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ABSTRACT Seismic survey is one of the most effective tools for oil and gas exploration. To date, there
has been an exponential growth in the size of seismic data required for large-scale seismic survey. For
transmission and storage purposes, we propose a novel seismic compression method. First, a multiscale
sparse dictionary learningmodel with rate constraint is presented. By combining the advantages ofmultiscale
decomposition and dictionary learning, the seismic data could be effectively represented as a sparse matrix.
Rate constraints are used to obtain the sparse coefficients that are properly tailored to the compression
objective. To solve the optimization problem, the alternating direction method of multipliers is adopted.
Furthermore, a seismic compression scheme based on the learned dictionary is introduced. Finally, public
seismic datasets are used to verify the efficiency of different seismic data compression methods. The
experimental results indicate that the proposed method achieves the best seismic compression performance,
including rate-distortion tradeoff and visual quality.

INDEX TERMS Multiscale dictionary learning, rate constraint, sparse coding, seismic data compression.

I. INTRODUCTION
A seismic survey, which collects a significant amount of
seismic data from a field, is a primary strategic tool that
is utilized in oil and gas exploration [1]. A typical seismic
survey may generate tens of terabytes of raw seismic data
on a daily basis [2]. This results in extreme challenges in
terms of wireless gathering of the seismic data from the
field, given that the bandwidth of a wireless system is inher-
ently limited. Further, once collected, this massive amount
of data requires very large storage capacities at data centers.
Therefore, data compression is highly desirable to reduce
the cost of storage and transmission, especially in the case
of wireless seismic signal acquisition. Typical seismic data
compression methods can be grouped into two categories:
lossless and lossy. Lossless compression [3] is a kind of data
compression algorithm that allows the original data to be
perfectly reconstructed from the compressed data but results
in limited data reduction. This may not be suitable for the
compression of a massive amount of seismic data, especially
when the seismic signal samples are represented by float
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or double numbers. Lossy compression methods [4] allow
some acceptable information losses but can achieve much
higher compression performance. As such, this investigation
is based on the lossy scheme as a potential candidate.

Transform-based lossy compression techniques have been
the most prevalent approach for many years. The discrete
cosine transform (DCT), used for seismic signal compression
in [5], achieves a lossy compression gain of approximately
three. A two-dimensional seismic adaptive local cosine trans-
form was proposed in [6] to preserve important features.
In [7], wavelet packets were used to achieve a higher com-
pression rate and simulation results did not reveal visible
artifacts in the reconstructed data. Further, curvelet, which
has strong anisotropic selectivity, was applied to explore the
directional features of the seismic data [8]. Instead of using
off-the-shelf transforms (e.g., DCT, wavelet, and curvelet),
the process of learning a data-driven dictionary from the
original data, has been shown to be promising in data com-
pression. The authors in [9] reported good image compression
performance using recursive least squares dictionary learning
algorithm. Furthermore, a compressibility constrained sparse
coding formulation is proposed in [10] where low bit-rate
image compression was achieved based on the sparsity and
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compressibility of the sparse coefficients. In [11], the authors
showed that using a double sparsity model to learn a dic-
tionary gives much better compression results for remote
sensing images. All these works demonstrate the potential of
learned dictionaries for the successful compression of seismic
data. By extracting the information from the common mem-
ory between the sender and receiver, a memory-assisted seis-
mic signal compression method based on dictionary learning
was proposed in [12]. However, online memory will increase
the hardware cost, which limits the scope. To explore the
resemblance among local seismic traces to facilitate com-
pression for communication, seismic data compression using
online double-sparse dictionary learning (SIODL) is pro-
posed. Sparse constraints and a sliding window mechanism
are applied to the incremental components of the dictionaries,
which improves their compression performance [13]. Recent
advances in seismic data compression methods based on
dictionary learning have resulted in significant improvement
in compression gain [14].

Although sparse dictionary learning can facilitate more
efficient representation than a fixed dictionary [15], its per-
formance in data compression is sometimes limited. The
optimization function in sparse dictionary learning includes
two terms: data fidelity and sparsity constrained. Therefore,
the objective is to learn a sparse matrix of coefficients. How-
ever, this may not be optimum for compression. To address
this issue, a rate-distortion optimal solution for an over-
complete signal representation was proposed in [16], [17].
However, each sample is processed independently, which
ignores the constraint over the entire input data samples.
Thus, the compression performance decreases. Moreover,
the dictionary learning algorithm cannot be easily integrated.
To design dictionaries that are adapted to the available data
resulting in good compression performance, a dictionary
learning algorithm for efficient signal compression is intro-
duced in [18]. By minimizing the total rate rather than the
sparsity of the coefficients, it outperforms other traditional
seismic compression methods. However, the compression
performance gap between [18] and other methods (such
as DCT) will be small when the measurement noise is
included. One reason for this being the fact that its sparsity
is not considered in the entire dictionary learning process.
This influences its robustness to noise. Delay compensated
and entropy constrained dictionary learning (DCECDL) was
proposed for seismic data compression in [19]. In this case,
the main objective is the reduction of the entropy of the
quantized coefficients. Given that this optimization prob-
lem is difficult to solve, a searching strategy is adopted
to find the solution. Therefore, its performance is highly
dependent on the initial point chosen. Although previous
dictionary learning based seismic compression methods have
demonstrated their individual efficacy, they each have lim-
itations. For example, the initial values may significantly
affect the compression performance because the optimization
problem in most algorithms is non-convex. This introduces
notable instability into the algorithms. It should be noted that

multiresolution analysis (MRA) is a powerful tool for data
compression. Therefore, multiscale dictionary learning algo-
rithms [20], [21] could potentially be exploited to improve
compression efficiency.

To address the aforementioned problems, a multiscale,
rate-constrained dictionary learning algorithm for seismic
data compression is proposed. The main contributions of this
study are as follows: We propose a novel multiscale sparse
dictionary learning model with rate constraint. In this model,
the training samples are built from the multiscale decomposi-
tion like wavelets. Then the dictionary learning problem can
be formulated as several sub-dictionary learning problems
based on the training samples from the corresponding scales.
In this study, dictionary learning in multiscale will be helpful
for capturing the characteristics of seismic data and providing
more degrees of freedom for compressing the sparse coeffi-
cients. Furthermore, not only the sparsity but also the rate
is included in the optimization model as prior constraints,
the target of which is to make the sparse coefficients more
suitable for compression purpose. More specially, the rate is
approximately estimated by the coefficients’ probability den-
sity function, and this function is supposed to be a Gaussian
mixture model. Thus, the proposed optimization model is
solved, and the alternating direction method of multipliers is
adopted in this paper. Finally, a seismic compression scheme
based on the multiscale and rate-constrained dictionary
learning algorithm is suggested.

The report is divided into multiple sections. Section II
presents the multiscale sparse dictionary learning method
with rate constraint for seismic data compression. The exper-
imental results are presented in Section III and Section IV
summarizes the main conclusions of this investigation. For
convenience, some typical notations used in this report are
summarized in Table 1.

TABLE 1. Main notations used in this paper.

II. PROPOSED METHOD
A. DICTIONARY LEARNING AND SPARSE CODING
Sparse dictionary learning [22] is a method that aims to
identify an adaptive basis (called a dictionary) for a dataset
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such that each data sample in the dataset can be efficiently
estimated by a sparse linear combination of atoms in the
learned dictionary. Compared to the off-the-shelf transform,
a data-driven dictionary learned directly from the dataset is
typically superior in terms of exploring the data regularities
and results in efficient sparse coding. It is well-known that the
`0 norm regularized minimization problem [23] in dictionary
learning is combinatorial and non-convex, which makes the
sparse coding an NP-hard problem. A popular solution to this
issue is either to replace the `0 norm with the `1 norm [24],
which is convex and sparse promoting, or to apply greedy
algorithms to obtain approximate solutions for the `0 norm
regularized problem.

During the implementation of dictionary learning, the orig-
inal data are usually divided into small segments (patches)
to reduce the computational burden. The size of the segment
(patch) is empirical to capture features of interest. Given the
input data setX = [x1, . . . , xK ] ∈ Rm×K that containsK data
segments (patches), dictionary learning techniques are solved
for a normalized dictionaryD ∈ Rm×n and sparse coefficients
of matrix W = [w1, . . . ,wi, . . . ,wK ] ∈ Rn×K such that the
overall error ‖X−DW‖2F is minimized within a given sparsity
level L. This could be formulated as

argmin
D,W

‖X− DW‖2F , s.t. ‖wi‖0 ≤ L, for i ∈ [1,K ], (1)

where the ‖wi‖0 counts the number of nonzero elements
in wi. The optimization problem in (1) is typically solved
using an alternating procedure involving two stages: sparse
coding and dictionary updating. In sparse coding [25], sparse
coefficients wi are identified given a fixed dictionary D.
Some common sparse coding algorithms include orthogonal
matching pursuit (OMP), order recursive matching pursuit
(ORMP) [26], [27], and partial search (PS) [28]. Additionally,
the dictionary updating stage modifies D for a given W to
further decrease the overall error. With respect to dictionary
updating, multiple methods are commonly used such as the
method of optimal directions (MOD) [29] and K-SVD [30].
In most dictionary learning algorithms, the objective is to
learn a sparse matrix of coefficients. However, this may not
be optimum for compression.

B. MULTISCALE SPARSE DICTIONARY LEARNING
MODEL WITH RATE CONSTRAINT
For compression, conversion of the raw data into the trans-
form domain is typical [31], [32]. Subsequently, the coef-
ficients tend to be more correlated. The typical transform
method used in compression is the multiscale wavelet trans-
form in which the input data could be decomposed into
multiscale subbands. In Figure 1, we transform a seismic
wave using a multiscale wavelet with a scale of 2. In different
subbands, we find high structure similarity across directions.
In particular, the lower subbands hold the most significant
coefficients that are correlated to the directions of the orig-
inal data but have a smaller subband. Thus, an approximate
version of original seismic data could be reconstructed based

FIGURE 1. Reconstruction of seismic data based on multiscale wavelet.

only on the coefficients from the lowest subbands. This
inspired us to assign different rates for different subbands
depending on their importance in the dictionary learning
process.

Let X denote the original seismic data and 8 correspond
to a multiscale orthogonal transform, such as the wavelet
transform that is primarily used in this study. 8+ is the
analysis operator of8. Then, the multiscale transform results
areZ(b)

= (8+X)(b), where b is the subband index. If the total
decomposition level is S, then we have b = 1, . . . , 3S + 1.
In dictionary learning algorithms, it is common to split the
input data into small data patches [33]. This is helpful in
reducing the computational complexity generated by the large
training datasets. In our work, each subband data is divided
into nonoverlapping patches with the same size. Furthermore,
the mean values are removed from these patches for dic-
tionary learning. The results are then organized in vector-
ized form as Y(b)

= [y(b)1 , . . . , y
(b)
i , . . . , y

(b)
L ], i ∈ [1,L].

L is the number of patches in subband b. We, therefore,
focus on the following optimization problem solution for
dictionary D(b) and sparse coefficientsW(b) of each subband
(b ∈ [1, 3S + 1]):

∀b : [D̃(b), W̃(b)] = argmin
D(b),W(b)

‖Y(b)
− D(b)W(b)

‖
2
F

+ λ(b)R(W(b))+ α(b)‖W(b)
‖0, (2)

where ‖W(b)
‖0 is the l0 norm of the coefficients W(b). This

constraint is important to ensure that the coefficients are as
sparse as possible with the distortion controlled by the error
between Y(b) and D(b)W(b). D̃(b) is the learned dictionary
of subband b, and W̃(b) are the sparse coefficients of Y(b)

based on the learned dictionary D̃(b). λ(b) is a parameter used
to balance the importance between the reconstruction error
and the rate. λ(b) is different in different subbands depend-
ing on their importance to the reconstruction. For example,
the lower subbands could have smaller λ(b) value, and λ(b)

for the higher subbands could be larger. This will be helpful
in identifying a balance between the rate and distortion. α(b) is
a regularization parameter for the sparsity of the coefficients.
R(W(b)) represents the coding rates for the sparse coefficients,
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which is defined as

R(W(b)) =
M∑
i=1

N∑
j=1

Rate(W(b)(i, j)). (3)

M and N are the number of row and column of the
matrix W(b), respectively. Rate(W(b)(i, j)) is the rate con-
sumed for the coefficient W(b)(i, j). For compression,
the coefficientsW(b)(i, j) are classified into zero elements and
nonzero elements. Only the nonzero elements are coded and
transmitted. Thus, the rate Rate(0) for the zero elements is
approximately 0. According to Shannon’s information theory,
the rate Rate(W(b)

6=0(i, j)) of the nonzero elementsW(b)
6=0(i, j) is

computed as

Rate(W(b)
6=0(i, j)) = −log2p(W

(b)
6=0(i, j)). (4)

p(W(b)
6=0(i, j)) is the probability density function of nonzero

elementsW(b)
6=0 (b ∈ [1, 3S+1]). In particular, this probability

density function could be approximated by a Gaussian mix-
ture model with the parameters µ and σ 2, and described as

p(x) =
1

√
2πσ 2

e
−

(x − µ)2

2σ 2 . (5)

x denotes the sparse coefficient W(b)
6=0(i, j). This Gaussian

model approximation could be verified based on the fol-
lowing experiment. The histogram of the dictionary-learned
sparse coefficients from one seismic data is shown in
Figure 2, which demonstrates that our assumption of a
Gaussian model for the probability density function of the
sparse coefficients is substantially correct.

FIGURE 2. Histogram of sparse coefficients from one seismic data.

Then, we reformulate the original optimization problem (2)
as

∀b : [D̃(b), W̃(b), µ̃, σ̃ 2] = argmin
D(b),W(b),µ,σ

‖Y(b)
− D(b)W(b)

‖
2
F

+ λ(b)R(W(b))+ α(b)‖W(b)
‖1,

(6)

where µ̃ and σ̃ 2 are the learned Gaussian model parameters.
In (6), the l0 normminimization, which is a NP-hard problem,
is relaxed to the l1 norm for optimization purposes. This
relaxation has been adopted in many sparse coding algo-
rithms [24], [34].

C. SOLUTION OF THE OPTIMIZATION
To solve the preceding complicated optimization problem,
(6) is decoupled into the following subproblems using
the alter-minimization method [35]. Then, each variable is
updated alternately as:

(1) Rate-constrained Sparse Coding:
In this subproblem, we will solve W̃(b),µ̃,and σ̃ 2 with fixed

D̃(b) using the following equation:

∀b : [W̃(b), µ̃, σ̃ 2] = argmin
W(b),µ,σ

‖Y(b)
− D̃(b)W(b)

‖
2
F

+ λ(b)R(W(b))+ α(b)‖W(b)
‖1. (7)

To solve this optimization problem, the alternating direc-
tion method of multipliers (ADMM) [36], [37] is used. Using
two introduced auxiliary variables P and S, (7) is rewritten as

∀b : [W̃(b), µ̃, σ̃ 2] = argmin
W(b),µ,σ

‖Y(b)
− D̃(b)P‖2F

+ λ(b)R(S)+ α(b)‖W(b)
‖1,

s.t.W(b)
= P, W(b)

= S. (8)

The augmented Lagrangian form of (8) is

L(W(b),P,S,H0,H1, µ, σ )

= ‖Y(b)
− D̃(b)P‖2F + λ

(b)R(S)+ α(b)‖W(b)
‖1

+ <W(b)
− P,H0 > +

ρ

2
‖W(b)

− P‖2F

+ <W(b)
− S,H1 > +

τ

2
‖W(b)

− S‖2F , (9)

where ρ and τ are regularization parameters associated with
the quadratic penalty function of terms ‖W(b)

− P‖2F and
‖W(b)

−S‖2F .H0 andH1 are the Lagrange multipliers associ-
ated with the constraints W(b)

= P and W(b)
= S. The main

idea of the augmented Lagrangian method is to find a saddle
point of L(W(b),P,S,H0,H1), which is also the solution
of (8). Then,W(b),P,S,H0 andH1 can be solved alternately.
We now investigate these subproblems individually.

a)W(b)-Subproblem:
This is equal to the following:

W(b)
(k+1) = argmin

W(b)
α(b)‖W(b)

‖1 +
ρ

2
‖W(b)

− P(k)

+H0(k)/ρ‖2F +
τ

2
‖W(b)

− S(k) +H1(k)/τ‖2F .

(10)

A shrinkage method could be used to solve (10) as

W(b)
(k+1) = max{| U | −α(b)/(ρ + τ ), 0} · sign(U), (11)

where U = (ρP(k) + τS(k) −H0(k) −H1(k))/(ρ + τ ).
b) P-Subproblem:
This can be written as follows:

P(k+1) = argmin
P
‖Y(b)

− D̃(b)P‖2F

+
ρ

2
‖W(b)

(k+1) − P+H0(k)/ρ‖2F . (12)
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This generalized problem has an optimal solution that can
be solved explicitly using the following formula:

P(k+1) = (D̃(b)T D̃(b)
+ ρI)−1

× (D̃(b)TY(b)
+ ρW(b)

(k+1) +H0(k)). (13)

D̃(b)T is the transpose matrix of D̃(b), and I is the identity
matrix.

c) S-Subproblem:
We have:

S(k+1) = argmin
S

λ(b)R(S)+
τ

2
‖W(b)

(k+1) − S+H1(k)/τ‖2F .

(14)

Based on the gradient decent algorithm, the solution of (14)
is given as

S(k+1)(i, j) =

{
Tp, s.t. f (Tp) ≤ f (0)
0, s.t. others,

(15)

where

f (x) = λ(b)R(x)+
τ

2
(W(b)

(k+1)(i, j)− x +H1(k)(i, j)/τ )2,

(16)

and

Tp =
σ 2
(k)(W

(b)
(k+1)(i, j)+H1(k+1)(i, j)/τ )+ λ(b)µ(k) log2 e

σ 2
(k) + λ

(b)log2e
.

(17)

d) Gaussian model parameter updating:
The coefficients S(k+1) are collected to update the

Gaussian model parameters µ(k+1) and σ 2
(k+1) based on the

Expectation-Maximization (EM) algorithm [38].
e) H0 and H1-Subproblem:
H0(k+1) and H1(k+1) could be updated directly as follows:{

H0(k+1) = H0(k) − ρ(W
(b)
(k+1) − P(k+1))

H1(k+1) = H1(k) − τ (W
(b)
(k+1) − S(k+1)).

(18)

(2) Dictionary Updating:
When other parameters are fixed, the dictionary D̃ could

be updated by solving the following equations:

D̃(b)
= argmin

D(b)
‖Ỹ(b)

− D(b)W̃(b)
‖
2
F . (19)

Similar to K-SVD, the dictionary atoms are updated indi-
vidually as

D̃(b)
= argmin

D(b)
‖Ek − dkwr

k‖
2
F , (20)

where di is the ith column of matrixD(b), andwr
i is the ith row

of the matrix W̃(b). El is the residual matrix that is computed
as El = Y(b)

−
∑
i 6=l

diwr
i . Then dl is solved by approximating

El with a rank-1 matrix using Singular Value Decomposition
(SVD) [39], [40].

D. ALGORITHM AND IMPLEMENTATION
Based on the aforementioned inference, the procedure
involved in the proposed algorithm is summarized in
Algorithm 1 and Algorithm 2. In the following part,
we explain how to use the proposed approach for seismic data
compression.

Algorithm 1 Sparse Coding Algorithm With Rate Con-
straint
Input: Y(b) (input patches from different subbands),

I (number of iterations), D̃(b) (dictionary), λ(b),
α(b), ρ and τ .

Initialization:W(b)
(0), P(0), S(0), µ(0), σ 2

(0), H0(0) = 0, and
H1(0) = 0

. for k ← 1 to I or not convergence do
Compute W(b)

(k) by (11);
Compute P(k) by (13);
Compute S(k) by (15);
Update µ(k) and σ 2

(k) based on EM Algorithm;
Compute H0(k) and H1(k) by (18);

end
Output: W̃(b)

=W(b)
(I )

Algorithm 2Multiscale Sparse Dictionary LearningWith
Rate Constraint
Input: X (original seismic data), 8 (multiscale

orthogonal transform), λ(b), α(b)

(b ∈ [1, 3S + 1]), ρ and τ (other parameters),
T (number of iterations)

Initialization:W(b)
(0), P(0), S(0), H0(0) = 0, H1(0) = 0,

µ(0) and σ 2
(0)

Compute the multiscale transform results for each
subband as Z(b)

= (8CX)(b);
Generate the vectorized forms of Z(b) (mean values
removed) as Y(b);
for t ← 1 to T or not convergence do

for b = 1:3S+1 do
Update W̃(b) by Algorithm 1;
Update D̃(b) based on (20);

end
end
Output: D̃ = [D̃(1), . . . , D̃(b), . . . , D̃(3S+1)]

A diagram based on the proposed multiscale and rate
constrained dictionary learning based seismic compression
scheme (MRDL) is shown in Figure 3. It includes three
components: encoding, decoding, and offline training. In the
encoding part, the original seismic data is transformed by the
multiscale transform, and wavelet is adopted in this investi-
gation. Furthermore, the transformed seismic data are parti-
tioned into small nonoverlapped patches. The mean values of
the different patches, denoted as DC values, and the residual
values (the mean value removed from the patches), denoted
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FIGURE 3. The diagram of the proposed seismic data compression method.

as AC values, are encoded separately. The DC values are
quantized and coded using differential pulse coded modu-
lation (DPCM) and Huffman coding. The AC values are
sparsely represented by an offline trained multiscale dic-
tionary D̃ = [D̃(1), . . . , D̃(b), . . . , D̃(3S+1)] based on the
proposed sparse coding algorithm with rate constraint. The
sparse coefficients are initially scalar-quantized. The values
of quantized nonzero coefficients (QNZC) and their positions
are separately coded. The positions are considered as a binary
sequence where 0 indicates a zero in the sparse coefficients
matrix and 1 indicates a nonzero value. These positions are
encoded using an adaptive arithmetic coder. Similar to our
previous work [12], QNZC values are coded using a near
optimum code-book based on the fitted probability model.
In the decoding part, the compressed bits are dequantized
and entropy decoded. The AC values are reconstructed from
the decoded sparse coefficients using the offline trained dic-
tionary D̃. As such, the seismic data is reconstructed using
the multiscale inverse transform with the reconstructed DC
and AC values of different blocks. In the offline training
part, the training samples are the AC removed values of the
partitioned patches. Based on the proposed multiscale sparse
dictionary learning algorithm with rate constraint, an offline
trained dictionary D̃ is generated. The total compressed bits
include the bits consumed for the DC values and AC values.
Other control information including the packet header is not
contained because their contribution to the rate is negligible.

III. EXPERIMENTAL RESULTS
In this section, two aspects of the experiments are consid-
ered to evaluate the performance of the proposed method.

FIGURE 4. Testing of seismic data from (a) 2004BP dataset, (b) 2007BP
dataset, and (c) Model94 dataset.

To analyze the properties of the proposed dictionary learning
algorithms, the performance of different dictionary learning-
based approaches are analyzed. Furthermore, we evaluate
the rate-distortion performance of the proposed seismic data
compression scheme on a variety of seismic data, thereby
comparing it against other typical seismic data compression
methods.

A. EXPERIMENTS SETUP
In the experiments, the 2004BP, 2007BP and Model94
datasets of public seismic data [41] are employed for com-
parison of the different seismic data compression methods.
In each dataset, we choose seismic data from 960 adjacent
sensors. For each sensor, 192 time samples are selected.
Thus, each seismic data from dataset 2004BP, 2007BP and
Model94 has a resolution of 192 × 960, which is shown
in Figure 4. The dictionary is supposed to be a general
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dictionary that is learned from the seismic data from all
datasets. Other fixed parameters in the dictionary learning are
ρ = 50 and τ = 50. Similar to other dictionary algorithms,
α(b) is the parameter used to control the sparsity of the coef-
ficients. In the quantization step, each QNZC is quantized
into 10 bits. The peak signal to noise ratio (PSNR) and the
structural similarity index (SSIM) [42], which are two quality
metrics used for reconstruction performance comparison, are
exploited and defined as follows:

PSNR = 10 log10
J ×MAX (s)2

‖s− s̃‖22
, (21)

where s and s̃ denote the original and reconstructed seismic
data, respectively. J is the number of elements in s.MAX (s) =
1 is the maximum absolute value of the original seismic data
in this report.

SSIM =
(2µsµs̃ + c1)(2σss̃ + c2)

(µ2
s + µ

2
s̃ + c1)(σ

2
s + σs̃ + c2)

, (22)

where µs and µs̃ are the average of s and s̃. σs and σs̃ denote
the variance of s and s̃. σss̃ is the covariance of s and s̃. c1 and
c2 are two constants.

FIGURE 5. Performance comparison for different λ strategies.

B. COMPARISONS OF DIFFERENT DICTIONARY LEARNING
ALGORITHMS FOR SEISMIC DATA COMPRESSION
Initially, the flexibility of the proposed method for rate con-
trol is analyzed. We test two different groups of regulariza-
tion parameters λ(b) as shown in Figure 5. In one group,
all subbands have the same weights as [λ(1), . . . , λ(7), ] =
[2 × 10−7, . . . , 2 × 10−7]. In the other group, differ-
ent weights are assigned based on the subbands’ impor-
tance in the reconstruction process, the values of which
are [λ(1), . . . , λ(4), λ(5), . . . , λ(7), ] = [10−7, . . . , 10−7, 5 ×
10−7, . . . , 5 × 10−7]. The rate is changed by α(b), which
adopts the same values in all subbands for simplicity. The
compression performance is mainly evaluated by PSNR (The
difference of SSIMs is not significant in this experiment).

From Figure 5, it can be determined that parameters with
different weights can achieve better rate-distortion curves
for all the three test datasets. The main reason is that the
lower subbands are more important compared to the higher
subbands in the reconstruction process. Therefore, a small λ
for the lower subbands means that the reconstruction error of
these subbands could be small, and a large λ for the higher
subbands implies that fewer rates will be required for the
higher subbands. Therefore, a better rate-distortion balance
can be built using this strategy. However, we do not discuss
the procedure for identifying the best λ(b) for different sub-
bands. In the following experiments, we use regularization
parameters with different weights.

Secondly, different dictionary learning algorithms for seis-
mic data compression are compared. The influence of the
dictionary size is also discussed in the following experiment.
The dictionary learning algorithms include MOD, KSVD,
and DCECDL. We use OMP and ORMP for sparse coding
in MOD and KSVD. The number of iterations was 30 in this
experiment. We construct the initial dictionary by randomly
selecting atoms from the training dataset. The dictionary size
in this comparison is 64 × 384, 64 × 512 and 64 × 640.
In the aforementioned dictionary learningmethods, the sparse
coefficients are generated using sparse coding by changing
the sparsity. Furthermore, these coefficients are quantized
and coded using the adaptive arithmetic coding algorithm.
We choose a rate of 0.5 bits/sample as an example. The
comparison results are shown in Figure 6. From Figure 6,
we determine that the dictionary size influences the com-
pression performance. The results demonstrate that the best
dictionary size for compression in this experiment is 64×512.
The reason may be as follows: (1) when the dictionary size
is increased from 64 × 384 to 64 × 512, superior recon-
struction quality could be achieved with the same sparsity by
introducing more dictionary atoms. Although this increases
the size of the sparse coefficient matrix, compared to the
improvement in the reconstruction quality, the increase of the
rate can be neglected. However, when the dictionary size is
increased to 64 × 640, the improvement in reconstruction
quality is not significant. The rate increases because the size
of the sparse coefficient matrix is increased when a bigger
dictionary is chosen. Actually, it is very difficult to find an
optimal dictionary size for compression, hence not discussed
in this report. In addition, using the same dictionary learning
algorithm such as MOD or KSVD, ORMP performs OMP.
Similarly, KSVD outperforms MOD while the same sparse
coding algorithm is adopted. By incorporating the rate con-
straint into the dictionary learning process, DCECDL and
MRDL perform better than MOD and KSVD. MRDL can
produce the best compression performance using a more effi-
cient rate controlled strategy with multiscale decomposition.

C. COMPARISONS OF DIFFERENT SEISMIC
DATA COMPRESSION METHODS
Firstly, the compression performance of different seismic
data compression methods is compared. In the wavelet-based
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FIGURE 6. Compression performance comparisons of different dictionary learning algorithms for different datasets.

seismic data compression method (denoted as Wavelet),
the Cohen-Daubechies-Feauveau 9/7 wavelet is adopted as
the transform basis. The decomposition level is S = 2.
In the traditional wavelet-based compression method for
images such as SPIHT and JPEG2000, bit plane coding algo-
rithms are adopted to code the wavelet coefficients. How-
ever, these coding algorithms are always complicated. In this
report, we use a simple coding strategy for the wavelet-based
method. The coefficients are initially quantized. Then the
significant coefficients are determined according to a given
threshold value. Both the significant coefficients and their
positions are additionally coded using an arithmetic coding
algorithm before transmission. By changing the threshold
value, the number of significant coefficients can be changed.
Consequently, both the rate and distortion can be adjusted.
The curvelet and contourlet, which also have the properties
of multiresolution, are widely used in denoising of seismic
signals because of their superior performance in the repre-
sentation of geometric structures. Therefore, we replace the
wavelet transform in the wavelet-based seismic compression
method by curvelet and contourlet. Based on these modifi-
cations, the curvelet-based and contourlet-based seismic data
compression methods (denoted as Curvelet and Contourlet)
are developed. For better comparisons, the sparse coding
method is further introduced to select the significant coeffi-
cients x from the seismic data y for the curvelet-based seismic
data compression method, which is denoted as

x̃ = argmin
x
‖x‖1, s.t. ‖8x− y‖22 ≤ ε

2. (23)

8 denotes the curvelet transform and x̃ is the sparse coeffi-
cient solved from (23) by using a basis pursuit algorithm [43].
The rate and distortion are controlled by changing ε2. The
SIODL is also tested in this paper. A sliding window with
the size 64 × 64 is used to train the online dictionary, and
both the sparse coefficients and the increment of dictionary
are transmitted. The sparse coefficients are scalar-quantized
and coded by an arithmetic coding algorithm for compres-
sion. In the MRDL, the multiscale dictionary is trained from
the training dataset. Daubechies 9/7 wavelets are chosen as
the multiscale orthogonal transform for the decomposition
level 2. The number of subbands is then equal to 3S + 1 = 7.

FIGURE 7. Learned multiscale dictionary.

Furthermore, the coefficients transformed by the wavelets are
partitioned into 8 × 8 nonoverlapping blocks. Based on the
preceding discussion, the dictionary size is 64×512 and each
dictionary is trainedwith 10 iterations. The learnedmultiscale
dictionary in the following experiment is shown in Figure 7.

Figure 8 demonstrates the rate-distortion curves for the
comparison of different seismic data compression methods
(Wavelet, Contourlet, Curvelet, Curvelet+SP, SIODL, and
MRDL). From the experimental results, it can be deter-
mined that Curvelet outperforms Wavelet and Contourlet in
the 2004BP and 2007BP datasets. For the Model94 dataset,
the compression performance of Curvelet and Wavelet is
similar (Wavelet performs better at a high compression rate).
In addition, both of them have better compression perfor-
mance than Contourlet. The main reason being as follows:
(1) contourlet could not capture the contour of the seismic
wave very well for these three seismic datasets. Therefore,
its reconstruction quality is not ideal. Moreover, its repre-
sentation is too redundant, which requires the compression
of a large number of contourlet coefficients. This increases
the compression rates. (2) Although the representation of
curvelet is also redundant, its reconstruction quality for
most seismic datasets (2004BP and 2007BP) is high. There-
fore, it has a relatively high compression performance. Fur-
thermore, the compression performance of Curvelet could
be improved by introducing sparse coding (denoted as
Curvelet+SP). For example, the PSNRs of Curvelet could
be increased by 1.7 dB in the 2004BP dataset when the
rate is 0.5 bits/sample. Moreover, the increase could be
more than 2.0 dB in the Model94 dataset. Sparse coding is
helpful for increasing the compression performance because
the most significant coefficients for the reconstruction could
be selected. As such, better reconstruction quality could
be achieved with the same number of nonzero coefficients.
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FIGURE 8. Rate-distortion performance comparisons for different seismic compression methods. (a) 2004BP dataset. (b) 2007BP dataset.
(c) Model94 dataset.

By learning a data-driven dictionary from the data, the com-
pression performance of SIODL and MRDL are better than
Wavelet, Contourlet, Curvelet, and Curvelet+SP. The pro-
posed MRDL algorithm performs best in all tested seismic

datasets that were evaluated by PSNR and SSIM. For exam-
ple, compared with Curvelet+SP, the increase of PSNR could
be approximately 0.9dB, 1.4dB and 2.6dB in the 2004BP,
2007BP and Model94 dataset, respectively. This could be
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FIGURE 9. Reconstruction errors of 2004BP dataset for different seismic compression methods. (a) Wavelet. (b) Contourlet. (c) Curvelet.
(d) Curvelet+SP. (e) SIODL. (f) MRDL.

FIGURE 10. Reconstruction errors of 2007BP dataset for different seismic compression methods. (a) Wavelet. (b) Contourlet. (c) Curvelet.
(d) Curvelet+SP. (e) SIODL. (f) MRDL.

attributed to the proposed multiscale sparse dictionary learn-
ing model with rate constraint. Such strategy could opti-
mize rate-distortion performance better. A similar conclusion
could be established based on the evaluation of SSIM.

Next, we evaluate the subjective quality of different seis-
mic compression methods (Wavelet, Contourlet, Curvelet,

Curvelet+SP, SIODL, and MRDL) between the origi-
nal seismic data and the reconstructed seismic data at
rate 0.5 bits/sample. The reconstruction errors of differ-
ent seismic compression methods on 2004BP, 2007BP, and
Model94 datasets are presented in Figure 9, 10, and 11. The
edges of the seismic data are always important for geological
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FIGURE 11. Reconstruction errors of Model94 dataset for different seismic compression methods. (a) Wavelet. (b) Contourlet. (c) Curvelet.
(d) Curvelet+SP. (e) SIODL. (f) MRDL.

analysis and most of the reconstruction errors in the smooth
regions are close to 0, therefore, the reconstruction errors in
the edge regions are under the most focus in the following
paper. Generally speaking, the reconstruction errors of all
seismic data compression methods on 2004BP dataset are
larger than other test datasets. For example, the maximum
absolute value of errors on 2004BP dataset is close to 0.3,
but the maximum absolute values of errors on 2007BP and
Model94 datasets are no more than 0.1. The reason is that
more edges (a lot of tilted lines with large values in Figure 4)
exist in 2004BP dataset, and its geometric structures are more
complicated than those of 2007BP and Model94 datasets.
Therefore, the compression performance of above seismic
data compression methods on 2004BP dataset is lower than
2007BP andModel94 dataset. For each dataset, we notice the
following: Firstly, the reconstruction errors of Contourlet in
most edge regions are larger than other seismic data com-
pression methods. This is consistent with the rate-distortion
comparison in Figure 8, where both the PSNR and SSIM
values of Contourlet are lowest. Compared with Contourlet,
the reconstruction errors can be reduced in Wavelet and
Curvelet. The reason is that the edges of seismic data can be
better represented by wavelet and curvelet when compared
with contourlet. By introducing sparse coding, Curvelet+SP
is able to find a set of curvelet basis such that the seismic
data is well represented. Therefore, its reconstruction errors
are not very obvious. Due to the good fit of the dictionary
learningmodel to the edge structures, SIODL andMRDLwill
produce the most pleasing visual seismic data. This can be
verified from the fact that the reconstruction errors exist in

only a small part of the edges in Figure 9, 10 and 11. MRDL
has the best reconstruction quality for the reason that its
reconstruction errors are not noticeable in most edge regions.
For example, most of the tilted lines in 9(f), which denotes
the reconstruction errors along the edge of the seismic data,
are not apparent. Therefore, we can conclude that MRDL can
preserve the best geometric content (edge information) of the
seismic data at the same rate compared with other methods,
which further verifies its efficiency.

Finally, we add noise to the seismic data and use the
noisy data to verify the performance of different seismic
data compression methods in more realistic situations. The
2004BP dataset is used in this experiment. The noise is
additive white Gaussian noise with a mean of µ = 0
and a standard deviation of δ = 0.030. We only choose
Curvelet+SP, SIODL, and MRDL as the seismic compres-
sion algorithm because of their superior performance in pre-
vious experiments. In Figure 12, the reconstruction errors
of Curvelet+SP, SIODL, and MRDL seismic data compres-
sion methods under noise situation are presented. In general,
the reconstruction errors of all three seismic data compression
methods increase when compared with Figure 9, while the
rate is also increased to approximately 0.8 bits/sample. This
is due to the fact that noise, which can be also regarded as
a kind of high frequency signal, will also consume rates for
compression and thus degrade the compression efficiency.
By introducing sparsity constraint, the seismic data can also
be well represented by curvelet or the basis learned from
the data itself under noise situation. Thus, the increase of
reconstruction errors of the edges is limited. Therefore, all
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FIGURE 12. Reconstruction errors of 2004BP dataset for δ = 0.030 using different seismic compression methods. (a) Curvelet+SP. (b) SIODL.
(c) MRDL.

the three methods are robust to the noise. In Figure 12,
the reconstruction errors mainly include the reconstruction
errors of noise and the reconstruction errors of edges. The
reconstruction errors of noise are demonstrated as some ran-
dom speckle points in the entire seismic, the absolute values
of which may be more than 0.1. It could be found that all the
three seismic compression methods have similar reconstruc-
tion errors of noises. The advantage of proposedMRDL is the
ability to recover the edges efficiently. This could be verified
from the fact that MRDL has the smallest reconstruction
errors of edges compared with Curvelet+SP and SIODL.
This implies that the seismic geometrical information could
be better reconstructed in MRDL, which is important for
seismic applications. Therefore, we can conclude that MRDL
is also suitable for compressing seismic data in a noisy
situation.

IV. CONCLUSION
In this report, we propose a novel seismic compression
method based on multiscale and rate-constrained dictionary
learning. To fully capture the characteristics of the seismic
data, multiscale decomposition such as wavelet is integrated
into the dictionary learning process; therefore, more degrees
of freedom could be provided for compression. Furthermore,
a rate-constrained term is also included in the optimization
model, which renders the optimizationmore suitable for com-
pression purposes. To address the aforementioned optimiza-
tion problem, the alternating direction method of multipliers
is used. Finally, the experimental results indicate that the
proposed compression method results in better compression

performance compared to the state-of-the-art dictionary
learning and seismic compression methods. We also evaluate
its efficiency in a noisy situation. To further improve the com-
pression performance of the proposed method, the process
of determining the optimal weights for different subbands
should be investigated.
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