23)

and

Pproxycon

= Pc2+PRxBB
(
(U−1)CM

0

)
+PRxRF

(
PdBmr,ns ((U−1)C0, νB)

)
+PTxBB

(
UCM

0

)
+PTxRF

(
PdBmt,i (UC0, (1− ν)B)

)
, (24)

where Pc2 = Pon + PTx + PRx, and up in (23) denotes the
index of proxy. Pclientscon is calculated by (20) for ηRx = 0 and
ηTx = 1, CM

Tx = C0 ∀u in Mbps are the capacities of the
client-to-proxy links, and PdBmt = PdBmt,ns-c,u is the transmission
power level of client u and can be evaluated by expression
(16) for Cns = C0, B = νB/(U − 1), and the associated
channel effects from client u to proxy.
Pproxycon is also obtained by (20) for ηRx = 1 and ηTx = 1,

CM
Rx = (U − 1)C0 in Mbps is the sum of capacities over all

of client-to-proxy links, PdBmr = PdBmr,ns is the receive power
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level of the proxy in user cooperation aided transmission
forwarding scenario and can be calculated by (19) for Cns =

(U − 1)C0, B = νB. CM
Tx = UC0 in Mbps is the sum capacity

of all the MTs, and PdBmt = PdBmt,i is the transmit power
level of proxy in cellular link, and can be calculated by (17)
for Ci = UC0, B = (1 − ν)B, and the associated channel
attenuation from the proxy to BS in which i is s or s-c.c.
corresponding to the effects of the generalized correlated or
c.c. shadowing.

It should be noted that, with the assumption that user
cooperation among MTs use less bandwidth or spectrum
resource (referred by Fig. 3) because of their shorter trans-
mission distances, and the consideration of rich scattered
environment that is existing in local transmissions caused by
the higher population density and complicated surroundings,
in this study, we employ a flat (i.e., L = 1) Rayleigh fading
attenuation model to calculate the consumption power for all
of the clients for a worst-case of user cooperative transmis-
sion scenario.

In addition, in the case of the power consumption of the
proxy Pproxycon , the result of proxy selection has been included
and therefore it can be evaluated directly. However, in the case
of the power consumption of the clients Pclientscon , it is a RV
which is varying according to the result of the proxy selection.
As a result, it is difficult to evaluate the value of the power
consumption Pclientscon . To resolve this problem with reasonable
computational complexity, an average inter-MT distance d̄
to approximate the power consumption of clients Pclientscon is
adopted with the assumption that shadowing between the
clients and proxy follows the same distribution. Then we can
obtain the following result:

Pclientscon ≈ (U − 1)
(
Pc1 + PTxBB

(
CM
0

)
+

PTxRF

(
PdBmt,ns-c

(
C0,

νB
U − 1

, d̄
)))

, (25)

where PdBmt,ns-c is re-calculated by (16) for Cns = C0, B =
νB/(U − 1), and d = d̄ . d̄ is obtained by

d̄ =
2

U (U − 1)

U∑
u=1

U∑
u′=u+1

duu′ . (26)

Finally, we can obtain Pcoopcon as an approximate sum of (24)
and (25).

V. NUMERICAL RESULTS
To verify the theoretical results derived in Sec. III, some sim-
ulations, which employ the time-varying frequency selective
fading channel model addressed in Sec. II, are conducted in
this section. The simulation parameters are summarized and
listed in TABLE2.

In Fig. 2, the numerical results of two types of capacities
evaluated by expressions (9) and (10) are shown. The results
of arbitrary SIMO channel are evaluated by (9), and the
results of SIMO channel using the best channel condition
are obtained by (10). In both cases the results are evaluated

TABLE 2. Main configurations.

FIGURE 2. Simulated and theoretical capacity performance under the
effects of varying shadowing correlations, U = 4.

with different correlations for shadowing. From the simula-
tion results, it can be seen that, the theoretical expressions
derived in Sec. III match the numerical simulation results
quite well, which validates the effectiveness of the theoretical
results and convinces that the theoretical expressions can
be used in the evaluation of power consumption. However,
because of the large computational cost for numerical simu-
lations, since the theoretical results can well approximate the
numerical simulation results, we show the theoretical results
only without numerical simulation results in the following
figures to save the computational resources.

The relationships between ν, which is configured in the
proposed machine learnable bandwidth allocation strategy,
and power consumption of cooperative forwarding scenario
over the channel effects considered in this work with different
traffic demand for each MT, are shown in Fig. 3. From the
results in the figure, our inference that, there exists an optimal
ν value which can minimize system power consumption, can
be confirmed. Besides, it also indicates that using about 10%
bandwidth resource into user cooperative transmission can
approximately optimize the consumed power for the case of
C0 = 15Mbps and U = 4.
In Fig. 4, some comparisons of power consumption for

non-cooperative and cooperative scenarios are shown. The
results are shown according to the varying number of MTs
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FIGURE 3. Relationship between band allocation proportion ν and power
consumption in cooperative scenario with U = 4.

FIGURE 4. Comparisons of power consumption under non-cooperative
and cooperative scenarios with the use of (16) and (18) under the effect
of c.c. shadowing.

with different traffic demands for each MT. The power con-
sumption of proxy is also shown in Fig. 4 as a benchmark.
It should be noted that, the power consumption in cooperative
case is evaluated by estimating an optimal value of ν.
From the results shown above, it can be seen that, the power

consumption can be significantly reduced by using user coop-
eration aided forwarding technique over frequency selective
fading channel, and the proportion of power consumption
reduction is getting larger with the increase of total commu-
nication demand. However, there are also some points are
needed to be noted.

First of all, because of the physical constraints applied on
the proxy, for example, maximum transmit power, we cannot
arbitrarily increase the total communication demand. This
condition can be verified by that, the maximum number of
the MTs working on the cooperative transmission scenario
is limited with fixed communication demands, or decreases
with the increase of the communication demand. Secondly,
the results in Fig. 4 are evaluated with consideration of the
worst channel attenuation case, in other words, all MTs are
affected by the c.c. shadowing and hence the large-scale
fading is approximately identical. In real cases, however,

shadowing on each MT may be quite different because of
the surrounding obstacles. As a result, the benefits of user
cooperation aided transmission forwarding should be able
to further improved. However, the MT with the best large-
scale fading gain may be frequently selected as a proxy, and
hence the energy consumed for traffic forwarding should
be larger than other MTs. Therefore, several issues about
fairness should be consideredmore carefully in relatedworks.

VI. SMARTPHONE TEST-BED BASED EVALUATION
To further verify our analysis results in Fig. 4, in this section,
we experimentally evaluate the EE improvement of non-
cooperative and cooperative traffic forwarding scenarios by
smartphone test-bed which follows from real communica-
tion standards. In this work, we use Wi-Fi and Bluetooth
interfaces to transfer local data and share control information
among MTs, respectively, and LTE link is created to commu-
nicate between the proxy and BS.

It is should be noted that, because only operator has the
permissions to adjust the parameters of BS including working
frequency and bandwidth, the proposed bandwidth allocation
strategy cannot be directly adopted in the current experi-
ments. However, considering that the bandwidth setting of
the test-bed can be seen as a simplified version of the pro-
posal with a fixed ν where νB is allocated to LTE link and
(1− ν)B is allocated to Wi-Fi and Bluetooth links, regardless
the optimization issue, our experimental results still can be
applied on general cases.

A. EXPERIMENT DESCRIPTION AND SETTING
In Fig. 5 the smartphone deployment are shown with different
reference signal receive power (RSRP) following LTE stan-
dard. The RSRP information adopted in our experiments is
used to imply that the distance between the service providing
BS and experiment field, where small value of RSRP implies
a large distance. In current indoor experiments, we used pre-
paid pack with 1GB NanoSIM card (au 4G LTE compatible)
which can provide mobile virtual network operator service
via KDDI1 LTE network to connect with LTE BS. There are
totally three types of traffic forwarding scenarios adopted in
the experiment, i.e., (a) non-cooperative case with two MTs,
(b) cooperative case with two MTs, (c) same as (b) with four
MTs, which are demonstrated in this experiment.

In addition, we also developed a novel smartphone appli-
cation on Android operation system and installed this appli-
cation on a Google smartphone Nexus 5x to process the
cooperative operations among the MTs. For giving an intu-
itive understanding, in Fig. 6, an example of the applica-
tion interface is shown. For the smartphone application
used on the MTs, it can realize cooperative communications
among MTs. Besides, it can also implement the operations
that, one MT serves as proxy while other MTs can do com-
munication via the MT which serves as proxy. The detail

1KDDI Corporation is a Japanese telecommunications operator which is
established in October 1, 2000.
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FIGURE 5. Smartphone/MT deployments used in the experiments. The
LTE RSRP in (a) is about -85 dBm, and in (b) is about −105 dBm.

FIGURE 6. Interface of the built application including SETTING, MAIN,
LOG, LOG VIEWER, and TRAFFICS (IPERF3) panels. The screenshot shows
the MAIN panel.

TABLE 3. Information detail in database.

information about the database is listed in TABLE3. Besides,
this information is also shown in the main interface of our
self-developed smartphone application (please see Fig. 6).

Furthermore, each MT generates its communication
demands using Iperf3 server and uploads the data via the
LTE connection with scenario (a), or via the proxy with sce-
nario (b)(c) under the user datagram protocol (UDP) mode.
To simplify the workflow of measurements, we adopt the
following three patterns of traffic demands in the experi-
ment, i.e., Cu = 1.4, 2.8, 7.0Mbps, for all of the MTs
and all of the transmissions described above. For example,
in (c), the total communication demand of the proxy is C =∑4

u=1 Cu = 5.6Mbps under the condition that the communi-
cation demand for each client is 1.4Mbps.

Because the evaluation of the energy consumption without
any hardware modification is hard, in our current experi-
ments, a method that measure the reduction rate ρ of the
battery capacity and thereby indirectly calculate the energy
consumption is adopted. About the hardware specifications,
the capacity of full charged battery for smartphone Nexus
5x is 2700mAh and the rated voltage is referred as 3.8V.
By knowing this kind of information, the energy consumption
E in joule caused by the wireless transmission therefore can
be approximately calculated by the following expression:

E(J) = 2700×10−3(Ah)×3.8(V)×3600(sec.)× ρ. (27)

B. EXPERIMENT RESULTS
In this subsection, we evaluate the EE of both non-cooperative
and cooperative traffic forwarding with the use of the pro-
posed machine learnable bandwidth allocation strategy and
show the results based on the aforementioned smartphone
test-bed to validate the proposed method. The EE is defined
as a value of total traffic demand divided by the system energy
consumption.

FIGURE 7. Comparisons of the EEs of traffic forwarding (a) and (b) under
the effects of different LTE RSRPs and different traffic demands.

In Fig. 7, the results of EE performance under different
traffic forwarding scenarios (a) and (b) are presented. These
results are shown with different LTE RSRPs and U = 2.
From the results in the figure, it can be seen that, in all
the cases, the EE performance of cooperative transmission
is improved minimally 24%. When the LTE RSRP equals to
−107 dBm and the traffic demand equals to 2.8Mbps, the EE
performance is significantly improved by 58%. One of the
reasons why the EE performance can be improved is that,
the proximity communication, i.e., D2D links in our study,
can save energy in a more effective way than cellular links do,
due to its shorter transmission distance and larger probability
of line-of-sight paths.

in Fig. 8, we compare the EE performance of forward-
ing scenario (c) with that of (b) under the same condition
of LTE RSRP = −86 dBm and traffic demand of each
MT = 1.4Mbps. From the experiment results, it can be
seen that, as we expected, the EE performance of cooperative
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FIGURE 8. Comparisons of the EEs of traffic forwarding (b) and (c) under
the effects of LTE RSRP = −86 dBm and traffic demand of each
MT = 1.4 Mbps.

FIGURE 9. An illustration of ML aided proxy selection and νop prediction
using neural network.

forwarding with four MTs is significantly increased by up
to 66% energy-saving gain. Therefore, it can be known that
our experiment results well match the findings of numerical
analysis and consequently experimentally validate the poten-
tial improvement of the EE performance by the proposed
method.

VII. DISCUSSION
From our analysis results in Sec. V, it can be known that,
there exists an optimal value of ν which can minimize system
power consumption. In order to find this optimal value νop,
BS needs to collect the uploaded CSI and traffic demand of
each MT, and perform a series of calculation tasks, which
causes some delay and thus reduces communication effi-
ciency. Because if we want to resolve this kind of tasks
which are complex and computationally resource consuming,
the past experience and available data are needed rather than
using approaches based on explicit rules and instructions.
Therefore, the machine learning approaches can be adopted
in this study to reduce system complexity and improve trans-
mission performances.

For instance, in Fig. 9, we show an illustration of machine
learning aided proxy selection and νop prediction with the

use of artificial neural networks2 (ANNs) for the proposed
cooperative traffic forwarding. By averaging the effects of
small-scale fading, traditionally, each MT uploads its posi-
tion and traffic demand to the BS, and the BS uses existing
algorithms to select proxy and calculate νop with the help of
these uploaded information. Then the results (proxy and νop)
are fed backed to each MT and BS can performs follow-up
operations.

Specifically, with machine learning approaches, BS can
further utilize these previous information, i.e., proxy and
νop obtained by the existing algorithms, to train or update
ANNs which are used to predict the selection of proxy and
νop without the existing algorithms. Once stable ANNs are
established at BS side, the networks thereafter can be dis-
tributed to each MT by operator updates for instance. Then
MTs use these trained or updated networks to select proxy and
calculate νop (surely, error should be allowed). Finally, it is
not necessary to upload MT’s information to the BS and MTs
can select a proxy (may not be accurate) and use the predicted
νop to perform the cooperative traffic forwarding. That can
result in reduction of system complexity and improvement of
communication efficiency.

Certainly, there are still other aspects of problems which
can be solved by machine learning approaches, and in the
current study we provide a design framework which can
introduce the machine learning related approaches to solve
the problems. More related studies for cooperative commu-
nications are planned in our future works.

VIII. CONCLUSION
In this study, we proposed a simple and novel machine learn-
able bandwidth allocation strategy for user cooperation aided
wireless communication systems, and evaluated the power
consumption of the systems using theoretical and experimen-
tal methods in cellular network systems under the environ-
ment with frequency selective fading channels and spatially
correlated shadowing. With the adoption of the proposed
bandwidth allocation strategy, first of all we derived some
theoretical expressions to evaluate the transmission power
for non-cooperative and cooperative transmission scenarios,
and then wemathematically analyzed the power consumption
with the help of a recent LTE power model for smartphones,
and finally evaluated the concluded results by our smartphone
test-bed. From the numerical and experimental results, it can
be seen that, the benefits of cooperative forwarding are sig-
nificant. However, according to our analysis, it is difficult
to be fully achieved in real environment because of some
limitations, for example, maximum transmit power on MT.
Furthermore, allocation of bandwidth resource dominated the
transmission performances of user cooperation aided trans-
mission forwarding and is strongly affected by, e.g., position
and traffic demand of eachMT.Machine learning approaches
aided cooperative traffic forwarding can be used to reduce

2ANN is a computing systems vaguely inspired by the biological neu-
ral networks that constitute animal brains for solving machine learning
problems.
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the considered system complexity and improve transmission
efficiency, which is also discussed in this study and left as one
of the future topics.

APPENDIX A
PROOF OF THEOREM 1
Since the ergodic capacity is not affected by the time variation
for ergodic fading channels, the theorem can be proved by
considering the slow time-varying scenario. The Rayleigh
fading matrix R in (6) can be viewed as a block Toeplitz
matrix with the following expression R :=

(
R∗1,R

∗

2,

· · · ,R∗T
)∗
∈ CMT×(T+L−1), where

Rτ :=
( τ−1︷ ︸︸ ︷
0, · · · ,0,

L︷ ︸︸ ︷
r(L−1, t),· · ·, r(0, t),

T−τ︷ ︸︸ ︷
0,· · ·,0

)
. (28)

According to the property of the block Toeplitz matrix [25]
and by the assumption that the Rayleigh fading and shad-
owing can be viewed as mutually independent random pro-
cesses, from the results in [26], the ergodic capacity (6)
averaged over spatially i.i.d. Rayleigh fading for SIMO chan-
nel without channel selection can be expressed as

C ′ns =
B

2π (M − 1)!

∫
∞

0

∫ 2π

0

log2

(
1+

Pt10
s
10

dζN0B
8(ω)λ

)
λM−1

e−λ
dωdλ. (29)

Because of the fact that s is with normal distribution with
meanµ and variance σ 2, by the help of the probability density
function (PDF) of s which can be expressed as

fs(s) =
1

√
2πσ 2

exp

(
−
(s− µ)2

2σ 2

)
, (30)

we can conclude the proof.

APPENDIX B
PROOF OF THEOREM 2
By using the same approach addressed above and the fact
that matrix Ĥ in (7) is also a block Toeplitz matrix, from
the results in [26] and by doing some simplification works,
the capacity in (7) can be expressed by

Cs =
B
2π

∫ 2π

0
E
{
log2

(
1+

Pt||d||8(ω)
N0B

3

)}
dω, (31)

where

3 = max
u∈U

10
su
10 λu, (32)

su means the shadowing between uth MT and BS, λu =
d̂u
∑M

m=1 |ru,m|
2, and ru,m ∀u,m is i.i.d. zero mean circularly

symmetric complex Gaussian RVs.
Because of the fact that the shadowing varies slowly

than the Rayleigh fading, and also by the assumption that
shadowing and fading can be viewed as mutually indepen-
dent random processes, consequently, for U MT diversity,

the cumulative distribution function (CDF) of 3 can be
expressed as

F3(λ)=p
(
max
u∈U

(
10

su
10 λu

)
< λ

)
=

U∏
u=1

p
(
10

su
10 λu<λ

)
. (33)

Then the PDF of 3 by differentiating F3(λ) relative to λ
and the outage probability by evaluating F3(λ) at λ = λ0 can
be obtained. Therefore, based on (33), the outage probability
of RV 3 for the target λ0 can be rewritten as

F3(λ0) =
∫
∞

−∞

(
U∏
u=1

Fλu
(
10−

su
10 λ0

))
fs(s)ds, (34)

where fs(s) is the joint distribution ofU correlated shadowing
RVs, and s is defined as a vector consists ofU shadowing RVs
and is written as s = (s1, s2, · · · , sU )∗.

When U Gaussian RVs, {su}Uu=1, are correlated, the joint
distribution fs(s) is given by

fs(s) =
1

(2π)
U
2 det(4)

1
2

exp

(
−
(s−µ)H4−1(s− µ)

2

)
, (35)

where 4 is the covariancematrix andµ=(µ1, µ2, · · · , µU )
∗

is the vector of means of the Gaussian RVs. (34) can then be
written as

F3(λ0) =
∫
∞

−∞

1

(2π )
U
2 det (4)

1
2

(
U∏
u=1

Fλu
(
10−

su
10 λ0

))

× exp

(
−
(s− µ)H4−1(s− µ)

2

)
ds. (36)

Differentiating (36) relative to λ0 with the use of product rule,
the PDF of 3 is expressed as

f3(λ)

=

∫
∞

−∞

(2π )−
U
2

det(4)
1
2

 U∑
u=1

10−
su
10 fλu

(
10−

su
10 λ
) U∏
k=1,k 6=u

Fλk
(
10−

sk
10 λ
)

×exp

(
−
(s− µ)H4−1(s− µ)

2

)
ds, (37)

where fλu and Fλu are the PDF and CDF of RV λu, respec-
tively. As the mutually independent RVs d̂u|ru,m|2 follow the
exponential distribution with the same rate parameter d̂−1u ,
their sum λu is the RV following the Erlang distribution with
the corresponding PDF and CDF given by (12) and (13).

Thereafter, let 4sq be the square root of the covariance
matrix 4, i.e., 4 = 4sq4

H
sq. When the decorrelating trans-

formation s =
√
24sqz + µ is used, su is given by (14), and

z = (z1, z2, · · · , zU )∗. Therefor, f3(λ) becomes

f3(λ) =
∫
∞

−∞

· · ·

∫
∞

−∞

1

π
U
2

 U∑
u=1

10−
su
10 fλu

(
10−

su
10 λ
) U∏
k=1,k 6=u

Fλk

×

(
10−

sk
10 λ
))
× e−z

Hzdz1 · · · dzU . (38)
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Finally, the expectation in (31) can be evaluated with the
use of (38). After doing some simplification works, we can
conclude the proof.

APPENDIX C
PROOF OF PROPOSITION 1
We start the proof from an assumption that, the effect of
number one in the logarithm terms can be ignored, the trans-
mission power Pt in (9) and (10) therefore can be separated
from integrals. Thereafter, by using Gauss, Gauss-Hermite,
andGauss-Laguerre quadratures on all of the capacity expres-
sions, we can reduce the computational complexity and pro-
cess do simplification works, and then we can conclude the
proof. It should be noted that, more accurate estimation can
be obtained by increasing the quadrature orders.

APPENDIX D
PROOF OF PROPOSITION 2
Staring from (31), if all MTs experience the same shadowing,
(31) can be rewritten as

Cs-c.c.=
B
2π

∫ 2π

0
E
{
log2

(
1+

Pt||d||8(ω)
N0B

10
s
103

)}
dω, (39)

where 3 = maxu∈U λu and λu = d̂u
∑M

m=1 |ru,m|
2. The

capacity then can be mathematically derived using the similar
proof approach addressed in Theorem 2. Thereafter, by the
help of numerical integration and the assumption of ignoring
one in logarithm term, we can conclude the proof.
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