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ABSTRACT Estimation of the presence of people in real time is extremely useful for businesses in providing
better services while savingmoney. In this paper, we propose a technique for estimating the number ofmobile
devices present at a certain place and time, through analysis of WiFi probe requests from smart devices. Our
goal is to address the problem through a solution that is immune to Media Access Control (MAC) address
randomization strategies. The idea is to make use of information propagated in the environment, without the
need to know the real MAC addresses of the devices. A state machine was modeled to detect the arrival,
presence, and departure of devices in proximity to the sensors. A hardware prototype was developed for
device detection, and its efficiency was evaluated in experiments that involved comparing the results of the
proposed method with the manual measurements made by researchers. The proposed method provided very
accurate correlations between the number of mobile devices detected and the real number of people in the
environment.

INDEX TERMS Automatic people counting, occupancy estimation, building automation, WiFi probe
request, MAC randomization, opportunistic sensing, passive tracking.

I. INTRODUCTION
Large urban centers have grown at a dizzying pace, which
has often led to their disorderly growth. Accompanied by the
rise in the number of inhabitants, the demand for services
and energy consumption also increases, which leads to dif-
ficulties in the timely provision of services. Urban public
transport infrastructure and commercial establishments are
often burdened with long waiting times when meeting the
demands of their respective publics. No less important an
issue is the demand for energy in proportion to the population
growth, whether in public spaces or in residential or corporate
buildings.

The main problem to be addressed in this work is to esti-
mate the number of people through the automatic detection
of WiFi client devices. Occupancy detection can provide
information to the building control systems to allow them to
operate proportional to the number of occupants in the build-
ing [1], [2] and ultimately to optimize the building energy
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management through integrated optimal control of active and
passive heating, cooling, lighting, shading, and ventilation
systems [3]. This could lead to very positive impacts, either
from a financial or environmental point of view.

The task of investigating probe requests is related to a
challenge that has already been addressed in the literature [4].
In order to protect users’ privacy, mobile operating systems
usually hide the MAC address of the device when it is con-
ducting probes. The main strategy adopted by manufactur-
ers is randomizing MAC addresses, whose details can vary
according to the device, manufacturer, and operating system
version.

For example, from our observations, iPhone devices with
iOS 10.1.1 execute a newMAC randomization every time the
following occurs: (i) the device is locked or unlocked; (ii) a
WiFi interface is activated or deactivated; or (iii) a connection
to a WiFi access point is made or attempted. Thus, it can be
stated that in somemobile devices it is not possible to estimate
the time interval in which the same random MAC address is
used, as this period depends on the way users interact with
their smartphones.
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Some efforts have been made to discover how to break
this randomization [5]–[7]; however, the main drawback with
these proposals is that the effectiveness can be disrupted
whenever a new version of the mobile OS is released.

In the present study, our goal is to address the problem of
detecting the presence of mobile devices located at a given
place and time, through a solution that is immune to MAC
randomization strategies. The idea is to make use of this
information propagated in the environment, without the need
to know the device’s real MAC address. Occupancy detection
can provide information to these building systems so that
they operate in proportion to the number of occupants in
the building [1], [2] and, ultimately, optimize the building’s
energy management through integrated optimal control of
active and passive heating, cooling, lighting, shading, and
ventilation systems [3].

The rest of the paper is organized as follows: sections II
and III present the background and related work, respec-
tively; section IV describes the proposed method for esti-
mating the number of people at a given location and time;
sectionV describes the new version of the hardware prototype
developed; section VI discusses the current experiments and
results; and section VII presents our conclusions and future
work.

II. BACKGROUND
In this section we discuss the main topics covered in the
present study, related to the area of Computer Networks. User
devices that have a WiFi interface periodically perform a
wireless probe procedure by actively sending a control frame,
known as a ‘‘probe request’’. The purpose of this procedure is
to have nearby wireless access points send information about
wireless networks that are available for connection.

This scanning process is done whenever the WiFi interface
is enabled, regardless of whether or not the user is connected
to a wireless network. Client devices locally maintain a list
called the Preferred Network List, which contains informa-
tion about known networks to which the device has already
connected at least once. Thus, the device is constantly search-
ing for nearby wireless networks in order to find a known
network to connect to automatically. Even when the device is
already connected to a network, the scanning process contin-
ues, searching for networks with higher signal strength, thus
always providing the best possible connection quality to the
user.

Fig. 1 shows a simplified scheme of probe request mes-
sages. In this stream, the client sends a message that can be
broadcasted or directed to a specific access point. Regarding
the content, thismessagemaymention a specific SSID ormay
not contain a value for the SSID field.

Table 1 shows some of the key fields that can be captured in
probe request transmissions. Due to these transmissions being
made prior to the process of associating a client to a wireless
network, these data travel on the wireless medium without
any type of encryption. Themost important field for our study
is the Source address, which states the physical address of

FIGURE 1. Simplified probe transmission scheme.

TABLE 1. Example with some fields for probe requests captured.

the device that scanned the networks. Another field widely
used in other applications is the SSID searched for, which in
many cases can compromise the privacy of users, as already
reported in [8]–[11].

It should be noted that the aforementioned messages can
be sent on the 14 different channels used by WiFi networks.
Each channel represents a frequency spectrum used, and the
distribution in channels is aimed at minimizing collisions in
wireless transmissions.

Fig. 2 shows the 14 different channels used by WiFi net-
works, and also indicates the center of the frequency spectrum
of each of the channels. The image highlights Channels 1, 6,
and 11, which — because they do not have a frequency spec-
trum overlap between them—are the channels generally used
bywireless routers. In this paper we also discuss strategies for
monitoring the different wireless transmission channels.

FIGURE 2. Communication channels used by WiFi networks.

III. RELATED WORK
In this section, a literature review on human presence detec-
tion initiatives that focus on different business needs is pro-
vided. Previous studies have proposed different methods for
estimating the number of people present in a given area.
To our knowledge, the first work to tackle this problem is
from 1976 [12], in which the authors used time-stamped
cards to monitor queues at an airport. Over the years, several
other approaches have been used to address the problem of
presence detection; for example: infrared sensors [13], [14];
cameras [15]; pressure sensors [16], [17]; visible light sen-
sors [18]; Bluetooth [19]; WiFi [20]; RFID [21], [22]; UWB
[23]; audio-processing [24]; and PC activity [1]. However,
the use of the techniques mentioned above does not provide
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satisfactory performance in relation to the cost of implemen-
tation and performance, as explored in [25].

In [4], the idea of capturing and analyzing frames of probe
requests in order to deanonymize large clusters of people was
discussed. The authors collected approximately 11 million
probe requests at events of regional, national, and interna-
tional relevance. It has been shown that by leveraging the
information obtained from WiFi probes, it is possible to
discover the provenience of the audience of each event to
a high degree of accuracy. When generating probe requests,
smartphones end up interchanging with each other the SSIDs
of the networks to which the devices were previously con-
nected.

Privacy risks associated with the leakage of SSIDs from
networks already connected to by users were addressed
in [9] and [10]. Even after several attempts to develop alter-
natives that preserve privacy, current mobile devices have
continued to exhibit privacy-compromising behavior, by dis-
playing previously used SSIDs, which could enable the iden-
tification of users.

The randomization of MAC addresses is a strategy that
is intended to prevent potential observers from identifying
which mobile devices are within reach of a sensor. In [5],
Martin et al. reviewed the different techniques used, which
varied according to device, manufacturer, and operating sys-
tem version. The study also identified seven possible flaws
in the current technological landscape. Firstly, the adoption
rate — even though it is not necessarily a failure of the
technology itself, it is not possible to ignore that the vast
majority of devices currently in use, especially those with an
Android operating system, do not implement randomization
of MACs in any way. Secondly, the authors showed that, with
one exception, all of the Android devices tested periodically
transmit their global MAC addresses, which greatly impairs
the effectiveness of randomization. Thirdly, UUID-E Rever-
sal — a kind of attack, which was initially reported in [6] —
was discussed. It makes Android devices transmitting probe
requests with WPS data vulnerable, by exposing their global
MAC addresses. Fourthly, the authors mentioned Device
Signatures, which, in short, involve the use of sequence
numbers in an attempt to assign — to a certain device that
has disclosed its global MAC — other probes captured but
with random origin MACs. Again, they found that Android
devices are vulnerable to this tactic — unlike iOS devices,
which do not transmit their global MAC information to probe
requests. The authors also drew attention to the potential
vulnerability in authentication and association frames, which
always contain the global MAC, regardless of device. This
can be exploited by analyzing sequence numbers of these
packets and by establishing a relationship with probe requests
captured with randomized MACs, similarly to the previous
case. The problem with this approach is that it relies on the
targeted device attempting to establish a network connection
with a nearby access point, which is an event reasonably
dependent on user activity. Karma Attack— also investigated
in [6] — was the sixth method presented in [5]. It involves

simulating an access point — that has the same SSID as a
probe request captured from a certain device with randomized
MAC— in order to identify its global address. The downside
of this tactic lies in the fact that both Android and iOS have
eliminated many of the so-called direct probes; that is, probes
that have a specific target SSID as opposed to a probe in
a broadcast that requests a response from all access points
nearby. Finally, Martin et al. [5] proposed the Control Frame
Attack, the aim of which is to send a Request to Send (RTS)
to a device that is using a randomized MAC, thus prompting
the device to respond with a Clear to Send. The RTS is sent to
the previously known global MAC address, and if a response
is received, it is possible to confirm that the device is within
range of the sensor. The authors concluded that, regardless of
manufacturer, in all of the tested devices, the operating system
(or version thereof) is susceptible to this type of attack.
Although very efficient, the need to know the MAC address
in advance greatly limits the application of the technique.
For practical purposes, this approach could be used only to
monitor the presence of a reduced set of previously known
devices. In Section IV we propose a solution based on a state
machine that is able to monitor the presence of any devices
even when using random MACs.

A number of efforts have been devoted to studying how to
evaluate and classify approaches for detecting human pres-
ence. This classification can be done for dimensions such as
resolution, accuracy, nature of infrastructure, diversity of sen-
sors, applications, and user engagement, among other things.
In [1], a model was proposed to measure the occupancy
resolution in three dimensions, as can be seen in Fig. 3.

FIGURE 3. Occupancy resolution in three dimensions (modified from
Melfi et al. [1]).

The model illustrated in Fig. 3 — derived from [1],
[26] — evaluates the occupancy resolution in three dimen-
sions: temporal, spatial, and semantic. The precision of the
occupancy in days, hours, minutes, or seconds is informed for
the temporal dimension. In the spatial dimension, the authors
evaluated the scope of the occupancy measurement, from
the more generic (i.e., a building) to the more specific (i.e.,
a workstation). The third and last dimension is related to
semantic resolution of sensed occupancy:

• Level 1- Occupancy: at least one person in a zone
• Level 2- Count: number of people in a zone
• Level 3- Identity: who they are
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• Level 4- Activity: what they are doing
• Level 5- History: movement history across different
zones

The level of occupancy resolution required varies accord-
ing to the application. For example, a building power control
systemwill probably require less occupancy resolution than a
building safety system. High resolution entails higher imple-
mentation costs, while appropriate levels of data granularity
can provide the expected return on energy savings. Besides
resolution, another important aspect is accuracy. Occupancy
detection accuracy can be defined as the proximity of a
measured value (usually based on a number of readings from
a sensor) to the ground truth (actual) occupancy. Accuracy
may also depend on the engagement of system users, because,
in some cases, people may find ways to influence measure-
ments; for example, by obstructing the view of the sensors
[27]. Accuracy should be adjusted according to the applica-
tion, and should take into account the consequences that false
positives and false negatives for occupancy can generate in
the decisions taken by a building’s control system.

The nature of the infrastructure used for measurement is
also an object of study. The extraction and utilization of
occupancy information from systems that have been installed
on a property for other primary purposes — rather than those
explicitly designed to collect occupancy information — has
been referred to as implicit occupancy detection [1], ambi-
ent sensing [28], or soft sensing [29], [30]. This potentially
available information may have already been collected but
not yet used for property control purposes; or, despite being
available, it may not yet have been collected by any system.
Melfi et al. [1] proposed a three-tier classification that eval-
uates the level of complexity of the modifications needed to
promote the use occupancy sensors:
• Tier I requires no modification to existing systems other
than a collection and processing point;

• Tier II involves the addition of software to existing
infrastructure to make existing occupancy-related data
available;

• Tier III involves the addition of software and hardware
to introduce new sources of occupancy data to existing
systems.

We must emphasize that all the three tiers require some
sort of modification to the existing infrastructure. In Tier I,
in which modification is less complex, only changes in the
collection and processing of information that is already avail-
able are required. In Tier II, solutions that require some
modification in the software are classified so that occupancy
data is available. Finally, in Tier III it is no longer an implicit
solution, as it is necessary to add more hardware and software
infrastructure for occupancy sensing.

Proposed solutions for presence detection use either only
one sensing approach or they aggregate information from
more than one source. In [28], [31], and [32], the authors
promoted the combination of data from multiple sensors —
such as motion, sound, relative humidity, temperature,
light, and CO2 — to monitor occupancy of environments.

Hailemariam et al. [33] showed that the use of additional
sensors does not necessarily increase detection accuracy.
Khan et al. [34], in order to estimate occupancy, the authors
investigated the combination of environmental sensing with
contextual information, which yielded promising results.
Among the contextual information used, the following can
bementioned: weather data, electricity consumption, meeting
schedules, equipment usage, and PC activity data.

Occupancy monitoring techniques can be used for a num-
ber of different applications. Most reported efforts include
solutions to optimize the operation of HVAC (heating,
ventilation, and air conditioning) systems and the control
of lighting [35], [36], as well as for targeted advertis-
ing [37]–[39], transportation [40]–[42], waiting-time estima-
tion [15], [43], [44], indoor location [45]–[49], among other
things.

IV. PROPOSED METHOD
In this paper, we propose a solution for estimating the number
of people in a given location through the detection of wireless
devices.

As discussed in Section II, a wireless client probes at
all times, regardless of whether or not it is connected to a
wireless network. Thus, monitoring the wireless environment
turns out to be a good alternative for detecting human pres-
ence, considering the ubiquity of such devices. The main
contributions of this present study include the following:
the design of a WiFi presence detection device called Sher-
lock, which is specialized in detecting probe requests; and
a method for estimating the number of people in a given
location. This study is a follow-up of previous work [50] by
the same research team.

FIGURE 4. Bursts of probe request transmissions.

Fig. 4 depicts a partial visualization, based on data col-
lected during one of the monitoring sessions conducted in
a classroom. The rows describe 12 detected client devices
that were part of the experiment. The columns represent one-
minute time intervals, from the 49th to the 72nd minute, for
a subset of the entire monitoring period. The color for each
individual cell indicates the number of probes emitted by the
corresponding participant and captured within that minute.
White indicates that no probe was detected, while the shade
of green gets darker as the number of probes increases. In this
observation, the numbers ranged from zero to a few hundred
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FIGURE 5. State transition diagram.

every minute, for each device. Different behavior patterns
were observed; for example, some devices have continuous
transmission bursts, while others have time intervals between
one burst and another.

It should be noted that some devices that are in neighboring
rooms or approach the monitored room for a few seconds
may be detected during monitoring. Thus, it is necessary to
design a mechanism that will handle these cases, filtering out
unwanted detections and counting only people who actually
enter and remain in the monitored environment. In order to
deal with this problem, a state machine was modeled, based
on [43], in which probe requests are submitted to an algorithm
in order to detect the actual arrival and departure of people in
the monitored room.

Fig. 5 shows the state transition diagram of the modeled
state machine for detecting the presence of devices. The state
machine is instantiated every time a new MAC address is
perceived by Sherlockwhen performing transmissions.When
a probe request from a given source is detected for the first
time, the machine advances to stage 1 (potential arrival). The
next detected transmissions are then grouped into one-minute
slots to be evaluated on a consolidated basis. The potential
arrival then needs to be confirmed, and this occurs when at
least one probe request transmission from the same source
is observed in the arrival threshold (AT ) slots, following the
one in which the potential arrival was detected. Once this
threshold is reached, the machine advances to stage 2 (arrival
confirmation). It may happen that a potential arrival is not
confirmed if consecutive withdrawal threshold (WT ) slots
with no probes are detected during the arrival confirmation
phase. In this case, the machine returns to the initial stage.

When a device’s arrival is confirmed, it is also necessary
to detect its departure. When no probe of a given source
is detected in any slot, the machine advances to stage 3
(potential departure). Likewise, a potential departure event
needs to be confirmed, and this occurs when it is not possible
to observe at least one probe request transmission from the
same source in the departure threshold (DT ) slots, following
the slot in which the potential departure was detected. Once
this threshold is reached, the machine advances to stage 4
(departure confirmation). A potential departure may not be
confirmed in the situation in which the mechanism perceives

some probe request from that source before the departure
threshold is reached. In this case, the state machine returns
to stage 2 (arrival confirmation). Once a device’s departure
has been confirmed, this device returns to the initial state of
the state machine and is subject to a new detection.

As seen in Fig. 4, different values for the arrival, with-
drawal, and departure threshold parameters have a strong
influence on the arrival and departure of devices. The vari-
ation in values for these parameters will be detailed in
Section VI.

V. PROTOTYPE
A new version of Sherlock, initially described in [50], has
been developed. The current version is capable of capturing
probe requests over multiple wireless interfaces, thus increas-
ing the coverage of the capture mechanism on each of the
transmission channels. The initial version of the device had
only one wireless interface, and this interface was shared for
monitoring the 14 transmission channels.

By leveraging multiple wireless interfaces, it is now possi-
ble to maximize the monitoring time on each of the wireless
channels. Ideally, a device with 14 interfaces could monitor
each channel 100% of the time. However, due to cost issues,
it is generally not possible to design a device with such a
large number of wireless interfaces. The Sherlock version
presented in this paper has five network interfaces that can be
used flexibly, scanning the transmission channels at different
possible sharing settings.

In this new version, the mechanism has a more robust state
machine (described in Section IV) that is capable of more
accurately detecting the presence of wireless devices. The
next section will present the experiments performed in order
to validate the efficiency of the mechanism developed.

VI. EXPERIMENTS AND RESULTS
In this section, we describe the experiments and their results,
in order to validate the mechanism proposed in Section IV.

Fig. 6 shows how the network interfaces were are allocated
to perform the experiments discussed below. In all of the
experiments reported in this section, Interface 0 was config-
ured to cycle through Channels 1 to 13. Channel 14 was not
included in this list because it has been homologated in hardly
any countries. The device monitors a wireless transmission
channel for 3 seconds and then tunes to the frequency of the
next transmission channel. Data from Interface 0 is collected
and processed separately for comparison purposes. Interfaces
1 through 4 are used in parallel, interleaving the monitoring
of the 13 channels. Interface 1 monitors Channels 1, 2, and 3;
Interface 2 monitors Channels 4, 5, and 6; Interface 3 moni-
tors Channels 7, 8, and 9; and interface 4 monitors Channels
10, 11, 12, and 13. The results obtained in A were compared
with the results obtained in B, as per Fig. 6.

A key issue that must be investigated in this work is the
influence that the use of multiple antennas has on the effec-
tiveness of the human detection mechanism. It is well known
that a larger number of antennas maximizes the monitoring
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FIGURE 6. Scheme of use of the interfaces and workflow of the
experiment.

time for each channel, which leads to the detection of more
probes. However, depending on the desired application, the
increase in the number of probes does not necessarily lead to
an improvement in the effectiveness of themechanism, as will
be discussed further below.

Fig. 4 shows bursts of probes from a number of sources.
In some cases, a given source sent 602 probes in just 1minute.
In this and many other cases, it is not necessary to detect all
of the probes — just a few, or even just one probe for each
evaluation period. However, in other cases of devices that
send much fewer probes, the presence of more antennas can
determine if a particular device will be detected or not.

To answer this question, two results were produced for
each experiment: Result A, with probes collected only by
Interface 0; and Result B with probes collected by Inter-
faces 1 to 4. Since both results were collected by the same
device and during the same time interval, the results can
be compared with confidence. Finally, we have the ground
truth measurement, which corresponds to the reading made
through the visual observation of an expert (the researcher)
during the experiment. We developed a mobile application
to enable the production of a data series that expresses the
manual counting of people in a place over time.

The researcher responsible for manually counting people
used the mobile application by pressing the +1 and −1 but-
tons each time they observed someone entering or leaving
the room, respectively. Thus, a data file was produced by
recording the precise number of people (manually monitored)
in the room at any point in the experiment. According to
Fig. 6, the data produced by the mobile application enabled
the generation of a ground truth measurement, which was
used as a reference for comparison with results A and B.

A. INVESTIGATING THE USE OF MULTIPLE
NETWORK INTERFACES
The first experiment was done during a lesson in a classroom
of our university. Monitoring was done for 1 hour and 47min,
and the same device was used to capture probes in parallel
in two configurations. In the first configuration, using only
Interface 0 and switching between Channels 1 through 13,
42,169 probes were captured. In the second configuration,
using Interfaces 1 through 4 and monitoring a subset of

FIGURE 7. Detection of people through different time parameters, using
only one network interface.

channels without any overlapping channels, 82,146 probes
were captured. The first observation is that the use of multiple
antennas did not lead to a proportional increase in the number
of probes.

Fig. 7 shows the comparison between the ground truth
result (used as a reference) and the estimates made by the
proposed mechanism, with different values for the arrival
and departure threshold parameters. During this analysis,
the withdrawal threshold parameter had its value set to 1 (this
parameter is the object of study in the next experiment). The
arrival and departure threshold parameters are related to the
number of consecutive slots of presence or absence of probes
that must be observed in order to confirm a potential arrival
or potential departure. The estimates are named according to
the parameters used. For example, the ‘‘estimated-5’’ metric
is calculated with the arrival and departure parameters set to
5; the ‘‘estimated-4’’ metric is calculated with the arrival and
departure parameters set to 4, and so on. In Fig. 7, the ground
truth result is shown in blue, the ‘‘estimated-5’’ metric —
calculated with arrival and departure threshold parameters
set to a 5-slot value — is shown in red, ‘‘estimated-4’’
is in orange, ‘‘estimated-3’’ in green, and ‘‘estimated-2’’
in purple.

As expected, lower values for the arrival and departure
threshold parameters lead tomore unstable estimates and tend
to be less reliable. For higher values of these parameters,
the estimates are more stable and follow the manual measure-
ment tendency more faithfully. When observing the measure
‘‘estimated-2’’, with (AT = 2, DT = 2) configuration, that
has low values for arrival and departure thresholds, it is
noticed that the measure is very unstable and inaccurate,
oscillating between values below and above the ground truth.
This happens because, with these threshold values, the pro-
posedmechanism confirms the arrival or departure of a device
in a hasty manner. On the other hand, the ‘‘estimated-5’’ mea-
sure has a more conservative configuration (AT = 5,DT = 5)
being more stable and stays closer to the ground truth line.
In most of the time, all curves had lower values when com-
pared to the visually monitored ground truth measurements,
which is expected, because some devices may not have WiFi
enabled and some people may not even be carrying wireless
devices.
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FIGURE 8. Detection of people through different time parameters, using
four network interfaces.

FIGURE 9. Pearson correlation coefficient between each estimate and its
corresponding ground truth value.

Fig. 8 shows the same comparison, but takes into consider-
ation probes collected from four antennas. The same stability
trends observed in Fig. 7 for the metrics can also be seen
in Fig. 8, with the difference being that the estimates in the
four-antenna setup are closer to the ground truth values.

Fig. 9 shows the Pearson correlation coefficients for the
ground truth measurements and the estimated value for each
studied scenario — with either one or four interfaces and
with different values for the arrival and departure threshold
parameters. It can be seen that the ‘‘estimated-5’’ indicator
achieved similar performance in scenarios with either one
or four network interfaces. Due to the fact that it is a more
conservative mechanism, it is stabler and more resilient, even
in scenarios with a smaller sample of probes. The same
behavior cannot be seen when using the other parameters: as
the parameter values are reduced, the mechanism becomes
less conservative and more responsive to external variations.
This caused the correlation to decrease and resulted in differ-
ences between the one- and four-antenna scenarios.

Fig. 10 shows the mean relative errors between the ground
truth value and the values estimated in each of the scenarios.
It can be seen that in this evaluation, the one-antenna setup
gave an error far greater than that in the four-antenna setup.
In this case, we can see that the ‘‘estimated-4’’ indicator was
the most accurate measure considering measure of associa-
tion (0.896) and the ‘‘estimated-3’’ indicator with the lowest
mean relative error (0.117).

B. INVESTIGATING THE ACCURACY OF THE PROPOSED
MECHANISM USING DIFFERENT THRESHOLDS VALUES
As expected, the first analysis let us conclude that the use of
multiple network interfaces in probings may provide better

FIGURE 10. Mean relative error between each estimate and its
corresponding ground truth value.

correlation and a smaller mean relative error, thus indicating
better accuracy. A more detailed analysis of the influence
that the three threshold parameters (AT , WT , and DT ) can
exert on the mechanism is needed, and is given below. In this
subsection we present the results of a new analysis made with
the same data from the previous subsection. Unlike the first
analysis, in which the withdrawal threshold parameter was
set to one, the influence of this parameter is studied in this
new analysis.

The withdrawal threshold parameter represents the num-
ber of slots without consecutive probes captured during the
arrival confirmation phase for the state machine to return to
the initial stage. When this parameter is set to one, it means
that only one slot without probes during the arrival confirma-
tion phase is sufficient for the process of confirming an arrival
to be canceled. Even with this limitation, the mechanism can
be efficient in detecting the presence of devices that have a
high probe sending rate — devices that go no longer than
1 minute without sending probes during the arrival confirma-
tion phase. This situation can be seen in Fig. 4 with partic-
ipants numbered 1, 3, 8, and 12, who had an uninterrupted
flow of probes from the beginning of the interval shown
in the figure. This situation does not occur for participants
numbered 2, 6, 7, 9, 10, and 11—although present, such
devices go through periods without sending probes.

The ability of the algorithm to recognize the presence
of a device, even if it fails to send probes through one or
more slots during the arrival confirmation phase, ensures that
more devices are detected by the mechanism. Thus, the raw
data collected by the four network interfaces in the previous
experiment were processed here using different values for
arrival, withdrawal, and departure thresholds.

Table 2 shows the results obtained by varying the threshold
parameters so that trends could be observed. When looking at
this table, we can see that the best correlation occurs when the
parameters AT andDT have a value of 5, 6, or 7. As observed
in the previous subsection, high values for AT andDT provide
more stability for the estimation, avoiding fluctuations that
hinder the correlation of the series with the ground truth.
The exact inflection point can be seen in the table, in which
the Pearson’s correlation coefficient tends to increase until it
reaches its local maximum in the (AT = 6,DT = 6,WT = 2)
configuration.
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TABLE 2. Thresholds values and results.

FIGURE 11. Influence of parameter WT on detection of people.

With respect to the WT parameter, we could see that high
values for this threshold indicate significant increases in the
mean relative error. We also observed that the three lines with
WT = 2 (highlighted in the table) are those with the smallest
mean relative error. This is because a larger tolerance to slots
without probes during the arrival confirmation phase implies
an overestimated number of detected devices. Confirming
the trend found with the Pearson’s correlation coefficient,
the exact inflection point of the downward trend of the mean
relative error (i.e., when it reaches its local minimum) also
occurs in the (AT = 6,DT = 6,WT = 2) configuration.
Four curves are shown in Fig. 11: the blue one indicates

the ground truth; the red one indicates the estimate using
the (AT = 6,DT = 6,WT = 2) configuration; the orange
one shows the (AT = 6,DT = 6,WT = 3) configuration;
and the red one depicts the (AT = 6,DT = 6,WT = 4)
configuration. The high accuracy of the mechanism proposed
here for estimating the number of devices can be seen when
analyzing the graph, especially in the (AT = 6,DT =
6,WT = 2) configuration. We can also see in this same
graph the influence that the WT parameter exerts, so that the
obtained values are overestimated in relation to the ground
truth measurements.

VII. CONCLUSIONS AND FUTURE WORK
The experiments performed in this study were aimed at eval-
uating the effectiveness of a detection mechanism through
evidence left by devices in the wireless transmission medium.

In order to accomplish this verification, the ground truth
number of people present in an environment (measured by
an expert) and the estimated number of people computed by
the mechanism were compared. Our goal was to produce an
estimate that is as close as possible to the ground truth mea-
surement observed, considering that the estimate can never
be totally accurate due to the following reasons:

1) some people may not carry devices with a WiFi inter-
face;

2) some devices may not have their WiFi interfaces
enabled;

3) some people may have more than one device;
4) devices located in nearby rooms can be detected;
5) length of stay in the room may be insufficient for the

detection of a number of devices; and
6) some transmissions may not be detected, as the mon-

itoring device passes through different transmission
channels.

The method proposed for estimating the number of devices
by analyzingWiFi probe requests indicated a very strong cor-
relation with the ground truth number of people in the envi-
ronment, with a Pearson’s correlation coefficient of 0.896.
In addition to the high correlation, the mechanism was still
able to achieve a low mean relative error of 0.087 — signifi-
cant accuracy for the indicator.

The results obtained in this paper can be also compared
with different approaches developed by other research groups
that estimate the number of people in a given environment
through evidence collected from the wireless environment.
Table 3 summarizes the values of mean relative error obtained
by number of approaches. The results indicate that themethod
based on the modeling of a state machine, called Sherlock,
(proposed in this paper), proved to be more accurate than
the Linear Regression (LR) and the Support Vector Regres-
sion (SVR) based methods, both proposed in [51]. The mean
relative errors obtained by the LR-based and SVR-based
methods were, respectively, 340% and 243% higher than
those obtained through themechanism embodied in Sherlock.

TABLE 3. Comparison with other related proposals.

Despite the high correlation and low error rate observed
with the proposed method, there is still further work to be
done. The experiment needs to be replicated in other scenar-
ios in order to reinforce the claims made in this study. Addi-
tionally, improvements should be made to obtain estimates
closer to the ground truth values.

We believe that one of the answers to this problem may be
in the use of machine learning techniques. The mechanism
proposed in this work can monitor places for long periods of
time, and the data collected can be used to detect spatial usage
patterns. A new version of the method, which considers the
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data collected before and after the monitoringmoment, is cur-
rently under development. The dataset and source code used
in this research are available in [52] so that other researchers
can reproduce the experiments and verify the results.
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