
Received June 12, 2019, accepted June 24, 2019, date of publication June 27, 2019, date of current version July 18, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2925531

Low-Altitude Navigation for Multi-Rotor
Drones in Urban Areas
AHMED BAHABRY1, XIANGPENG WAN1, (Senior Member, IEEE),
HAKIM GHAZZAI 1, (Member, IEEE), HAMID MENOUAR2, (Senior Member, IEEE),
GREGG VESONDER1, AND YEHIA MASSOUD1, (Fellow, IEEE)
1School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ 07030, USA
2Qatar Mobility Innovations Center (QMIC), Qatar University, Doha, Qatar

Corresponding author: Hakim Ghazzai (hghazzai@stevens.edu)

This work was made possible, in part, by grant NPRP#9-257-1-056 from the Qatar National Research Fund (a member of The Qatar
Foundation). The statements made herein are solely the responsibility of the authors.

ABSTRACT Multi-rotor drones havewitnessed a drastic usage increase in several smart city applications due
to their 3Dmobility, flexibility, and low cost. Collectively, they can be used to accomplish different short- and
long-term missions that require low-altitude motion in urban areas. Therefore, it is important to efficiently
manage the operation of the fleet to leverage its use and maximize its application performances. In this paper,
we propose to investigate the path routing problem for the multiple drones in urban areas, where obstacles
with different heights exist. The objective is to find the best trajectories in this 3D environment while ensuring
collision-free navigation. The collision is prevented by three possible alternatives: forcing the drone to
statically hover, so its peer can pass first, making it fly at a different altitude, or completely changing its path.
Multiple charging stations are made available to allow the drones to recharge their batteries when needed.
A mixed integer linear program is first developed to model the problem and achieve optimal navigation of
the fleet. Afterward, two heuristic algorithms with different conceptual constructions are designed to solve
the trajectory planning problem with faster convergence speed. The selected simulation results illustrate the
performance of our framework in realistic 3D maps and show that the designed heuristic approaches provide
close performances to the optimal ones.

INDEX TERMS Unmanned aerial vehicles (UAVs), fleet path planning, energy management, collision
avoidance, smart city.

I. INTRODUCTION
Drones, aka unmanned aerial vehicles (UAVs), are attracting
drastic increase of attention in recent years. Their ability
extends to performing a broad variety of applications, not
just limited to military applications, but also in the pub-
lic and civil sectors. They are supposed to touch many
aspects of our daily life. Multi-rotor drones, to name a
few, are employed in monitoring and surveying applications,
communication and networking, agriculture, and various
industrial activities [2]–[4]. They are used in monitoring
industrial construction, road traffic situation, bridge inspec-
tion, making aerial videos, acting as first-responder activities
in crisis regions, and helping in rescuing missions. Multina-
tional big companies like Amazon and Uber are currently
testing several new drone-based solutions for smart cities
applications. For instance, Amazon is experimenting
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drone-based delivery systems [5] and Uber is designing an
Air taxi aiming at transporting people using multi-rotor
drones [6]. Indeed, drones present many advantages com-
pared to conventional ground vehicles due to their three
dimensional (3D) mobility, flexibility, and low-cost design.
These features make it an appealing potential candidate for
several innovative systems and applications for future smart
cities.

Such drone advantages highly contribute to a wide range
of applications and attract substantial investments. The PwC
report [7] predicts that there are total of about $127 billion
addressable future markets for commercial drone-based solu-
tions. However, drones for smart cities and other applications
confrontmany challenges that limit their practical use [8]. For
instance, battery limitation handicaps their operation range
and continuous activity, which may result in fatal conse-
quences if the battery is drained, e.g., application failure or
drone crash. Hence, it is mandatory to consider the energy
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management of these flying units [9]. Also, in urban cities,
there are many high buildings that may impede the direct
routes of drones especially when they are flying at low alti-
tude. In other words, the degrees of freedom of their mobility
are restricted by several permanent and non-permanent obsta-
cles requiring consideration for optimized path selection and
enhanced navigation. When managing a fleet of drones that
are operating in the same urban area, it is also very important
to avoid the risk of collision among them. In such crowded
areas where multiple drones are undertaking different activ-
ities, avoiding such risky situations will certainly improve
the potential of drone-based applications. Under this context,
we propose, in this paper, to design a proactive navigation
strategy for multiple drones circulating in urban areas. This
is performed while considering the energy limitation and
avoiding the risk of collision.

In this paper, we focus on ascertaining optimized routes
for a fleet of drones flying at low altitude within the region
in urban cities where buildings with different heights exist.
The objective is to minimize the total time spent by the
drones whose mission start from different locations to end at
different destination points. The path planning is performed
while ensuring that the energy level of each drone is sufficient
to complete the trip. To do so, charging stations are made
available around the city to let drones recharge their batteries
whenever it is needed. Few work have studied the case where
charging stations are placed along the way of the fixed-wing
drones [10], [11]. In one of our previous work, we have pro-
posed a charging station placement approach in urban areas
for multi-rotor drones [8]. The contributions of this paper are
summarized as follows:
• Ageneric framework is developed to determine indepen-
dent 3D paths of a fleet of drones in realistic maps of
urban areas. The objective is to find the fastest trajecto-
ries for all drones so that the overall time spent by the
drone swarms is minimal while ensuring collision-free
navigation and considering the energy constraints.

• An optimal approach based on a mixed integer linear
programming problem (MILP) incorporating the differ-
ent aspects of the investigated framework is efficiently
developed. The MILP program i) determines the fastest
routes, ii) considers the need to go to the charging
stations if required, and iii) guarantees a collision free
drone operation by imposing a time gap ensuring differ-
ent arrival instances of the drones to any segment of the
3D map. In this way, the drones that are selecting sim-
ilar segments might need to wait by statically hovering
before resuming their trips. The collision is also avoided
by forcing the drones to navigate at different altitudes
when crossing the same path segments. Alternatively,
a drone may completely select another path. The opti-
mizer will jointly determine the best trajectories for the
benefit of the whole fleet.

• Two heuristic iterative algorithms are then devel-
oped. The first one, called Ordered Fleet Iterative
Algorithm (OFIA), determines a path for a drone at

each iteration given the previous trajectories of its peers.
Hence, if there is a risk that it will collide with the prece-
dent selected drones, the current drone is forced to hover
or change its trajectory. The second algorithm, called
Step Forward Iterative Algorithm (SFIA), simultane-
ously determines the next path segments of all the fleet at
each iteration. Hence, at each iteration, the drones take
one action: cross a path segment, hover, or charge the
battery. If a collision risk exists, affected drones will be
forced to statically hover.

The proposed collision-free navigation solutions are proac-
tive approaches determining the trip plan of each member
of the fleet beforehand, i.e., before the motion of the fleet
to ensure a safe flight for the drones. They are applied and
tested on realistic maps where building and obstacle heights
are taken into account, e.g., Manhattan area in NewYork City.
The performances of all proposed solutions are evaluated and
compared to each other for various system parameters includ-
ing the battery capacity of the drones, their initial battery
levels, and arrival gap tolerance. Results show how the fleet is
efficiently managed and trajectories are obtained for different
cases. Moreover, they show that the heuristic approaches
achieve close total travel time to the one obtained using the
optimal solution with significant computational saving.

The proposed free-collision navigation framework could
be applied for various applications in smart cities. For
instance, it can be used as tool to optimize the trips of drones
acting as flying delivery units where each drone has a package
to deliver to a pre-defined destination. Another application
could be the case where drones equipped with cameras or
sensors are used to automatically capture images or collect
data during their trips, for example, to monitor a part of
the city. Many other applications requiring determining fast
trajectories in urban areas can also be executed using the
proposed framework. In emergency response applications,
some drones need to be quickly. Hence, the framework can
assign to them higher priority levels to determine the quickest
trajectories to them, while forcing lower priority level drones
to hover or change their paths accordingly. Finally, the drones
can be part of different applications sharing the same geo-
graphical area.

The rest of the paper is organized as follows. Section II
provides a literature review. Section III presents the system
model and related parameters. Section IV develops the MILP
optimal formulation of the free-collision navigation prob-
lem. Section V describes the proposed heuristic approaches.
Section VI presents and discusses selected simulation results.
Finally, concluding remarks and future directions are drawn
in Section VII.

II. RELATED WORK
Most of the previous studies investigating the employment
of drones focus on their efficiency in performing different
missions such as monitoring, tracking, and detecting with
videos/imagery [12], multicasting [13], or data exchange
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through vehicular ad hoc networks [14], [15]. They concen-
trate on the drone applications’ outputs rather than the drone
operation itself. Hence, most of these studies do not con-
sider the energy and travel time constraints in their models.
Additionally, they do not consider different flying heights of
drones and/or the risks of collision in their system design.
In practice, taking into account these parameters when assign-
ing missions to drones is essential to ensure safe operation of
the flying fleet.

For all applications described earlier, path planning is one
of the fundamental problems that have been solved [16].
In [17], the authors proposed a search algorithm for route
planning utilizing heuristic approaches. In [18], the authors
took the airspace, geo-locations, flight risk, and sens-
ing range into consideration and selected the suboptimal
routes using bio-inspired algorithms. In [19], the authors
provided a path planning for both UAVs and unmanned
ground vehicles (UGVs) to monitor targets in urban area.
In [20], the authors proposed a path planning algorithm
based on evolving waypoints for a single drone. The
authors of [21] proposed multi-drone-assisted search-and-
reconnaissance trajectory planning with the objective of min-
imizing the total latency of the system. The drones having
different speeds and starting instants aim to rapidly collect
information about the area of interest. Graph-theory based
algorithms inspired from the travel salesman problem (TSP)
are developed [22]. Other studies have focused on more gen-
eralized 3D environment [23]. In [24], the authors proposed a
modification of D* algorithm which incrementally finds path
during the flight. The selected path effectively allows drones
to avoid obstacles while navigating. The disadvantages is that
the cost of selected path is based on a greedy search instead of
global optimum solution. In [25], the authors presented a full
dynamic model of a quadrotor UAV in 3D environment. The
method considers simplified navigation model from point to
point instead of realistic road network. Similarly, a random
tree search under uncertainty 3D environment with simpli-
fied map is presented in [26]. Other approaches are based
on meta-heuristic algorithms designed for similar vehicular
routing problems [27]–[29]

In modern urban city applications, the missions of drones
could be varied and their number within the region is expected
to be high. Therefore, it is important to jointly optimize their
application performances and ensure collision-free operation
while taking into account important factors such as the capac-
ity limits of the flying units. A recent work for delivery
applications has been presented in [30]. The fleet of drones
is managed by a platform employing different routing meth-
ods include optimal, first-in-first-out (FIFO), and Hungarian
techniques. The framework ignores obstacles between the dif-
ferent points of interest, and, in terms of energy consumption,
it guarantees that, before returning to its base, each drone
must have at least 10% remaining charge.

Few studies have dealt with the collision avoidance prob-
lem for drones in their developed solutions. The authors
of [31] have studied the path planning with the aim of

minimizing drone travel time for data gathering application.
The proposed model considers energy and fair route dis-
tances as well as collision avoidance. Column generation
heuristic approach was used and the fleet of drones was
assimilated as multiple traveling sales men. The proposed
approach uses a simplified grid as a map and collision is
avoided by imposing that two drones cannot be at the grid
point at the same time. Similarly, in [32], the authors pro-
posed to use reinforcement learning and dynamic evolution-
ary algorithms to manage the drone fleet in a grid. However,
the energy issue has not been taken into account. In [33],
a MILP has been developed to determine an energy-efficient
path planning solution for multi-drone system. In this study,
collision is avoided by discretizing the 3D space and ver-
ifying the occupancy of each 3D block by one drone at
maximum. In [34], a collision avoidance problem for mul-
tiple fixed-wing drones in an open-space area is investigated
to enable cooperative flight formation and effective mission
completion. A consensus-based algorithm is proposed based
on leader-follower strategy to ensure the convergence of the
formation while maintaining a constant relative distance in
the vertical direction. Most of the previous work investigating
the collision-free navigation of drones deal with particular
scenarios or simplify their models by dealing with grid or
open-space maps and/or ignore the battery recharging issue.
In the present study, we focus on incorporating all the chal-
lenges related to the drone navigation into a single framework
generic for various drone-based applications in smart cities.

III. SYSTEM MODEL
We consider an urban area composed of multiple blocks
each containing a certain number of buildings of different
heights. We consider that the closed polygon surrounding a
block is a set of path segments through which drones can
navigate. Nevertheless, the drones can cross a block while
flying at an altitude higher than the tallest building in that
block, otherwise they have to stick to the path segments
formed by the block as shown in Figure 1. We consider L
layers identified by different height levels that drones could
possibly fly over. For instance, Layer 1 could be the layer
with the lowest height (e.g., 20 meter of altitude). It can be
assimilated to the road network of the city. Layer 2 has a
higher altitude and drones can fly over some buildings (e.g.,
30 meter of altitude). Hence, diagonal path segments can
be formed between the vertices of the block. In the present
paper, we assume that the height of a block corresponds to
the one of the highest building within that block. The use of
L layers with pre-determined and fixed altitudes is made to
organize the navigation of the fleet in the urban area. The
layers can be pre-defined by the drones operator or the local
authority in order to ensure safe and convenient navigation of
the drones, e.g., the difference between the layer heights is
enough for safe navigation and the minimum layer height is
sufficiently high according to noise and privacy regulations.
For the optimizer, the number of layers and their heights are
part of the 3D map, i.e., inputs. Without loss of generality,
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FIGURE 1. An example of three layers 3D map where the drones can
navigate through. Both the horizontal (solid black line) and the vertical
(dashed black line) path segments are bi-directional for drones. Eight
path segments and three intersections are labeled in this example. The
intersection k has four inputs and four outputs.

we assume that a drone vertically flies if it needs to move
from a layer to another.1

The 3D path grid is then composed of intersections and
path segments. In the paper’s context, each path segment i,
where i ∈ {1, . . . ,N } is connecting at maximum two inter-
sections, where N is the number of path segments in the area
of interest. We denote by I the set including all intersections
without charging stations in the area. Each intersection in I
is indexed by k where k ∈ {1, · · · , |I|}, and |I| denotes the
cardinality of the set I. We denote by Q the set including all
intersections with charging stations in the area. Each inter-
section inQ is indexed by q where q ∈ {1, · · · , |Q|}. Hence,
each path segment starts at one intersection k or q and ends at
another intersection k ′ or q′. We denote the length of a path
segment i by di, which is calculated based on the geographical
values of the two intersections. We define the geographical
values of intersection u as φu and ψu, where u ∈ {k, q},
representing the longitude and latitude values, respectively.
Consequently, for each intersection k ∈ I, we denote its input
set by IIn

k and its output set by IOut
k . In the example shown

in Fig. 1, IIn
k and IOut

k are given as follows:

IIn
k = {1, 3, 5, 8}, and IOut

k = {2, 4, 6, 7}. (1)

Similar remark can be applied for the intersections q ∈ Q but
with the possibility to land or take off from the co-located
charging station q. Note that we assume that at most one
charging station is placed at each intersection and that a
charging station can handle a sufficient number of drones
simultaneously. In practice, placing charging stations at inter-
sections is more effective than placing them in the middle

1This assumption is made to simplify the notations of the framework and
make the figures more tractable. The framework is still operational when
diagonal navigation between layers is considered.

of a path segment since they become more accessible to the
fleet.

In this framework, we assume there are D drones flying
within the area, each one of them j, where j ∈ {1, . . . ,D}, can
take four actions at every step s. The actions can bemoving up
to the higher layer, moving down to the lower layer, moving in
the same layer, and statically hovering at the same position.
We assume that the drones can hover at every intersection,
and we denote the minimum hovering time of a drone at that
intersection by T ho (e.g., 5 seconds). Hence, the drone may
hover for multiple T ho. The drone may need to hover at an
intersection to avoid entering a path segment at the same time
with its peer and thus, avoid any risk of collision.

The energy consumption for the first three actions depends
on the speed of the drone denoted by vj. For each drone
j, we denote the power consumption at path segment i by
pj,i and the power consumption for hovering at intersection
u by pj,u where u ∈ {k, q}. It is evident that the energy
consumption of vertically moving to an upper layer is greater
than horizontally moving in the same layer, which is also
higher than vertically moving down to a lower layer. All of
them are strictly greater than the hovering power.

We denote the initial battery level and battery capacity of
drone j by b0j and C̄j, respectively. If the battery of the drone
is running low, it could be reloaded in a charging station
located at the intersections q ∈ Q. To do so, the drone must
visit one of the charging stations to reload its battery before
resuming its trip. We compute the amount of energy stored
by a drone after a charging period T ch, e.g., 30 seconds,
as Echq = Pchq T

ch where Pchq is the charging power of station
q. Note that the stored energy of the drone j cannot exceed
its battery capacity C̄j when charging. Nevertheless, a drone
can charge its battery for multiple T ch periods. The period of
time T ch is the minimum time that a drone needs to spend to
charge its battery.

Finally, we define the starting position of each drone j as Stj
and the destination Dej, where Stj 6= Dej. The system model
parameters are listed in Table 1.

IV. PROBLEM FORMULATION: OPTIMAL MILP-BASED
SOLUTION
The objective of the proposed framework is to minimize
the total travel time that the drones spend to navigate from
their respective starting points to their destinations within the
city, taking into account possible extra time due to imposed
stops for battery charging. In general, the selected routes for
some drones might not be the fastest ones from an individual
perspective, but they correspond to the best routes for the
whole fleet. We define the time spent by a drone j on a
segment i as follows:

tj,i =
di
vj
. (2)

To reach the destination, the drone needs to cross multiple
segments that we define as the steps taken by the drone and
we index them by s. Hence, we introduce the decision variable
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TABLE 1. System model parameters.

xj,i,s to indicate whether a drone j has selected the route i in
step s as part of its path or not as follows:

xj,i,s =


1, if the drone j chooses path segment i

at step s,
0, otherwise.

(3)

Then, we introduce a decision variable indicating whether
drone j went to a charging station q to reload its battery at
step s or not as follows:

yj,q,s =


1, if the drone j chooses the charging station q

at step s,
0, otherwise.

(4)

Moreover, we add a decision variable indicating whether
drone j is hovering at an intersection u where u ∈ {k, q} at
step s to delay its entrance to an associated segment or not as
follows:

zj,u,s =


1, if the drone j hovers at intersection u

at step s,
0, otherwise.

(5)

Assuming that the total number of steps needed at most by
drone j to reach its destination is denoted by Sj then, the set
{xj,i,s, yj,q,s, zj,u,s} where {xj,i,s = 1, yj,q,s = 1, and , zj,u,s =
1 for s ∈ {1, · · · ,Sj}} corresponds to the entire path of
the drone j including its stops at the charging stations and
hovering at intersections, if any.

In addition to the binary decision variables xj,i,s, yj,q,s, and
zj,k,s, we introduce a continuous decision variable in order to
guarantee a collision-free operation of the fleet. We define
this decision variable as the arrival time of drone j at path
segment i and we denote it by Tj,i. The arrival time Tj,i at
each segment imust be different from any other arrival time of
another drone Tj′,i where j′ 6= j. Hence, to avoid any collision,
the difference must be greater than a certain arrival gap time
denoted by T̄ guaranteeing safe navigation over the segment

TABLE 2. Primary decision variables.

path i. Assuming that the drone j arrives at segment i at step
s∗ then, the arrival time can be expressed as:

Tj,i(s∗) =


∑s∗

σ=1

(∑N

i=1
xj,i,σ tj,i +

∑|Q|
q=1

yj,q,σT ch

+

∑|I|∪|Q|
u=1

zj,u,σT ho
)
, if drone j arrives at i,

+∞, otherwise.
(6)

Note that the framework assumes that the drones will arrive
at any segment at maximum once. There is no loop in their
trajectories.

A. UTILITY FUNCTION
Recall that the objective of the framework is to minimize
the total time spent by all drones. Consequently, the utility
function to be minimized, U , can be expressed as follows:

U =
D∑
j=1

Tj,Dej (Sj). (7)

The maximum number of steps required by all the drones to
reach their destinations can be expressed as S = max

j∈{1,...,D}
Sj.

B. PROBLEM CONSTRAINTS
In order to ensure that the selected routes are reasonable and
collision-free, the following constraints must be considered:

1) STEP BY STEP CONSTRAINTS
First, we need to ensure that the drone is moving in such a
way it is located at one path segment, at a charging station,
or hovering at an intersection u (u ∈ {k, q}) during each
step s as long as it did not reach the destination. In the latter
case, the drone stops moving. Therefore, for each drone j,
the following if-else statement are added:

if
s−1∑
σ=1

xj,Dej,σ = 0, then,

N∑
i=1

xj,i,s +
|Q|∑
q=1

yj,q,s +
|I|∪|Q|∑
u=1

zj,u,s = 1,

else
N∑
i=1

xj,i,s +
|Q|∑
q=1

yj,q,s +
|I|∪|Q|∑
u=1

zj,u,s = 0,

∀s ∈ {2, . . . ,Sj}, ∀j. (8)
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In order to convert this condition into linear constraints,
we employ the big-M method as follows:

 N∑
i=1

xj,i,s +
|Q|∑
q=1

yj,q,s +
|I|∪|Q|∑
u=1

zj,u,s


≤ 1+M

s−1∑
σ=1

xj,Dej,σ , (9a) N∑
i=1

xj,i,s +
|Q|∑
q=1

yj,q,s +
|I|∪|Q|∑
u=1

zj,u,s


≥ 1−M

s−1∑
σ=1

xj,Dej,σ , (9b) N∑
i=1

xj,i,s +
|Q|∑
q=1

yj,q,s +
|I|∪|Q|∑
u=1

zj,u,s


≤ M

(
1−

s−1∑
σ=1

xj,Dej,σ

)
, (9c) N∑

i=1

xj,i,s +
|Q|∑
q=1

yj,q,s +
|I|∪|Q|∑
u=1

zj,u,s


≥ M

(
1−

s−1∑
σ=1

xj,Dej,σ

)
,

∀s ∈ {2, . . . ,Sj}, ∀j, (9d)

where M is a sufficiently large positive number. Note that∑s−1
σ=1 xj,Dej,σ ∈ {0, 1} as after reaching the destination,

the values of xj,Dej,s≥Sj = 0.

2) INTERSECTION CONSTRAINTS
Second, we need to ensure that the drone moves in a sequen-
tial manner when crossing an intersection. For example, if the
drone enters any intersection, then, in the next step, it must
leave it, hover there, or go to the associated charging station
if available. This is guaranteed by using the following condi-
tion:

if
s∑

σ=1

xj,Dej,σ = 0, then,∑
i∈IIn

k

xj,i,s + zj,k,s =
∑
i∈IOut

k

xj,i,s+1 + zj,k,s+1,

∀s ∈ {1, . . . ,Sj}, ∀j, ∀k ∈ I,
and

∑
i∈QIn

q

xj,i,s + yj,q,s + zj,q,s =
∑
i∈QOut

q

xj,i,s+1 + yj,q,s+1

+zj,q,s+1,

∀s ∈ {1, . . . ,Sj}, ∀j, ∀q ∈ Q. (10)

3) COLLISION AVOIDANCE CONSTRAINTS
Third, the arrival time of drone j at path segment i should be
different from the ones of other drones by the time gap T̄ to

have:

|Tj,i − Tj′,i| ≥ T̄ , ∀i, ∀j, j
′
∈ {1, ...,D}, j 6= j′. (11)

Recall that the value of Tj,i is related to the decision variable
xj,i,s, yj,q,s, and zj,k,s, as given in (6).

4) BATTERY LEVEL AND ENERGY CONSUMPTION
CONSTRAINTS
Fourth, the battery level of each drone j should be enough
to fly until reaching its destination otherwise, it needs to
be recharged on the way. In other words, for each step s,
the energy consumption should be less than or equal to the
amount of stored energy. We express the energy stored in the
battery of drone j before step s as follows:
B1j = b0j ,

Bs+1j = min(Bsj −
∑N

i=1
xj,i,spj,itj,i

−

∑|I|+|Q|
u=1

zj,u,spj,kT ho +
∑|Q|

q=1
yj,q,sPchq T

ch, C̄j), ∀j.

(12)

Note that the term
∑N

i=1 xj,i,spj,itj,i +
∑|I|+|Q|

u=1 zj,u,spj,kT ho

corresponds to the energy consumed by the drone j at step s.
The total energy consumption of the drone j is expressed as
follows:

Ej =
Sj∑
s=1

N∑
i=1

xj,i,spj,itj,i +
|I|+|Q|∑
u=1

zj,u,spj,uT ho. (13)

The following condition is added to ensure that the consumed
energy cannot exceed the current battery level at each step s:

if
|Q|∑
q=1

yj,q,s = 0,

Bsj ≥
N∑
i=1

xj,i,spj,itj,i +
|I|+|Q|∑
k=1

zj,k,spj,kT ho, ∀s. (14)

Note that we also use the big-M linearization method to
convert the conditions and the statements (10), (11), (12), and
(14) into linear constraints.

5) INITIALIZATION CONSTRAINTS
Last, we initialize the starting location of each drone j as
follows:

xj,Stj,1 = 1, and
∑N

i=1 xj,i,1 = 1, ∀j. (15)

C. OPTIMIZATION PROBLEM
Finally, the optimization problem is formulated as follows:

(P): minimize
xj,i,s, yj,q,s, zj,u,s,Tj,i

U

subject to: (8), (10), (11), (12), (14), and (15).

Problem (P) is a MILP that can be solved optimally using off-
the-shelf software which implements algorithms such as the
branch and bound technique to determine optimal routes for
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the whole fleet of drones. The MILP optimization problems
are classified under the NP-hard problem which requires a
very high computational time to achieve the optimal solution.
For such proactive navigation problemswhere trajectories are
determined beforehand, running timemight not be a very crit-
ical challenge. Nevertheless, in many applications, it is rec-
ommended to achieve navigation solutions in reasonable and
fast time, especially for large-scale problems, e.g., big map
and/or large fleet size. Moreover, a drone operator may need
to update its fleet trajectories very frequently, for instance,
when a new drone joins the fleet. Hence, the optimization
problem need to be re-executed assimilating the current loca-
tions of the already flying drones as their new starting points
plus the new locations of the joining drones. This process will
need to be repeated for every update in the framework such
as adding new destinations points or changing of the fleet.
Generally, instead of MILP, meta-heuristic and evolutionary
algorithms are employed in many studies [35], [36]. How-
ever, such approaches are usually adapted to unconstrained
or lightly constrained problems andmay converge to different
local optima. Instead, in the next section, we develop heuristic
deterministic algorithms incorporating all the aspects consid-
ered in the optimal MILP-based solution.

V. HEURISTIC ALGORITHMS
In this section, we propose two heuristic approaches achiev-
ing sub-optimal solutions but converging rapidly. The per-
formances of both approaches will be compared to the ones
obtained by the MILP-based solution. The proposed heuristic
approaches are designed in an iterative manner such that a
decision is made at each iteration. The first algorithm, iden-
tified as OFIA, determines a full trajectory for a prioritized
drone then, focuses on the next drone, while the second
algorithm, SFIA, finds the simultaneous steps (selecting a
path segment, hovering, or battery reloading) taken by each
member of the fleet at each iteration. At convergence, both
algorithms generate collision-free full trajectories for the
drones with minimized total travel time while respecting the
energy availability at their respective batteries.

A. ORDERED FLEET ITERATIVE ALGORITHM (OFIA)
The OFIA algorithm starts by assigning different priorities
to the fleet members. In other words, the drone operator
decides which drone will be given priority in determining
its trajectory. For instance and in this paper, we explore two
different priority assigning methods. The first one is based on
the expected flying time of each drone. Hence, the priority
is given to the unit that has minimum flying time to reach
its destination assuming that it is solely flying in the area of
interest. The second priority method is based on the expected
energy consumption of the drone. In this case, priority is
given to the drone that has the maximum expected energy
consumption to complete its trip so that its charging time is
minimized.

Once the drones are ordered according to their priority
levels, we determine the fastest trajectory for the drone with

Procedure 1 Modified Dijkstra’s Algorithm Accounting for
Temporary Blocked Path Segments
1: Inputs: Drone j, {St,De}, t , map state mapt .
2: while The drone does not reach De do
3: for i = 1, . . . ,H do
4: Find the fastest route using Dijkstra’s algorithm

from St to De at time instant t + T̄ (i− 1) assuming
an updated state of the map, mapt+T̄ (i−1).

5: Record the total expected travel time obtained at the
ith iteration: Tj,De[i].

6: end for
7: Select the fastest path among Tj,De[i].
8: end while

highest priority in the area of interest. To do so, we employ
the Dijkstra’s algorithm applied to the graph formed by the
roads, intersections, and layers of the 3D map [37]. Other
graph-based shortest path algorithms such as Bellman-Ford
algorithm [38] and Johnson’s algorithm [39] can be adapted.
Then, the drone with the second priority level is treated. Its
path is determined based on the trajectory of the precedent
drone so as to avoid collision with it. Hence, arriving at any
intersection of the map must respect the time gap constraint
so delays are counted in these intersections. To determine the
paths of this drone when a collision risk exists. We implement
a modified Dijkstra’s algorithm to account for the closed
intersections. The intersections are not permanently closed
but they are inaccessible just for the instants where the pre-
vious drones entered them plus/minus the time gap T̄ . The
procedure describing the modified Dijkstra’s algorithm is
given in Procedure 1. The selected path for each drone needs
to consider the potential risk of collision with the previous
drones. In other words, some roads should be blocked for
the current drone during certain period of time. The blocked
roads, when the drone leaves its starting position at time t
are recorded in mapt . The drone may choose to hover and
wait before entering the blocked roads or completely select
another path. In Procedure 1, the drone has a total number H
of hovering times that results in H different expected arrival
times, the fastest pathwith theminimum expected arrival time
is selected. Then, the dronemoves one step ahead and updates
its current location and t till reaching its destination.

Similarly, the trajectories of the rest of fleet are deter-
mined. Hence, extra limitations are imposed to less priority
drones. During their trips, if the expected energy consumption
is higher than its initial battery, then the drone heads first
towards the nearest available charging station to sufficiently
replenish its battery. A drone may need to visit multiple
charging stations before reaching its destination, e.g., for long
trips or for limited battery capacity. The modified Dijkstra’s
algorithm is used to find the shortest path between two points
(starting point and charging station, two charging stations,
or a charging station and the destination). Note that we set
an energy threshold for each drone to ensure that the remain-
ing battery is sufficient to support unexpected hovering for
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Algorithm 1 OFIA
1: Inputs: {Stj,Dej}, j ∈ {1, · · · ,N } where N is the fleet

size and 3D map.
2: Sort the N drones in ascending order according to the

priority strategy of the operator; j̃ = 1 is the highest
priority drone and Ñ is the lowest priority drone.

3: for j̃ = 1, . . . , Ñ do
4: Set SPj̃ = Stj̃.
5: Set the battery level of drone j̃ as Bj̃ = b0

j̃
.

6: while The drone j̃ does not reach its destination (SPj̃ 6=
Dej) do

7: Find the fastest path for the drone j̃ using the modi-
fied Dijkstra’s algorithm between SPj̃ and Dej̃ (See
Procedure 1).

8: Calculate the expected energy consumption of
drone j̃: Ej̃.

9: if Bj̃ ≥
(
Ej̃ + Eth

)
then

10: The drone directly heads to its destination Dej̃.
11: Set SPj̃ = Dej̃.
12: else
13: The drone heads to the closest charging station

first q and sufficiently charges its battery.
14: Update the starting point of the drone j̃ by the

location of the charging station (SPj̃ = q).
15: Update the battery level of the drone j̃: Bj̃.
16: end if
17: end while
18: Record the arrival instants of the drone j̃ at each inter-

section that the drone had passed by.
19: Block those segments during the arrival instants

plus/minus gap time T̄ to prevent collision for the rest
of fleet members.

20: end for

collision avoidance reasons. The energy threshold is denoted
by Eth. The pseudo code of the OFIA is given in Algorithm 1.
The algorithm converges when all the drones reach their
destinations.

B. STEP FORWARD ITERATIVE ALGORITHM (SFIA)
The idea behind the SFIA is to determine the next step
to be chosen by each member of the fleet simultaneously.
In other words, at each iteration, each drone will take an
action and move towards its destination. To prevent collision
and battery depletion, the set of actions also include the
hovering and the battery charging when needed. The SFIA
avoids any specific pre-ordering of the drones hence, fairer
trajectories are obtained. When simultaneously reaching the
same intersection, the first-in first-out (FIFO) principle is
applied to the drones. Consequently, the drone arriving first
to the intersection enters the road segment first, while the sec-
ond drone hovers if necessary. The algorithm starts with
an initialization phase where it determines the fastest paths
of each drone using the Dijkstra’s algorithm assuming solo

Algorithm 2 SFIA
1: Inputs: {Stj,Dej}, j ∈ {1, · · · ,N } where N is the fleet

size and 3D map.
2: Initialization Phase:
3: for j = 1, . . . ,N do
4: Set SPj = Stj and DPj = Dej.
5: Set the battery level of drone j as Bj = b0j .
6: fpathj = ∅.
7: while A full path from Stj to Dej is not obtained do
8: Find the fastest path for drone j using Dijkstra’s

algorithm between {SPj,DPj}: pathj.
9: Calculate the needed energy consumption of drone

j: Ej.
10: if Bj ≥

(
Ej + Eth

)
then

11: The drone will directly go from {SPj to DPj}.
12: Update the path of drone j: fpathj = fpathj∪pathj.
13: else
14: The drone heads to the closest charging station

first q (DPj = q).
15: Find the fastest path for drone j using Dijkstra’s

algorithm between {SPj,DPj}: pathj.
16: Update the path of drone j: fpathj = fpathj∪pathj.

17: Set SPj = q and DPj = Dej.
18: Update the battery level of the drone after suffi-

ciently charging: Bj.
19: end if
20: end while
21: end for
22: Iterative Phase:
23: Find all the intersections of the 3D map that will be

passed by the drones based on their paths fpathj,∀j ∈
{1, . . . ,N }.

24: Determine the intersection k̃ where the earliest collision
will happen and find the set of colliding drones at inter-
section k̃:Dc. If no risk of collision is noticed then, k̃ = 0
and Dc = ∅.

25: while There is a collision risk (k̃ 6= 0) do
26: Apply FIFO principle among the elements of Dc.
27: Determine the intersection k̃ where the earliest colli-

sion will happen and find the set of colliding drones
at intersection k̃: Dc. If no risk of collision is noticed
then, k̃ = 0 and Dc = ∅.

28: end while

trips. The corresponding needed energy consumption is then
computed for each drone. If there is a risk of energy depletion,
the destination of the drone is changed to the nearest charging
station. Then, the iterative phase starts by taking an action for
each drone based on the path determined in the initialization
phase. After each step (action), the arrival instants of each
drone at each intersection are recorded. In case of collision
risk, the FIFO principle is applied at that intersection. The
algorithm converges when all the drones reach their destina-
tions. The pseudo code of the SFIA is given in Algorithm 2.
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FIGURE 2. Comparison between the heuristic approaches followed by
a) OFIA and b) SFIA. In OFIA, drone 2 needs to hover before entering k1
or go through k3 instead since priority is given to drone 1. In b), there is
no priority among the drones. Drone 1 arriving later needs to allow drone
2 enter k1 safely.

In Fig. 2, we highlight the differences between the OFIA
and SFIA algorithms. In OFIA, the trajectory of drone 1 is
already determined and the drone 2 will need to find its
trajectory accordingly. Hence, two options are possible at
intersection k1 either drone 2 will hover so it enters k1 after a
time gap T̄ or it will choose another path segment, e.g., move
to a higher layer. In SFIA, the drone 2 arriving first to the
intersection k1 will have the priority to enter the segment
(k1, k2). The drone 1 will then be forced to hover. Both
algorithms have their advantages and limitations. For OFIA,
assigning priority levels to drones is advantageous in case
the operator wants to promote some drones or applications.
However, the issue that significant delays can be caused to
lowest priority drones. The SFIA determines trajectory in a
much fair manner. It is useful for drones executing similar
applications. However, to avoid collision, only hovering is
possible unlike OFIA where changing the altitude (move to
an upper or lower layer) is considered.

VI. RESULTS AND DISCUSSION
In this section, we investigate the three proposed approaches,
namely the optimal MILP-based approach, OFIA, and SFIA,
for different scenarios and versus different system param-
eters. We start by describing the simulation environment.
Then, we discuss the optimal drone navigation perfor-
mance for small-scale scenarios. Afterwards, we study the
behavior of the fleet using the sub-optimal approaches for
larger 3D maps. Finally, we compare the performance of
the sub-optimal approaches to the one obtained by the
MILP in terms of achieved total travel time and running
time.

A. SIMULATION PARAMETERS
In our simulations, we consider different areas of the borough
of Manhattan in New York city, NY, USA. The data of the
off-line map containing the blocks, building heights, and road
network are extracted from the collaborative project: Open
Street Map.2 We assume that two layers are made avail-
able for the navigation of the fleet unless otherwise stated.

2https://www.openstreetmap.org

FIGURE 3. Optimal routes selected for 5 drones with different Stj (bold
circles) and a common destination (bold square). The charging station is
labeled by a black cross. The solid lines indicate the trajectories of the
drones over layer 1 while the dashed lines indicate the trajectories of the
drones over layer 2.

The altitudes of layers 1 and 2 are 15 and 25 meters, respec-
tively.3 The MILP is solved using Gurobi/YALMIP software
on Matlab with an optimality gap of 0.05% and infinite CPU
time limit.

We test the developed drone navigation program as well as
iterative algorithms using different number of drones having
common and different starting positions and destinations.
We assume that there is one charging station located at the
first layer of the map and we identify in the figures by a
black cross. We set the maximum capacity of all drones to
10500 Joule (around 3 Wh),4 and we assume that the initial
battery of each drones is 50% of the total battery capacity
unless otherwise stated. The charging power is chosen to be
40 W. We set the safety gap T̄ as 10 seconds. We assume that
the different actions taken by the drones consume different
amounts of energy: Hence, we assume that the drone con-
sumes 120W to vertically move to an upper layer, 60Wwhen
moving in the same layers, and 30 W when moving down to
a lower layer. We also assume that the drone consumes 10 W
when it is statically hovering.

B. OPTIMAL DRONE NAVIGATION
In Fig. 3, we present an example of the optimal routes of
D = 5 drones in an area centered in Time Square, New York
city, with a radius of 500 meters. Two layers are considered
L = 2. We notice that the trip of the second drone is different
from its direct shortest path between its starting position and
the destination as this drone is forced to go to the charging
station located at the South of the map to reload its battery
for 60 seconds. This extra amount of energy is sufficient
for the drone to resume its trip and reach the destination.
Another remark is that this drone, directly after leaving the
charging station, has chosen to move to layer 2 so it can
diagonally cross the block at a higher altitude to reach the
destination faster. The results also indicate that drone 4 has

3For clarity and tractability, we choose to provide simulation results in
relatively small areas with a limited number of layers. This also allows to
have a higher collision risk when a small fleet size is considered.

4The used battery is 25% of the Panasonic NCR 18650B Lithium Ion
(http://dronesarefun.com/BatteriesForUAV.html)
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FIGURE 4. Average travel time with different fleet size D, different safety gap T̄ , different battery capacities C̄ = C̄j and initial battery
levels b0 = b0

j : (a) D = 3 and T̄ = 10 s, (b) D = 3 and T̄ = 20 s, (c) D = 5 and T̄ = 5 s, and (d) D = 5 and T̄ = 10 s.

TABLE 3. Total travel time of the fleet, the values between parenthesis
are the travel times of the first drone.

chosen a longer path to avoid collision with drone 3 at layer 2.
Finally, drone 4 has statically hovered for 20 seconds to
avoid collision with drone 4 and drone 5 before reaching the
destination.

In Table 3, we provide the arrival times of the drones
using one or two layers and with or without the hovering
option (e.g., multi-rotor versus fixed-wing drones). Here, for
each scenario (D and L), we provide the sum of the arrival
times of the D drones using a Monte Carlo simulation by
averaging over 50 different samples where different starting
positions are selected. We also provide the average arrival
times of the first drone (between parenthesis). This allows

us to identify the delay caused by the congestion in the map.
By comparing the values of each column, we notice that the
average travel time of drone 1 rises with the increase of the
fleet size, since to avoid collision, the drone 1 needs to change
its trajectory or statically hover (if enabled). Adding an extra
layer with a higher altitude helps in reducing the travel time
especially for the case without hovering. In that case, instead
of completely changing their trajectories, the drones choose
to fly at higher altitude. In the hovering case, the drone
prefers to hover as it saves time and consumes less energy.
The advantage of adding layers with different altitudes is
clear in Table 3 where for example, with D = 4, the total
time is reduced by 12 seconds. With hovering, the total time
is reduced by 44 seconds. It should be noted that for the
case without hovering when (L = 1/D = 4), drone 1
’has scarified’ its trip for the benefit of the fleet. In many
generated samples, infeasibility solutions are observed for the
hovering-free scenario especially with the one layer map as
it is easily to be trapped into a collision. The probability of
collision is around 5% and this will trivially increase as more
drones are involved. Thanks to the hovering property, the risk
of collision in urban areas is significantly reduced.
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FIGURE 5. Special case: Trajectories of six drones in a small area with limited path segments and two layers. The starting point, destination, and the
charging station are marked by a circle, a square, and a cross, respectively.

In Fig. 4, we analyze the impact of the battery parameters,
i.e. battery capacity and initial battery levels, on the drone
traveling time. The x-axis represents the capacity of drones’
batteries C̄ = C̄j,∀j, the y-axis indicates the average travel
time for single drones. The initial battery levels are given
in the legends. For example, 60% indicates that the initial
battery level is 60% of the total battery capacity. Fig. 4(a) and
Fig. 4(b) show that, for a small battery capacity and initial
battery level, the arrival time significantly increases as the
drones will need to recharge their batteries many times on
their ways to the destination. Indeed, by increasing the initial
battery level from 40% to 50%, the charging time has dropped
by more than 180 seconds when C̄ = 8000 J. Increasing
the values of theses parameters relaxes the problem and
provides better results. In some particular cases, where the
initial battery is 40% and the battery capacity is less than
7000 J, the program returns infeasibility since at least one
of the drones does not have sufficient energy to reach the
charging station. Increasing the battery by 10% may help in

reducing the arrival time by more than 40% and by more than
65% for an initial battery positive shift of 20%. This time
saving trivially depends on several other factors including the
drones’ starting positions and the locations of the charging
stations. From the rest of the figures, we can see that reducing
the time arrival gap leads to a better time saving, however,
in practice, it may lead to a higher collision rate.

Fig. 5 to Fig. 6, we investigate a very special case where
limited path segments are made available to the drones.
We aim to visualize the optimal trajectories selected for
(D = 6) drones in a simple 2-layer road map. We employ
different colors to represent different drones. The starting
positions (black circles) are intentionally chosen in a sym-
metric way for each pair of drone to increase the collision
risk. The destinations for all the drones are co-located at the
extreme left of the figure (black square), while the charging
station is located at the extreme right of the figure (black
cross). Hence, if its energy is not sufficient to go directly
to the destination, the drone will be forced to return back to
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FIGURE 6. Special case: Time schedule of the whole fleet. The length of each segment (linking two circles) indicates the time needed to perform an
action. The labels on each line (e.g., a1) indicate the path segments crossed by a drone. ‘‘hover’’ indicates the hovering action. ‘‘charge’’ indicates
that a drone is charging its battery at the charging station. ‘‘up’’ and ‘‘down’’ indicate that a drone is moving to the upper layer or to a lower layer.

the charging station to replenish its battery. From Fig. 5a to
Fig. 5b, we provide the exact trajectory of each drone in the
3D map while in Fig. 6, we provide the exact actions (time
schedule) taken by each drone at each time instant. We can
notice that four of the six drones went back to the charging
station to recharge their batteries. All of them have almost the
same charging time needed to go directly to the charging sta-
tion. The first drone (black) chooses to go to the second layer
then go to the charging station while the second drone (blue)
chooses to go to the charging station directly over layer 1
(chose its fastest path). The reason is that both drones will
collide if they choose their shortest paths. Similar remark
can be noticed to drone 3 (green) and drone 4 (cyan). For
drone 5 and drone 6, as they are close to the destination, there
is no need that they go to recharge, so both of them head
directly to the destination through the first layer. However,
drone 6 decides to hover for 10 seconds at the intersection to
let drone 5 goes first. Fig. 6 shows that the arrival times of the
different drones are different except for drone 5 and drone 6.
Their arrival times are almost the same as each one of them
is coming from different path segments (layer 2 → layer 1
(down) for drone 3 and a10 for drone 4).

C. SUB-OPTIMAL DRONE NAVIGATION APPROACHES
In this section, we evaluate the performance of the proposed
heuristic approaches and compare their behaviors in deter-
mining the trajectory for each member of the fleet.

In Fig. 7, we provide different selected trajectories for a
fleet of drones of size 8 using the OFIA based on two different
ordering schemes, i) fastest route order (Fig.7a) and ii) energy
consumption order (Fig. 7b) as well as the SFIA (Fig. 7c).
There are eight drones flying from two starting positions
(black circles) and heading to seven different destinations
(colored squares). Two charging stations exist in the region
(black crosses). This 1-layer map depicts the area around

central park, Upper Manhattan. The priorities of the first
ordering scheme rank the drones as follows: 2, 1, 4, 3, 5,
6, 7, and 8 where drone 2 has the higher priority, while the
priorities of the second ordering scheme rank the drones as
follows: 3, 4, 1, 2, 5, 6, 7, and 8. If we take the case of drone 3
(green), that has the highest priority in Fig. 7b, we notice
that it heads directly to its destination without hovering. But,
in Fig. 7a, where it is ranked forth, the OFIA assigns to it a
longer route to prevent its collision risk with drone 2. Hence,
its expected energy consumption is higher, so drone 3 heads
to the charging station first then flies to the destination. On the
contrary, drone 2 (blue) heads to the destination directly
in Fig. 7a, while to modify its trajectory in Fig. 7b. Similar
remarks can be noticed for the other drones. In Fig. 7c,
we notice that, with the SFIA, there is no presumed order. So,
to avoid collision, drone 5 moves first, then drone 6 hovers
10 seconds, and drone 7 hovers 20 seconds, and finally drone
8 hovers 30 seconds. All of them head to the charging station
first and then go to their respective destinations. In SFIA,
the fastest trajectories of all drones remain unchanged but
hovering is mandatory to prevent collision. It is also worth
to note that many path segments are available when crossing
the central park due to its the possibility to fly at low altitude
between all the surrounding intersections.

In Fig. 8, we compare between the performances of the
OFIA for different ordering schemes and the ones of SFIA.
We explore different fleet sizeD = 5 andD = 10 and we run
a Monte Carlo simulation to record the average arrival time
achieved by each algorithm. We find out that, on average,
SFIA outperforms the OFIA. The reason is that manually
assigning orders to the drones may lead to less suboptimal
results. Indeed, it is true that the prioritized drones are pro-
moted but the order may negatively affect the trajectories of
the rest of the fleet. Hence, there might be some situations
where, with OFIA, some drones need to hover more time
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FIGURE 7. Trajectories of eight drones using the heuristic approaches in the area of upper Manhattan. Starting points and destinations are located at the
west and east of the Central Park.

FIGURE 8. Average travel time using different heuristic approaches for
T̄ = 10 s with (a) D = 5 and (b) D = 10.

compared to SFIA where drones are treated in a fair manner.
Moreover, the flexibility of hovering is set to be high (the
drone can hover as much as it is needed) so it is rare to find
cases where the travel time of a new selected path is shorter
than the old path plus hovering in intersections. Nevertheless,
the idea of assigning priorities to certain drones remains ben-
eficial in some special missions such as emergency response
applications. Fig. 8 also shows that, on average, ordering the
drones based on their expected energy consumption achieves
slightly better results than ordering them based on their
expected arrival time.

TABLE 4. Total running time in seconds of the optimal and heuristic
approaches using three, five, and ten drones.

D. COMPARISON BETWEEN OPTIMAL AND HEURISTIC
APPROACHES
In Fig. 9, we explore the performances of the heuristic
approaches and compare them to the ones of the MILP-based
solution for different fleet size and battery properties. It is
shown that heuristic approaches achieve close average arrival
time compared to the MILP-based solution in most of the
cases, especially for high battery capacity levels. Indeed,
with higher battery properties (higher battery capacity and/or
initial battery levels), more flexibility in managing the fleet
is offered. Hence, the heuristic approaches have more chance
to find better solutions and it is less required for them to head
to the charging station. Hence, the need to go to intermediate
stops for the drones negatively affect the performance of the
heuristic algorithms since the modified Dijkstra algorithm
(Procedure 1) for OFIA and the Dijkstra algorithm for SFIA
will be executed more than once. In some cases, one of
the algorithm fails to reach close performance to the ones
achieved by the MILP. This is subject to several factors
including the conceptual construction of each algorithm and
the initial statuses of the drones, e.g., their initial locations or
initial battery levels. In such scenarios, the drone operator can
test both heuristic approaches and select the most effective
one.

In terms of convergence speed, Table 4 evaluates the run-
ning time of all proposed approaches. It can be seen that
suboptimality of the heuristic approaches is compensated
by an extremely fast computational speed compared to the
one of the MILP-based solution, which requires hundreds to
convergence. We can conclude that heuristic approaches can
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FIGURE 9. Comparison of the achieved average travel time, heuristic approaches versus optimal solution: (a) D = 3 and b0 = 0.4B̄,
(b) D = 3 and b0 = 0.6B̄, (c) D = 5 and b0 = 0.4B̄, and (d) D = 5 and b0 = 0.6B̄.

be effectively employed for real-time scenarios where quick
collision-free navigation can be determined for large fleet of
drones. The OFIA is slower than SFIA since it is based on the
modified Dijkstra’s algorithm which more complex than the
simple Dijkstra’s algorithm executed by the SFIA. Note also
the impact of increasing the drone density on both heuristic
algorithms. By increasing D from three to five and then to
ten, the running time of OFIA increased by around 1 and
1.2 seconds, respectively while the SFIA running time con-
stantly increases by around 0.4 seconds only. This is because,
withOFIA, increasing the drone fleet or the drone densitywill
lead to higher collision risk and hence, themodifiedDijkstra’s
algorithm proposed in Procedure 1 will need more iterations
to converge, which delays the OFIA convergence.

VII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS
In this paper, we have developed a generic framework ensur-
ing collision-free navigation for a fleet of drones in urban
areas. This is performed while taking into account the energy
properties of the drones and their ability to reload their bat-
teries in charging stations made available within the area of
interest. Collision is avoided by enabling stationary hovering,
altitude changing, and/or re-routing. A MILP is first formu-
lated to determine the optimal and fastest routes to be chosen
by each drone. Then, heuristic approaches with significantly
faster running time are developed to find sub-optimal solu-

tions. Our results have illustrated the obtained trajectories
and time plans of the fleet members for different scenarios.
They have also shown how certain drones modify their trips
for the benefits of their peers. The results also explored and
compared between the performance of the different proposed
approaches in realistic 3D maps. The proposed framework
can be used to manage large-scale of drones executing similar
or different smart city applications while guaranteeing safe
navigation and avoiding battery depletion.

Addressing the different challenges related to the drone
navigation is primordial for enhancing the quality of experi-
ence and safety of smart city applications’ users. In addition
to the battery limitation and collision issues, many other
open challenges can still be confronted in practice. For
instance, real-time solutions, instead of proactive approaches,
are needed to better enhance the navigation of drones. Hence,
in case of unexpected events or missions, the drones can
quickly react and determine new trajectories using central-
ized or decentralized schemes. Artificial intelligence can be
employed to empower the flying units by autonomous and
self-navigation technology that allow them make decisions
on the fly. Finally, in urban areas, drones can exploit public
transportation to navigate such an environment [40], [41].
Hence, navigation could be designed in accordance to the bus
schedules so that drones can land over a bus and then take
off when needed. This helps in saving energy and even allow
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drones recharge their batteries while they are on the top of a
transportation unit. In our ongoing and future work, we will
focus on such solutions allowing better navigation of drones
in urban areas and test them in real-world environment.
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