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ABSTRACT Accurate and reliable vehicle state estimation results are very significant to the active safety,
energy optimization, and the intelligent control of vehicles. In this paper, to improve the accuracy and
adaptability of vehicle running state estimation, the vehicle running states fused estimation strategy is
presented for in-wheel motor drive electric vehicle using the Kalman filters and tire force compensation
method. The concept of electric drivewheelmodel (EDWM) is developed and deduced, and then, considering
that the EDWM is a nonlinear model with an unknown input, the design concept of high-order sliding mode
observer is used to construct the state space equation of longitudinal force. To improve the accuracy and
the reliability of vehicle state estimation, an overall estimation strategy with information fusion and tire
force compensation is designed, in which a weighted square-root cubature Kalman filter with an adaptive
covariance matrix of measurement noise is developed for observer design. Finally, the simulations in
CarSim-Simulink co-simulation model and experiments are carried out, and the effectiveness of the designed
estimation strategy is validated.

INDEX TERMS Electric vehicle, state estimation, information fusion, cubature Kalman filter.

I. INTRODUCTION
With the gradual increase of vehicle ownership, the environ-
mental pollution problem caused by vehicle exhaust emis-
sions is becoming more and more serious. The vigorous
development of automobile industry and the rapid devel-
opment of technology have promoted social change and
progress [1], [2], but the related problems brought by it
should not be ignored. With its zero-emission environmen-
tal protection characteristics, electric vehicles have become
one of the recognized solutions to alleviate environmental
pollution problem [3]–[5]. With the development and deep-
ening of the research, a new drive type of electric vehicle,
that is in-wheel motor drive electric vehicle, has attracted
widespread attention [6], [7]. The in-wheel motor drive elec-
tric vehicle is actuated directly by the four in-wheel motors,
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which eliminates the complex transmission structure such
as differential mechanism to make the mechanical struc-
ture more concise [8], [9]. Moreover, the four in-wheel
motors can be independently controlled and have relatively
high response speed, which greatly improves the degree of
freedom in vehicle dynamics control, thus providing more
design potential for vehicle energy optimization and stabil-
ity control [10]–[12]. As we all know, in the closed-loop
motion control system of vehicle, precise driving states of
vehicles can provide reliable inputs for the control system,
and is the basis for the good operation of the vehicle con-
trol system and achieving ideal control objectives [13]–[16].
However, some vehicle states need to be collected by
extreme expensive sensors, and even some of them are dif-
ficult to be measured directly by vehicle-mounted sensors.
In this case, people tend to design the model-based vehicle
state observer [17], [18], using measurement information of
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low-cost sensor to calculate the required vehicle state vari-
ables, and apply it to the vehicle control system. Based on
the above analysis, it is necessary and significant to pursue
the research of vehicle state estimation [19]–[21].

In recent years, more and more advanced control the-
ories have been introduced to the application research in
the field of vehicle engineering [22]–[24]. Many researchers
have achieved fruitful results in combination with the actual
situation of vehicle dynamics [25], [26]. The Kalman fil-
ter is one of the most widely-used techniques in the stud-
ies of vehicle state estimation [27]–[30]. With the gradual
improvement of consumer demand for vehicle performance,
the precision degree of vehicle is getting higher and higher,
and the vehicle control system is becoming more and more
complex correspondingly, which cause that the current vehi-
cles are dependent on more accurate vehicle state estima-
tion results [31]–[35]. In this case, a series of improved
Kalman filter methods have been widely studied and applied,
in which the effect of estimation has been significantly
improved [36]–[41]. In [42], the vehicle dynamics model has
been established with the longitudinal, lateral, and vertical
kinetic equations being considered, to obtain the estima-
tion of vehicle sideslip angle, the extended Kalman filter
and the recursive least squares algorithm is combined to
design the observer and improve the estimation accuracy.
In [43], the full-state vehicle dynamics model and modified
tire model are considered, and the unscented Kalman filter is
designed with estimation fusion method, in which the inter-
acting multiple model method is applied to adjust the weights
of different nonlinear models. In addition, some researchers
also pay attention to the influence of uncertainties such
as non-linear disturbances on estimation results, and many
novel estimation strategies have been designed [44]–[48].
With the revolution of sensor technology and the improve-
ment of sensor production capacity, some researchers have
adopted new sensors or low-cost sensors to design different
and novel estimation strategies, and created some new ideas
for observer design [49]–[53]. The cubature Kalman filter
method avoids the complex calculation of Jacobian matrix
and the problem of excessive large error or even divergence
of the filter caused by the system nonlinearity in extended
Kalman filter. Moreover, the cubature Kalman filter can
effectively avoid the problem of high-dimensional stability
degradation of existed in unscented Kalman filter. Among
the existing Kalman filter algorithms, the cubature Kalman
filter is the most accurate filtering algorithm in theory, which
can provide a reliable theoretical basis for vehicle driving
state estimation. In addition, in the design process of vehicle
driving state estimation strategy, if we can make full use of
the existing redundant state information, through information
compensation and iteration, it will help to further improve the
overall estimation accuracy.

In this paper, motivated by above analysis, a design of
vehicle running states fused estimation strategy usingKalman
filters and tire force compensation method is proposed. Uti-
lizing the electric-driving characteristics of in-wheel motor

drive electric vehicle, the concept of electric drive wheel
model (EDWM) is developed and deduced. The vehicle
model with 3 degree of freedom, the EDWM, and the
tire model are established for observer design. A weighted
square-root cubature Kalman filter (WCKF) is studied for
vehicle state estimation with the covariance matrix of mea-
surement noise being adjusted in real time. Considering that
the EDWM is a nonlinear model with unknown input, to facil-
itate the estimation of longitudinal tire force, the design con-
cept of high-order sliding mode observer is used to construct
the state space equation of longitudinal force. Then, themulti-
dimensional state space discrete model is presented for the
vehicle state estimation based on the WCKF. In order to
improve the accuracy and reliability of the estimation system,
an overall estimation strategy with information fusion and
tire force compensation is designed, in which the longitudinal
and lateral tire force can be compensated adaptively and the
redundancy of information is fully utilized to improve the
accuracy and adaptability of estimation results.

The rest of this paper is organized as follows. The vehicle
model is presented in Section 2. The fused method for vehicle
running state estimation based on Kalman filter is designed in
Section 3. The simulation results are shown in Section 4. The
experimental verification is shown in Section 5, followed by
the conclusive remarks.

II. VEHICLE MODEL
A. VEHICLE DYNAMIC MODEL
A schematic diagram of vehicle model with 3 degree of free-
dom (3-DOF) in the longitudinal, lateral, and yaw directions
is shown in Fig. 1. The origin of dynamic coordinate system
xoy fixed on the vehicle coincides with the vehicle gravity
center, in which the x axis is the longitudinal axis of the
vehicle (the forward direction is positive), and the y axis is
the lateral axis of the vehicle (the right-to-left direction is
positive). The pitch, roll, vertical motions and the suspension
system of the vehicle are ignored. It is assumed that the
mechanical properties of each tire are the same. The serial
numbers 1, 2, 3, and 4 of four wheels are respectively cor-
responding to the front-left, the front-right, the rear-left and

FIGURE 1. Vehicle dynamics model.
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the rear-right wheel. The dynamic equations of the 3-DOF
vehicle model can be expressed as

v̇x = γ vy + ax (1)

v̇y = −γ vx + ay (2)

Izγ̇ = (Fx1 + Fx2) lf sin δ − (Fy3 + Fy4)lr
+
(
Fy1 + Fy2

)
lf cos δ + (Fy1 − Fy2)bf sin δ

− (Fx1 − Fx2)bf cos δ − (Fx3 − Fx4)br (3)

where vx and vy represents the longitudinal and lateral vehicle
speed, respectively. And ax and ay represents the longitudinal
and lateral vehicle acceleration, respectively. γ represents the
yaw rate,m is the vehicle mass, δ represents the steering angle
of the front wheels, Iz stands for themoment of inertia.Fxj and
Fyj(j = 1, 2, 3, 4) are the longitudinal and lateral forces of the
jth tire, respectively. lf and lr are the distances from vehicle
gravity center to the front and rear axle, respectively. bf and
br are the half treads of the front wheels and rear wheels,
respectively. The longitudinal and lateral vehicle acceleration
are computed as

ax =
1
m
(Fx1 + Fx2) cos δ −

(
Fy1 + Fy2

)
sin δ + Fx3 + Fx4

(4)

ay =
1
m
(Fx1 + Fx2) sin δ +

(
Fy1 + Fy2

)
cos δ + Fy3 + Fy4

(5)

The vehicle sideslip angle can be expressed as

β = vy/vx (6)

where β represents the vehicle sideslip angle.

B. DEDUCTION OF EDWM
The diagrammatic sketch of EDWM is shown in Fig. 2. The
in-wheel motor drive electric vehicle studied in this paper is
actuated by four in-wheel motors, and the electromechanical
coupling driving wheel composed of a motor and a tire can
be considered as an independent information module, so the
concept of the EDMW is introduced to the longitudinal force
estimation process and the current, speed and voltage are used
to estimate the longitudinal force. The rotational dynamic
equation of EDWM is expressed as

J1ω̇j = TLj − Fxjr (7)

where ωj represents the rotational speed of the jth wheel,
J1 denotes the inertia moment, r represents the effective
rolling radius of EDWM, TLj stands for the load torque of
in-wheel motor. The balance equation of torque in the output
shaft of EDWM is shown as

J2ω̇j + bωj = Kt ij − TLj (8)

where J2 is the rotational inertia of in-wheel motor rotor, b is
the damping coefficient, Kt is the motor torque constant, ij is
the bus current. The dynamic voltage balance equation of
equivalent circuit in in-wheel motor can be modeled as

Uj = Rij + Lij + Kaωj (9)

FIGURE 2. Electric driving wheel model.

where Uj is the bus voltage of in-wheel motor, R is the equiv-
alent resistance of winding, L is the equivalent inductance
of winding, Ka is the inverse electromotive force coefficient.
Substituting equation (7) into equation (8) and combining it
with equation (9), we can obtain the EDWM as follows,

i̇j = −
R
L
ij −

Ka
L
ωj +

1
L
Uj (10)

ω̇j =
Kt
J
ij −

b
J
ωj −

r
J
Fxj (11)

where J = J1 + J2.

C. TIRE MODEL
The empirical magic formula of tire model is used in order to
estimate the longitudinal and lateral tire forces, which can be
computed as

Fy = D sin{C arctan[Bα − E(Bα − arctan(Bα))]} (12)

where B is the stiffness factor, C is the curve shape factor,
D is the peak factor, E is the curve curvature factor, α is the
wheel side slip angle. The tire model parameters like B, C ,
D, E , are related to the tire vertical load. The vertical load of
each tire can be calculated as

Fz1 = lr (
mg
2l
+
mayh
2bf l

)−
maxh
2l

Fz2 = lr (
mg
2l
−
mayh
2bf l

)−
maxh
2l

Fz3 = lf (
mg
2
+
mayh
2br l

)+
maxh
2l

Fz4 = lf (
mg
2
−
mayh
2br l

)+
maxh
2l

(13)

where Fz1, Fz2, Fz3, and Fz4 are the vertical load of corre-
sponding tires, h is the height of the center of gravity, g is the
acceleration of gravity. The side slip angle of each wheel can
be obtained by

α1 = δ − arctan
vy + lf γ

vx + bf γ /2

α2 = δ − arctan
vy + lf γ

vx − bf γ /2

α3 = − arctan
vy − lrγ

vx + brγ /2

α4 = − arctan
vy − lrγ

vx − brγ /2

(14)
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The tire slip rate can be obtained as

sj = sgn
(
ωjr − vrj

) max
(
vπ j, ωjr

)
−min

(
vrj, ωjr

)
max

(
vnj, ωjr

) (15)

where sj represents the tire slip rate of jth tire, nj represents
the wheel rotating speed of jth tire, vnj represents the wheel
linear velocity of jth tire, r represents the effective wheel
radius. The coupling relationship of four-wheel speed can be
expressed as

ω1 =
30
πr

[(
vx + bf γ

)
cos δ +

(
vy + lf γ

)
sin δ

]
ω2 =

30
πr

[(
vx − bf γ

)
cos δ +

(
vy + lf γ

)
sin δ

]
ω3 =

30
πr

(vx + brγ )

ω4 =
30
πr

(vx − brγ )

(16)

III. FUSED MEHTOD FOR VEHICLE RUNNING STATE
ESTIMATION METHOD BASED ON KALMAN FILTERS
A. WEIGHTED SQUARE-ROOT CUBATURE
KALMAN FILTER (WCKF)
The vehicle dynamics model can be expressed as the follow-
ing discrete state space equations

xk = f (xk−1)+ wk−1
yk = h (xk)+ vk (17)

where xk is the state vector of system, yk is the measurement
vector of system. f (•) and h(•) are the nonlinear functions
and represents the state transition matrix of state equation
and measurement equation, respectively. wk and vk repre-
sents the system noise and measurement noise, respectively,
and they are the uncorrelated white noise vectors of zero
mean. The covariance matrix of wk and vk is Qk and Rk ,
respectively.

In order to guarantee the symmetry and non-negative def-
initeness of covariance matrix, and improve the estimation
accuracy of cubature Kalman filter, in the existing state esti-
mation researches, the square-root cubature Kalman filter is
widely used, in which the square root form of the error covari-
ance matrix is used for iteration. The square-root cubature
Kalman filter requires precise prior statistical information
of measurement noise. When the statistical characteristics
of measurement noise are uncertain, the filtering accuracy
will decrease or even diverge. For the estimation of vehicle
driving state, the factors such as complex driving environ-
ment, various state changes and uncertainties will cause the
change of statistical characteristics of measurement noise.
The covariance matrix of measurement noise is adjusted
online by using the moving window estimation method, and
the idea of weighting is introduced. According to the useful-
ness of information at different time for measurement noise
statistics, the weights of information at different time in the
window are dynamically adjusted to enhance the utilization
of useful information, which can effectively improve the

estimation accuracy of vehicle state filtering. The iteration
steps of weighted square-root cubature Kalman filter can be
written as

(S1) Initialization:
The initial state value and the initial mean square root of

error covariance matrix can be expressed as

x̂0 = E (x0)

S0 =

√
E
((
x0 − x̂0

) (
x0 − x̂0

)T) (18)

where x̂0 denotes the initial state value, S0 is the initial mean
square root of error covariance matrix.

(S2) Computation of cubature points:
The third-order spherical-radial volume criterion is used to

calculate sampling points and weights.

xi,k−1/k−1 = Sk−1/k−1ξi + x̂k−1/k−1, i = 1, 2, · · · , 2n

(19)

where i are the serial numbers of cubage points, Sk−1/k−1
is the square root of error covariance matrix Pk−1/k−1 and
can be computed as Pk−1/k−1 = Sk−1/k−1STk−1/k−1, ξi can
be written as

ξi = xk−1 +
√
nPxei

wi =
1
n
, i = 1, 2, · · · , 2n (20)

where ei is ith unit vector with element 1, wi is the weight.
(S3) Time update:
Firstly, the cubature point propagation is carried out.

x∗k/k−1 =
√
w1
(
x1,k/k−1 − x̂k/k−1

)
· · ·
√
w2n

(
x2n,k/k−1 − x̂k/k−1

)
xi,k/k−1 = f

(
ξi,k−1

)
, i = 1, 2, · · · , 2n (21)

Then, calculate the one-step prediction state.

x̂k/k−1 =
2n∑
i=1

wixi,k/k−1

STk/k−1 = QR
[(
x∗k/k−1SQ,k−1

)T]
(22)

where QR represents the orthogonal-triangular decomposi-
tion, SQ,k−1 is the square root of system noise error covari-
ance matrix.

(S4) Measurement update:
The innovation vector is expressed as

εk = yk − h
(
x̂k/k−1

)
(23)

The optimal estimation of covariance matrix of innovation
vector in sliding sampling interval with length N is obtained
by moving window method.

R̂k =
N∑
j=1

εk−jε
T
k−j (24)
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R̂k =
1
N

 N∑
j=1

εk−jε
T
k−j −

2n∑
i=1

wi
(
h
(
εi,k-j/k−j−1

)
− ŷk−j/k−j−1εTk−j

) (
h
(
εi,k-j/k−j−1

)
− ŷk−j/k−j−1εTk−j

)T (25)

where R̂k is the covariance matrix of innovation vector. The
moving window method can calculate the approximate sta-
tistical characteristics of measurement noise at the current
time by using the information in the window range, and can
realize the online estimation of measurement noise statistics.
However, it is unable to accurately get the real situation
of current measurement noise statistics by using the same
weights for each time in the window without distinguishing
them. Therefore, a weighted method is used to set different
weights according to the usefulness of information at differ-
ent times in the window, which makes the estimated statisti-
cal characteristics of measurement noise more accurate. The
covariance matrix of weighted innovation vector is written
as (25), shown at the top of this page, where N is the length
of moving window.

The Cholesky factorization is obtained as

STyy,k/k−1 = QR
[(
yk/k−1 Chol

(
R̂k
))T]

Pxz,k/k−1 = x ′k/k−1y
T
k/k−1 (26)

where Chol represents the Cholesky decomposition. In for-
mula (25), the moving window length can be expressed as
1
N =ci =

√
εk−jε

T
k−j, where ci is the weight coefficient.

That is, the size of weight coefficient will change with the
variation of the iteration error, and by Cholesky decompo-
sition, the obtained covariance matrix of innovation vector
will vary with the statistical characteristics of iteration error
at the current sampling time. The cubature points used for
measurement update is calculated as

x ′k/k−1 =
√
w1
(
ξ1,k/k−1 − ŷk/k−1

)
· · ·
√
w2n

(
ξ2n,k/k−1 − ŷk/k−1

)
(27)

where ŷk/k−1 =
2 n∑
i=1

wih
(
ξi,k/k−1

)
. The propagation of cuba-

ture point is expressed as yi,k/k−1 = h
(
xi,k/k−1

)
, then,

the prediction results of measurements can be expressed as

yk/k−1 =
√
w1
(
h
(
ξ1,k/k−1

)
− ŷk/k−1

)
· · ·
√
w2n

(
h
(
ξ2n,k/k−1

)
− ŷk/k−1

)
(28)

The state update equation is

x̂k = x̂k/k−1 + Gk
(
yk − ŷk/k−1

)
(29)

where Gk = Pxy,k/k−1P
−1
yy,k/k−1 =

(
Pxy,k/k−1/PTyy,k/k−1

)
/PTyy,k/k−1, S

T
k = QR

[(
x ′k/k−1 − Gkyk/k−1GkSR,k

)T]
.

B. VEHICLE RUNNING STATE PRELIMINARY
ESTIMATION USING WCKF
In order to obtain the preliminary estimation results of vehicle
driving state, the discretization results of equation (1), (2), (3),
(9), (10) can be expressed as x1,k , shown at the bottom of the
next page,

x1,k = f1 (xk−1)+ wk−1
y1,k = h1 (xk)+ vk (30)

As we can see in the system state vector of equation (30),
in order to facilitate the design of longitudinal tire force
estimation method, the derivative of longitudinal tire force
is introduced into the system state vector. Integrating the
design method of high-order sliding mode observer, the state
equation of longitudinal tire force is written as[
ẋ1,12−15
ẋ1,16−19

]
=

[
Ḟxj
F̈xj

]
=

[
Ḟxj

−k1 sgn
(
Ḟxj − Fxj

)
− k2

(
Ḟxj − Fxj

) ]
=

[
x1,16−19

−k1 sgn
(
x1,16−19−x1,12−15

)
−k2

(
x1,16−19−x1,12−15

)]
(31)

where k1 and k2 are the sliding mode observer parameters.
Then, the discrete state transition equation can be expressed
as (32), shown at the bottom of the next page, where T repre-
sents the sampling period of the Kalman filter. As we can see
in formula (32), the sliding-mode-observer-based state equa-
tions are introduce into the Kalman filter, and this integrated
observer design method can effectively suppress chattering
phenomena via the update and iteration of Kalman filter. The
designed observer in this section is marked as WCKF-A.
In the design of WCKF-A, the current, speed, and voltage
of EDWM measured by vehicular sensors, the steering angle
of front wheel, the longitudinal and lateral acceleration of
vehicle, the yaw rate, and the lateral tire forces, are used as
the known inputs of WCKF-A.With the presentedWCKF-A,
the vehicle running state can be estimated.

C. OVERALL ESTIMATION STRATEGY WITH INFORMATION
FUSION AND TIRE FORCE COMPENSATION
As we can see in WCKF-A, the estimation results of longitu-
dinal tire force depend on vehicle longitudinal force dynamics
performance more obviously. When the vehicle tire slips
longitudinally, the estimated results of the observer are likely
to be affected to some extent. In order to obtain more accurate
and reliable estimation results, a novel overall estimation
strategy with information fusion and tire force compensation
is proposed, as shown in Fig. 3. The subscript A in the symbol
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FIGURE 3. Overall estimation strategy.

of vehicle state estimation results represents the estimation
results of WCKF-A, the subscript B in the symbol of vehi-
cle state estimation results represents the estimation results

of WCKF-B, the subscript C represents the compensation
results of tire forces, the subscript T represents the output
results of tire model.

In order to suppress the influence of longitudinal tire slip
on the calculation results of longitudinal force, the longitudi-
nal tire slip rate is used to compensation the estimation results
of WCKF-A. The longitudinal tire slip rate is obtained by
equation (15), then, the compensation result of longitudinal
tire can be designed as

Fxj,C =
(
1
2
+ 2
−

1
|sj|

)
Fxj,T +

(
1
2
− 2
−

1
|sj|

)
Fxj,A (33)

In WCKF-A, the longitudinal tire forces are obtained by
longitudinal dynamics relations and vehicle-mounted current,
speed and voltage sensors. Therefore, the estimation results

where x1,k =
[
x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8 x1,9 x1,10x1,11 x1,12 x1,13 x1,14 x1,15 x1,16 x1,17 x1,18 x1,19

]T
=
[
vx,k vy,k γk i1,k i2,k i3,k i4,kω1,k ω2,k ω3,k ω4,k Fx1,k Fx2,k Fx3,k Fx4,k Ḟx1,k Ḟx2,k Ḟx3,k Ḟx4,k

]T
y1,k =

[
y1,1 y1,2 y1,3 y1,4 y1,5 y1,6 y1,7 y1,8 y1,9

]T
=
[
γk i1,k i2,k i3,k i4,k ω1,k ω2,k ω3,k ω4,k

]T



x1,1,k
x1,2,k
x1,3,k
x1,4,k
x1,5,k
x1,5,k
x1,7,k
x1,8,k
x1,9,k
x1,10,k
x1,12,k
x1,13,k
x1,14,k
x1,15,k
x1,16,k
x1,17,k
x1,18,k
x1,19,k



=
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(32)
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of WCKF-A have the advantage of fast information acqui-
sition. The computation results of tire model are stable and
accurate, and are not easily affected by the driving state of
vehicle. However, the calculation of tire model is relatively
large. When the vehicle driving state changes dramatically,
the calculation speed is relatively slow, and the calculation
results may also have a certain lag. As we can see in equa-
tion (33), the presented compensation method can effectively
combine the advantages of these two methods. When the
longitudinal tire slip rate is large, the weight of tire model
calculation results is increased, and the weight of WCKF-A
is reduced. Similarly, when the longitudinal tire slip rate is
small, the weight of tire model calculation results is reduced,
and the weight of WCKF-A is increased. Thus, the designed
compensation method can adjust tire force estimation results
adaptively according to vehicle driving conditions. Based on
equation (33), the lateral tire force compensation method can
be designed as

Fyj,C=Fyj,T+kp
(
Fxj,C−Fxj,T

)
+ki

∫ (
Fxj,C − Fxj,T

)
sjdt

(34)

where kp and ki represents the proportional parameter and
integral parameter, respectively.

As shown in Fig. 3, the compensation results of tire forces,
and the estimated vehicle running states by WCKF-A are
used as the known inputs of WCKF-B to obtain more reliable
vehicle state estimation results by fusing the known data
according to the redundancy of information. In the design
of WCKF-B, according to the equation (1), (2), (3), (4), (4),
the discretization results of equation can be expressed as

x2,k = f2 (xk−1)+ wk−1
y2,k = h2 (xk)+ vk (35)

where x2,k =
[
x2,1,k x2,2,k x2,3,k

]T
=

[
vx,k vy,k γk

]T ,
y2,k =

[
y2,1,k y2,2,k y2,3,k

]T
=
[
γk ax,k ay,k

]T . The dis-
crete state transition equation of WCKF-B is written as (36),
shown at the bottom of this page. In WCKF-B, the lon-
gitudinal vehicle speed, lateral vehicle speed and yaw rate
estimated by WCKF-A, and the tire force compensation

results are used as the inputs of WCKF-B. According to the
estimation results of WCKF-B, the vehicle sideslip angle can
be obtained by equation (6).

IV. SIMULATION RESULTS
In order to verify the effectiveness of the proposed estimation
strategy, two case studies of simulations are carried out under
different simulation conditions. The simulation environ-
ment is established using the high-fidelity CarSim-Simulink
joint-simulation software platform, in which the CarSim soft-
ware is used to provide the whole vehicle dynamic model,
and the EDWM, the tire model, the WCKF-A, the WCKF-B,
the tire force compensation module, and the longitudinal tire
slip rate computation module, are established in Simulink
software. The vehicle parameters are listed in Table 1.

TABLE 1. Vehicle parameters.
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
(36)
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A. CASE STUDY 1: SINUSOIDAL STEERING MANOEUVRE
In case study 1, the sinusoidal steering manoeuvre is carried
out for the validation of designed estimation strategy, and the
specific driving conditions of planned vehicle longitudinal
speed and steering angle of hand wheel are shown in Fig. 4.
It can be found that, during 0s to 6s, the vehicle longitudi-
nal speed is 20m/s, then, the vehicle is accelerated evenly
to 25m/s and then travels at a constant speed. In addition,
the road friction coefficient is set to be 0.7. The comparisons
of longitudinal force estimation results and longitudinal force
compensation results are shown in Fig. 5, in which the TFC
represent the longitudinal tire force compensation results, and
the CarSim represent the actual longitudinal forces provided
by the CarSim software. According to Fig. 5, we can see
that the estimated results of WCKF-A and TFC are very
close to the actual results of CarSim as a whole. Through the
compensation of tire force, the estimation results of TFC have
higher estimation accuracy. In the process of vehicle uniform
motion, the estimated results are basically consistent with the
actual results through tire force compensation. In the pro-
cess of vehicle acceleration, the longitudinal force of vehicle
increases sharply. Even in this case, the proposed estimation
method can guarantee good tracking ability. Fig. 6 shows
the estimation results of longitudinal vehicle speed, lateral
vehicle speed, and vehicle sideslip angle by WCKF-A and
WCKF-B. In the estimation results of longitudinal vehicle
speed, it can be found that both WCKF-A and WCKF-B is
competent for the estimation task. According to the partial
enlarged drawing, one can see that the estimation effective-
ness of WCKF-A is weaker than that of WCKF-B, which

FIGURE 4. Sinusoidal steering manoeuvre.

FIGURE 5. Estimation results of longitudinal forces in sinusoidal steering
manoeuvre.

means that the presented estimation strategy can effectively
suppress the estimation error and further improve the esti-
mation accuracy. In the estimation results of lateral vehicle
speed and vehicle sideslip angle, similarly, WCKF-B has
more accurate estimation effect. It should be highlighted
that, during about 11s to 13s, the estimation error of vehicle
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TABLE 2. Comparisons of pre in sinusoidal steering manoeuvre.

sideslip angle is relatively large. This is because the longitudi-
nal speed and steering wheel angle reach the maximum at this
time, and the vehicle state changes dramatically, resulting in
a slightly larger estimation error. However, it can be found
that the proposed method still maintains good estimation
performance.

In order to quantitatively testify the availability of the
designed estimation strategy, the peak of relative error (PRE)
and the error of root mean square (ERMS) between actual
value and estimated value are used for contrast verification
and can be obtained as

PRE(x) = xk/p − xCarsim/p (37)

ERMS(x) =

√√√√ 1
N

N∑
k=1

(xk − xCarsim)2 (38)

where N represents the sample number, xk represents the
estimated vehicle states of WCKF-A, TFC, and WCKF-B at
the kth sample, xCarSim represents the actual vehicle states
obtained by CarSim at the kth sample, xk/p represents the
peak value of xk , and xCarSim/p represents the peak value
of xCarSim. The comparison of PRE between WCKF-A and
TFC about the estimation effect of longitudinal force and
the comparison of PRE between WCKF-A and WCKF-B
about the estimation effect of vehicle running states are listed
in Table 2. The comparison of ERMS between WCKF-A
and TFC and the comparison of PRE between WCKF-A and
WCKF-B are listed in Table 3. In Table 2, we can see that
the PRE of longitudinal force estimation results by WCKF-A
is significantly larger than that of TFC, which indicates that
the proposed compensation method reduces the estimation
error of peak value. Similarly, the PRE of WCKF-A is larger
than that of WCKF-B. In Table 3, the ERMS of WCKF-A
is larger than that of TFC or WCKF-B, which indicates that
the proposed method improves the estimation accuracy and
stability as a whole.

B. CASE STUDY 2: J-TURN MANOEUVRE
In case study 2, the J-turn simulation manoeuvre is exe-
cuted for further validation of presented estimation strategy
in drastic steering conditions. In J-turn manoeuvre, the vehi-
cle speed maintains at 15m/s, the road friction coefficient
is set to be 1.0, and the steering angle of hand wheel is
shown in Fig. 7. Fig. 8 shows the estimation results of
longitudinal force in J-turn manoeuvre. At the moment of
sudden turning, the longitudinal force of the vehicle has

FIGURE 6. Estimation results of vehicle running states in sinusoidal
steering manoeuvre. (a) Longitudinal vehicle speed. (b) Lateral vehicle
speed. (c) Vehicle sideslip angle.

some jitter, but the jitter converges quickly, and the pro-
posed method can also track the actual longitudinal force in
real time. Then, as steering angle decreases, the accuracy
of longitudinal force estimation increases correspondingly.
Fig. 9 shows the estimation results of vehicle running states in
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TABLE 3. Comparisons of erms in sinusoidal steering manoeuvre.

TABLE 4. Comparisons of pre in j-turn manoeuvre.

TABLE 5. Comparisons of erms in j-turn manoeuvre.

FIGURE 7. Steering wheel angle in J-turn manoeuvre.

J-turn manoeuvre. As shown in Fig. 9, same to case study 1,
the estimation performance of designed strategy is also sat-
isfactory. As shown in Table 4 and Table 5, according to
the comparison results of PRE and ERMS, it can be sum-
marized that the presented estimation strategy improves the
performance of state estimation both in the overall estimation
accuracy and in the error of a single data point, which illus-
trates that the presented estimation strategy can still main-
tain good estimation performance in severe vehicle steering
process.

V. EXPERIMENTAL VERIFICATION
The road test is implemented for further experimental ver-
ification of proposed estimation strategy. The vehicle used
for experimental verification is a four-wheel independent
drive electric vehicle, which was refitted from a pure elec-
tric vehicle driven by a central motor. The rated power,
maximum torque and maximum rotation speed of equipped

in-wheel motor is 3KW, 150Nm and 750r/min, respectively.
The electronic control system of the whole vehicle is
built based on a rapid prototyping platform (RPP). The
vehicle is equipped with high-precision differential global
positioning system (GPS) and inertial navigation measuring
unit (IMU), used for the measurements of vehicle trajectory
and vehicle-body posture. The steering angle of front wheel
is obtained by computing the measured hand steering wheel
angle. Utilizing the CAN bus, the measurements of sensor
signals of vehicle running states are recorded in host com-
puter by the CAN tools of Vehicle SPY3. The electronic
control system and sensor network of experimental vehicle
are shown in Fig.10.

Under the current experimental conditions, the tire force
sensor has not been installed on the test vehicle for direct
measurement of longitudinal force. Therefore, the chassis
dynamometer bench test is carried out before validating the
effect of vehicle driving state estimation, and the experimen-
tal data are used to validate the longitudinal force estimation
method. The principle of chassis dynamometer bench test is
shown in Fig. 11. As shown in Fig. 11, the whole vehicle
control is realized based on the RPP, and the running states of
EDWM is collected by the CAN bus and used as the inputs
of longitudinal force estimation. The chassis dynamometer
data acquisition system is used to record the actual value
of longitudinal force, which is compared with the estimated
longitudinal force to verify the effectiveness of the proposed
estimationmethod. The longitudinal force estimation result is
shown in Fig. 12. It can be found that the estimated longitudi-
nal force ofWCKF-A has good estimation accuracy, although
there are some chattering phenomena. The chattering phe-
nomenon in the estimation results is due to the introduction
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FIGURE 8. Estimation results of longitudinal forces in J-turn manoeuvre.

of a high-order sliding mode observer in the construction of
the longitudinal force dynamic equation. The combination
of high-order sliding mode observer and Kalman filter can
effectively reduce the impact of chattering on estimation
results. In addition, one can see that the estimation accuracy
of longitudinal force has been further improved by means of

FIGURE 9. Estimation results of vehicle running states in sinusoidal
steering manoeuvre. (a) Longitudinal vehicle speed. (b) Lateral vehicle
speed. (c) Vehicle sideslip angle.

longitudinal force compensation. With the longitudinal force
estimation method been verified, in the state estimation veri-
fication of road test, the validated longitudinal force estimator
is regarded as a reliable virtual sensor.

Fig. 13 shows the experimental vehicle, experimental envi-
ronment, and the pictures of real sensor products in road test.
As shown in Fig. 13, the serpentine road test was carried
out, in which the 10 traffic piles are placed as the roadblock,
and the vehicle speed cruising control is realized by a speed
controller in RPP. The vehicle running states collected from
the real vehicle test is shown in Fig. 14, and the verification
results of proposed estimation strategy are shown in Fig. 15.
It can be found that the proposed method can still maintain
reliable and accurate estimation results in road test. In the
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FIGURE 10. Control system and sensor network of experimental vehicle.

FIGURE 11. Chassis dynamometer bench test.

FIGURE 12. Longitudinal force estimation result in experiment.

comparison of lateral vehicle speed and vehicle sideslip
angle, the estimation error at the peak of state is relatively
large. This is because the steering wheel angle of vehicle
reaches the maximum at this time, and the vehicle driving
state changes relatively quickly, so the requirement for the

TABLE 6. Comparisons of pre in experiment.

TABLE 7. Comparisons of erms in experiment.

FIGURE 13. Road test.

FIGURE 14. Vehicle running states in road test.

tracking ability of the filter is more stringent. In this case,
the estimation performance of designed method is satisfac-
tory. The comparison results of PRE and ERMS is shown
in Table 6 and Table 7, respectively. Similarly, the PRE and
ERMS of TFC and WCKF-B are evidently smaller than that
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FIGURE 15. Estimation results of vehicle running states in experiment.
(a) Longitudinal vehicle speed, (b) Lateral vehicle speed, (c) Vehicle
sideslip angle.

of WCKF-A. Thus, the effectiveness of the proposed estima-
tion strategy in practical application is verified.

VI. CONCLUSION
This paper presents a novel design of vehicle running states
fused estimation strategy using the Kalman filters and tire
force compensation method. In this paper, the 3-DOF vehicle
dynamics model, EDWM, tire model and tire slip rate cal-
culation model are established for the design of estimation
method. Since the tire longitudinal force is the unknown
input of EDWM, in order to promote the design of longi-
tudinal force estimation method, a high-order sliding mode
observer is introduced to construct the state space equation

of the longitudinal force. Then, a weighted square-root cuba-
ture Kalman filter is studied and used for vehicle running
states estimation, in which the covariance matrix of mea-
surement noise is adjusted by using the moving window
estimation method. According to the vehicle dynamics model
and EDWM, the mode discretization is implemented, and
then the preliminary estimation of vehicle driving state is
obtained by using the above filtering algorithm. Using the
preliminary estimation information, an overall estimation
strategy with information fusion and tire force compensation
is proposed, in which the tire force compensation method
is designed to improve the accuracy and adaptability of tire
force estimation, and the compensated tire force and the
preliminary estimation information are re-used as the inputs
of the new designed Kalman filter to improve the accuracy
and reliability of the overall estimation strategy by using the
fusion method of redundant information. The co-simulation
in CarSim-Simulink model under multiple operating condi-
tions and the real vehicle test are carried out. The simulation
and experiment results verify the effectiveness of the pro-
posed estimation strategy.
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