
SPECIAL SECTION ON EMERGING TECHNOLOGIES FOR ENERGY INTERNET

Received May 21, 2019, accepted June 15, 2019, date of publication June 27, 2019, date of current version July 15, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2925350

Evaluation of Machine Learning Approaches
for Android Energy Bugs Detection
With Revision Commits
CHENYANG ZHU 1, ZHENGWEI ZHU1, YUNXIN XIE2, WEI JIANG 1, AND GUILING ZHANG1
1School of Information Science and Engineering, Changzhou University, Changzhou 213164, China
2School of Petroleum Engineering, Changzhou University, Changzhou 213164, China

Corresponding author: Zhengwei Zhu (zhuzw@cczu.edu.cn)

This work was supported in part by the National Nature Science Foundation of China under Grant 61772090, and in part by the China
Scholarship Council (CSC) under Grant CSC 201708060147.

ABSTRACT Performances of smartphones are profoundly affected by battery life. Maximizing the amount
of usage of energy is essential to extend battery life. However, developers might concentrate more on the
functionality of applications while ignoring the energy bugs that drain the battery during the development
process. There are no quantitative approaches to detect these energy bugs introduced in this fast-paced devel-
opment process. In this paper, we employ a system-call-based approach to develop a power consumption
model for Android devices. Data that measure the energy consumption of mobile devices under different
testing scenarios with the number of triggered system calls are utilized in the model training process.
A balanced recursive feature elimination with cross-validation approach is proposed to select and rank
the importance of the different system calls. Seven machine learning models are trained over the selected
features with cross-validation and hyper-parameter tuning technique, where linear regression with the Lasso
regularization outperforms all the other models. Then, the model is evaluated on the data set that measures
the energy consumption on different revision history of the selected apps. The results show that the optimized
Lasso model could detect energy bugs in the revision history of various applications. Optimization strategies
are provided based on the selected features.

INDEX TERMS Energy modeling, feature selection, machine learning, code optimization.

I. INTRODUCTION
With the thriving evolution of hardware and software com-
ponents of mobile devices, a lot more attention has been
concentrated on promoting the performances of mobile appli-
cations while extending the battery life of smartphones. The
mobile applications make use of the hardware components
and built-in sensors, together with software logic, to provide
useful and innovative capabilities to client users. However,
the battery power supply has been an energy constraint to the
smartphones regardless of the advances in battery technology
and operating systems [1]. Research shows that over 18%
of the Android applications in Google play market place
have issues with energy efficiency, and the commercial appli-
cations also have energy consumption problems compared
with the freely-available applications [2]. A lot of empirical

The associate editor coordinating the review of this manuscript and
approving it for publication was Huiqing Wen.

studies has been focused on resolving the energy con-
sumption issues of Android applications in three categories,
namely building the energy consumption model, detecting
energy bugs with code analysis and optimizing code struc-
tures with energy-saving practices.

However, existing approaches mainly use static code anal-
ysis and energy profiling to build energy models, detect
energy bugs, and optimize applications. Developers may
introduce energy bugs such as resource leak and layout defect
that drain the battery during the development process. The
resource leak occurs when the application does not release
its required resources, and the layout defect would consume
more energy to measure and draw the layout of the applica-
tion [3]. There are no quantitative and efficient approaches
that can detect energy bugs in the fast-paced development
procedure. Moreover, developers might concentrate more
on the functionality and performance of applications and
ignore the energy bugs during the development process.

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ 85241

https://orcid.org/0000-0002-2145-0559
https://orcid.org/0000-0002-2750-6891

C. Zhu et al.: Evaluation of Machine Learning Approaches for Android Energy Bugs Detection With Revision Commits

Results in [4] show that 18% of developers would take energy
consumption into account when developing software, and
14% would consider minimizing energy consumption as a
requirement during development. Thus it is critical to iden-
tify the energy bugs during the development phase so that
developers are aware of the changes in their source code
might cause severe problems on the energy consumption of
the application.

Besides, existing approaches that model power consump-
tion with the utilization of hardware components are insuf-
ficient as they cannot interpret the power states such as
tail energy. The system-call-based power modeling approach
can be adopted as a more precise approach to model power
consumption with the number of system calls and CPU use
time of the application [5]. Using computer techniques to
build models and predict/classify unseen values is becoming
an essential aspect in areas such as medical image analysis,
signal processing, and text categorization [6]–[8]. Based on
the dataset that contains the number of system calls trig-
gered by applications as features and the measured energy
consumption as labels, our approach builds machine learning
models to automate the energy measurement procedure by
predicting the energy consumption in each valid commit over
the revision history of the development. Firstly, a balanced
feature selection algorithm is proposed to select useful fea-
tures to build the energy consumption model. Then hyper-
parameter tuning is used to select the optimal parameter
set for each machine learning model. The performances of
several machine learningmodels are comparedwith theMean
Absolute Error (MAE) and R2 evaluation matrix. The opti-
mized model with the best performance is then applied to the
data set of [9], which collected the energy consumption data
for each revision of twenty applications using the hardware
mining approach in [10]. Results show that our optimized
model could detect the abnormal changes in energy consump-
tion values that identify energy bugs in the revision history,
which could be used to automate the process to identify
energy bugs.

This paper is constructed as follows. Section II summarizes
the related work in energy modeling, energy bug detection,
and code optimization in Android application development.
Section III introduces the machine learning algorithms used
in this paper, namely linear regression with Lasso and Ridge
regularization, stochastic gradient descent regression, support
vector regression, Adaboost, random forest, and gradient tree
boosting. Section IV describes the framework that detects
energy bugs in Android devices. Section V presents the
balanced recursive feature selection algorithm. Section VI
compares the performance of different machine algorithms
with mean absolute error and R-squared value. The models
are optimized with the hyper-parameter tuning technique.
Section VII then uses the optimized model with the best per-
formance to test the energy consumption data with revision
commits. Section VIII summarizes the work and sketches
some future work.

II. RELATED WORK
A. MODELING ENERGY CONSUMPTION
Hoque conducted a comparison of different energy profilers
for mobile devices with the terminologies of model-based
energy profiling [11]. They classify the type of power models
into three different models, namely utilization-based mod-
els, instruction-based models, and system-call-based models.
The utilization-based models correlate the power con-
sumption with the utilization of hardware components.
Romansky et al. used LSTM based time series based
models to allow developers to align traces of software
behavior with traces of software energy consumption [12].
Damavsevivcius et al. proposed a time-delay model of bat-
tery that describes the correlation between power con-
sumption and CPU load, memory allocation, and memory
release [13]. Instruction-based models apply static analysis
to the code to correlate the energy consumption with instruc-
tions or APIs in the application. Hao et al. investigated the
per-instruction energy modeling and code analysis to ana-
lyze the application usage with accuracy within 10% [14].
Hu et al. built the energy consumption model from method-
level and API-level perspective, which guides the appropriate
method and API to use to improve the energy efficiency [15].
However, some non-linear energy consumption characteris-
tics such as tail-energy cannot be captured by the utilization-
based model and instruction-based model. System-call-based
models are adopted to build energy consumption models
more accurately as energy consumption is correlated to
the number of system calls triggered by the application.
Pathak et al. presented a system-call-based power modeling
approach that improves the accuracy of application energy
estimation with the tool eprof [5]. To build accurate software
energy consumption models, Chowdhury et al. developed
random test generators to collect system calls triggered by
the application and built regression models to predict energy
consumption based on the collected data [16]. In this paper,
we developed system-call based models with machine learn-
ing approaches to predict the energy consumptions of differ-
ent applications over the development process.

B. ENERGY BUG DETECTION
Static analysis, as well as code analysis, have been
used to detect different energy bugs during development.
Pathak et al. investigated the characterization of no-sleep
energy bug and developed tools that infer the energy bugs
automatically [17]. Banerjee1 et al. categorize the energy
inefficiencies into energy hotspots and energy bugs where
energy hotspots describe scenarios where executing appli-
cations to consume a lot of battery power and energy bugs
describe the situations where malfunctioning application pre-
vents the smartphones from becoming idle [18]. Jiang et al.
proposed an inter-procedure and intra-procedure analysis to
detect energy bugs and layout defects automatically [3].
Damavsevivcius et al. presented a static analysis of energy
measurement approaches by using software profiling andAPI

85242 VOLUME 7, 2019

C. Zhu et al.: Evaluation of Machine Learning Approaches for Android Energy Bugs Detection With Revision Commits

based measurements [19]. Instead of identifying the energy
bug in the code, our procedure identifies the commit that
introduces energy bugs or hotspots in the revision history so
that developers could find the buggy commit efficiently.

C. CODE OPTIMIZATION
Several approaches have been proposed to optimize apps to
save energy based on the code analysis. Li et al. suggested
to replace the light colored background areas of web appli-
cations with dark colors to reduce the power consumed by
the OLED screens [20]. Li et al. investigated the practices
such as bundling network packets and using some coding
disciplines for accessing class fields and reading array length
could reduce energy consumption [21]. Chowdhury et al.
explored the HTTP/2 protocols for the web applications and
concluded that HTTP/2 protocol could save energy for the
networks with higher round trip time [22]. Banerjee and
Roychoudhury presented a refactoring technique that can
reduce the energy consumption of the open-source apps
between 3% to 29% [23]. Cruz et al. made this re-factoring
procedure automatic with static analyzing [24]. Tuysuz et al.
developed a real-time network power consumption profiler
to measure the power consumption levels of different net-
work interfaces and proposed a handover strategy to improve
energy efficiency [25]. Our work analyzes the system calls
and provides code optimization strategy based on the selected
features that most affect the energy consumption of an
application.

III. MACHINE LEARNING MODELS
A. LINEAR REGRESSION WITH REGULARIZATION
Linear regression is one of the most used machine learn-
ing techniques to model a linear relationship between one
or more variables with the corresponding result. Consider
a linear regression problem with the training set (x1, y1),
(x2, y2), .., (xn, yn) where each xi belongs to a feature vector
X with size n and each yi is the corresponding labeled value
of xi. The linear regression fits the model f (x,w) with a
linear combination of the feature vector in Equation 1. The
linear regression algorithm is designed to find the weights
that minimize the loss function in Equation 2. In this paper,
we use the Mean Square Error (MSE) as the loss function.

f (x,w) = w0 + w1 ∗ x1 + . . .+ wn ∗ xn (1)

L(y, f (x,w)) =

∑n
i=1 || yi − Xiwi ||

2
2

n
=

∑n
i=1(yi − Xiwi)

2

n
(2)

However, a complex model that achieves high accuracy on a
training set would lose its predictive accuracy in the unseen
data because of overfitting [26]. Lasso and ridge regression
was then proposed to add penalties to the weights to balance
model complexity and prediction accuracy [27]. The objec-
tive function of Lasso and Ridge is shown in Equation 3
and Equation 4 respectively. The linear regression with Lasso
penalty is meant to find the weights w that minimize the
loss function with the l1 term of weights with a constant

α that multiplies the l1 term. The Ridge regression, on the
other hand, regularize the loss function with a l2 term of the
weights. Lasso and Ridge can be used to avoid overfitting for
linear models and improve the generality of the model.

Lasso = argminw(L(y, f (x,w))+ α || w ||1) (3)

Ridge = argminw(L(y, f (x,w))+ α || w ||22) (4)

Stochastic Gradient Descent (SGD) is usually used to mini-
mize regularized loss of linear models [28]. To minimize the
loss function specified in Equation 2, the gradient descent
technique is executed to update the weights in Equation 5.
SGD is an iterative method to update the weights to minimize
the loss function. Each iteration the weights are updated with
the gradient and the step size η. SGD will converge to a
global minimum if the loss function is convex. Otherwise,
it converges to a local minimum [29].

w := w− η∇L(y, f (x,w)) (5)

B. SUPPORT VECTOR REGRESSION
The support vector machine (SVM) is used to con-
struct hyperplane to distinguish data from different
classes [30]. Support vector regression (SVR) is proposed by
Drucker et al. to approximate and predict the values by using
a soft margin of tolerance ξ in SVM [31]. SVR is designed
to find the function f (x) with at most ε-deviation from the
target y, formally presented as formula . Here ξ and ξ∗ define
the positive and negative soft margin allowed for the model
with at most ε-deviation. In SVR, the goal is to minimize the
function in formula 7. Here C is the penalty parameter of the
error term

∑n
i=1(ξi + ξ

∗
i).

∀i · yi − w ∗ xi − b ≤ ε + ξi ∧ w ∗ xi + b− yi ≤ ε + ξ∗i
(6)

1
2
|| w ||2 +C ∗

n∑
i=1

(ξi + ξ∗i) (7)

SVR uses linear hyperplane to separate the data and predict
the values. However, in some cases, the distribution of data
is non-linear. Thus kernel functions are used to map the
non-linear separable feature space to linear separable feature
space with kernel functions [32]. Radial basis function (RBF)
kernel is one of the commonly used functions, which is shown
in Equation 8. In the RBF kernel, || x − x ′ ||22 denotes
the squared Euclidean distance between the two feature vec-
tors x and x ′. Thus RBF kernel can be used as a measurement
of similarity as the value of RBF kernel decreases when the
distance between two feature vectors decreases. In this paper,
we evaluate the performance of linear SVR and SVR with
RBF kernel functions to generate a better model.

K (x, x ′) = exp(−
1

2σ 2 || x − x
′
||
2) (8)

C. ADABOOST REGRESSION
Besides the linear regression and SVR, boosting is also one
of the most powerful machine learning technique by balanc-
ing the weakness of models in each boosting iteration [33].

VOLUME 7, 2019 85243

C. Zhu et al.: Evaluation of Machine Learning Approaches for Android Energy Bugs Detection With Revision Commits

AdaBoost is one of the mostly used boosting algorithm,
which adjusts the weights of data instances to train the regres-
sor based on the loss function of each boosting iteration [34].
Drucker improved theAdaBoost regressor algorithm by using
regression trees as weak models in the boosting steps [35].
Algorithm 1 summarizes the algorithm for the AdaBoost
Regressor modified from [35]. Initially, the weight of each
data is assigned to 1. During the boosting procedure, a regres-
sion machine hm is constructed to predict xi to ŷi. Then we
calculate the loss for each training sample and average the
losses with Lm. The β that measures the confidence in the
predictor is then calculated with Lm. A lower value of β
indicates higher confidence in the prediction. At last, when
we use the boosted model for regression, we select the hm
with the lowest βm to make the prediction. In this paper,
we evaluate the effect of the number of iterations and learning
rate to the performance of the energy bug detection model
built with AdaBoost regression algorithm.

Algorithm 1 AdaBoost Regressors Algorithm, Modified
From (Drucker, 1997)

1) Given:(x1, y1), . . . , (xn, yn) where xi ∈ X , yi ∈ Y ∈ IR
the number of iterations: M

2) Initialize the observation weights wi = 1, i =
1, 2, . . . , n

3) For m = 1 to M :
a) Fit a regressor hm(x) to training data by minimiz-

ing the weighted error function

ŷ = hm(x)

b) Compute a loss for each training sample and cal-
culate an average loss

Lm =
n∑
i=1

(| ŷi − yi | ∗
wi∑
wi

)

and evaluate

β =
Lm

1− Lm
c) Update the data weighting coefficients

wi = wi ∗ β[1−Li]

4) Make predictions using hm(x) with lower βm.

D. ENSEMBLE METHODS
Ensemble methods are learning algorithms that create a set
of classifiers and take a weighted vote of the predictions
of these classifiers, which consists of bagging approach
and boosting approach [36]. The bagging approach builds
several classifiers and averages their predictions while the
boosting approach constructs the final classifier sequentially
by diminishing the weakness of the classifier of each step.
Random Forest (RF) is a bagging approach introduced by
Breiman based on the regression tree [37], and Gradient Tree

Boosting (GTB) uses the boosting approach to build a tree
model sequentially [38].

Algorithm 2 shows the RF algorithm. The RF takes a
random sample from the dataset and builds the regression
tree based on the randomly selected features. Moreover, this
process is repeated for M times, which builds M trees in the
forest. Then the test data item x is fed into the model; each
tree in the forest predicts a value ŷi. The final predicted value
of ŷ is determined in step 3), which takes the average of all the
values ŷi predicted by all the trees in the forest. In this paper,
we use the hyper-parameter tuning approach to evaluate the
impact of the number of trees in the forest on the performance
of the model.

Algorithm 2 Random Forest Algorithm
1) Given:(x1, y1), . . . , (xn, yn) where xi ∈ X , yi ∈ Y ∈ IR

the number of regression trees: M
2) For m = 1 to M :

a) Construct a CART tree CART (x) with randomly
selected data x ∈ xi with randomly selected
features.

b) Get the prediction ŷ of each CART tree and add
the CART tree to the forest F = F ∪ CART (x)

3)

ŷ =

∑M
i=1 ŷi
M

Algorithm 3 Gradient Tree Boosting Algorithm, Modified
From (Friedman, 2002)
1) Given:(x1, y1), . . . , (xn, yn) where xi ∈ X , yi ∈ Y ∈ IR

the number of iterations M
2)

F0(x) = argminγ
N∑
i=1

L(yi, γ)

3) For m = 1 to M :
a)

zim = −[
∂L(yi,F(xi))
∂F(xi)

]F(x)=Fm−1(x)

b) Fit base learning hm(x) to zim.
c) Compute step magnitude multiplier

γm = argminγ
N∑
i=1

L(yi,Fm−1(xi)+ γ hm(x))

d)

Fm(x) = Fm−1(x)+ ργmhm(x)

Algorithm 3 shows the GTB algorithm. We want to mini-
mize the objective function of L. The F0(x) is initialized with
a gradient descent process that minimizes L with a constant

85244 VOLUME 7, 2019

C. Zhu et al.: Evaluation of Machine Learning Approaches for Android Energy Bugs Detection With Revision Commits

FIGURE 1. Revision-based energy bug detection framework.

value of γ . We carried out M boosting iterations to train the
model. Over each iteration in step 3), we first calculate the
gradient zim of loss function L at the point F(x) = Fm−1(x).
Then the regression tree hm(x) whose leaf nodes produce
an average gradient among samples with similar features
is fit to zim. When the step direction is settled, the step
magnitude multiplier γm is calculated to minimize the loss
function for the samples in each leaf in step 3.c). At last,
the model Fm(x) is updated with the model Fm−1(x) of the
last boosting iteration and the step magnitude multiplier γm
with a shrinkage parameter ρ that is proposed by Friedman
to scale the contribution of each weak learner [39].

IV. METHODOLOGY
A. REVISION-BASED BUG DETECTION FRAMEWORK
Pathak et al. observed that utilization-based models could
not be used to build energy consumption models in sev-
eral scenarios, such as tail state, file open and closed state,
socket open and closed state [5]. System-call-based models
are used to overcome the limitations of utilization-based
models by providing quantitative approaches to measure how
the applications obtain access to the hardware components.
In this paper, the numbers of system call together with the
duration of CPU usage time are used as features to train
power usagemodel that captures the precise energy consump-
tion behavior of different applications. Machine learning is
a data-based technique that learns from previous data pat-
terns to predict or classify unseen data instances. Supervised
learning that trained with the labeled training data in the
form of regression and classification is an essential part of
machine learning [40]. In this paper, we used the labeled
energy consumption dataset with system-call based features
with which we want to build the energy consumption model.
Figure 1 shows the revision-based bug detection framework
that detects bugs from the development revision history. First,
we collect data from [16] as the energy consumption mea-
surement from different test scenarios, which uses the num-
ber of system and GPU durations as features. In this paper,
we collected 122 features to measure energy consumption,
which contains the number of system calls and the number

of CPU jiffies. A CPU jiffy represents the period of time
that process is run by the application, which is determined
by the kernel constant HZ [41]. We used the number of CPU
jiffies to calculate the number of CPU time occupied by the
application. Besides jiffies, we also consider system calls
such as socket , duration to measure power usages.
After the data collection, we performed a balanced recur-

sive feature selection with cross-validation and generated the
selected feature vector. With the normalized feature vectors
and the energy consumption values for each test, we com-
pared the performance of several machine learning algo-
rithms mentioned in Section III with cross-validation and
got the model with the best performance. Then we evaluated
the selected feature vector, normalized scale, and predicted
model with the data collected in [9], which contains the
energy consumption measurement of different applications
with part of the revision commits. Abnormal rises of the
measured energy consumption indicate the appearance of
energy bugs in the corresponding commit. If the predicted
energy consumption also reveals the abnormal rises in the
same commit, then the predicted model can be used to detect
energy bugs with limited manual work.

B. EVALUATION TECHNIQUE
In supervised learning, the training data might not include all
the data patterns of test data. So bias and variance always
exist. Sometimes overfitting would occur when the model
can only predict the samples with a perfect score but fail to
predict unseen examples. Cross-validation (CV) is used to test
whether the induction algorithm is suitable for a given dataset.
If the variance of CV estimates is approximately the same,
then the induction algorithm is stable for a given dataset [42].
The CV can be applied in the feature selection phase and
model hyper-parameter tuning phase. Using the k-fold CV
approach, the training set is split into k sets, and the procedure
is repeated for k times. Each time themodel is trainedwith the
k − 1 folds of data and tested on the kth fold of the data. The
performance of a specific feature or parameter is evaluated by
averaging the measured values computed in the loop.

VOLUME 7, 2019 85245

C. Zhu et al.: Evaluation of Machine Learning Approaches for Android Energy Bugs Detection With Revision Commits

In this paper, we use MAE and the coefficient of determi-
nation to measure the performance of the model. Given the
label set with predicted value set (y1, ŷ1), (y2, ŷ2), .., (yn, ŷn),
MAE is calculated as Equation 9, which could be used denote
the absolute error between the predicted value and true value.
The coefficient of determination is calculated as Equation 10,
which could be used to indicate the proportion of the variance
in the dependent variable that is predictable from the inde-
pendent variable [43]. The best value of R2 is 1. Moreover,
a model with constant prediction will get an R2 score of 0.

MAE =

∑n
i=1 | yi − ŷi |

n
(9)

y =

∑n
i=1 yi
n

R2 = 1−

∑n
i=1(ŷ− y)

2∑n
i=1(y− y)2

(10)

V. DATA DESCRIPTION WITH FEATURE SELECTION
A. DATA DESCRIPTION
Using the energy profiling tool to measure energy usages
of different applications is not precise enough as the profil-
ing process also consumes energies. To resolve this issue,
Hindle et al. proposed a hardware mining software repos-
itories testbed that measures the energy consumption of
mobile devices with different scenarios [10]. However, their
approach requires setting up many hardware components to
measure the energy consumption, including the Raspberry Pi,
Android device, DC power supply, and Adafruit INA219 IC.
For the Adafruit INA219 IC that measures the power usage,
much manual work is required to read the value of voltage
and current, then calculate the used power.

In this paper, we utilized the data collected in [16] as
the training data and data collected in [9] as the test data.
Chowdhury et al. obtained the energy consumption with
the resource usage data based on the hardware-based min-
ing software energy consumption framework. They set up
Raspberry PI to run automatically generated tests on Galaxy
Nexus phones and collect power usage data from INA 219.
strace program that traces the total counts of all different
system calls invoked by an application is used to generate the
feature space of the training data. The measurement of power
usage by INA 219 for each test of the application is used
as the corresponding ground truth of energy consumption of
the application. So readings of the resource usage and the
corresponding energy consumption of 472 apks are used as
the training data, the feature space size of which is 122. The
evaluation data is collected with the same approach, which
collects the energy consumption data with resource usage for
25 applications with their development commit history. The
models that fit the training data is then fed to the test data.
If the abnormal rises of the measured energy consumption in
one commit are detected in the corresponding predicted mea-
surement, then the model can be used to identify the commit
with energy bugs introduced in the continuous development.

B. FEATURE SELECTION AND FEATURE SCALING
As mentioned in the previous section, the size of the feature
space is 122, which is quite large. Training themodel with this

Algorithm 4 Balanced Feature Selection Algorithm
1) Given training data with features of size: N

the number of iterations: M
the number of K-Fold: K

2) Initialize the dictionary: fe, where key is the feature and
value is the count as 0.

3) For m = 1 to M :
a) For k = 1 to K :

i) Partition data into training set as K \ k and
testing set k randomly.

ii) Fit the model to all the features and rank the
features based on their importance.

iii) For each subset size Si, i = 1, . . . ,N
A) Train the model using features in Si

B) Determine model’s accuracy
b) Calculate the accuracy of cross-validation score

and get the best Si.
c) Construct the feature list f with the number spec-

ified by Si.
d) Add f to the dictionary fe with:

∀i · i ∈ f ⇒ fe[i]+ = 1

4) Rank the features in fe based on the count of each
feature.

5) The feature list is the features in fewhose count is not 0.

feature space will cause overfitting. Also, we want to inves-
tigate the importance of the features that affect the energy
consumption value. In this paper, we proposed a balanced
feature selection algorithm to generate the feature vector and
rank the features with the importance that influences the
energy consumption value. Algorithm 4 shows our approach
that selecting themost critical features from the feature space.
In our approach, CV is used to select the best feature set.
The CV procedure is repeated K times, each time the data
is partitioned into the training set and testing set. The model
is then trained with all the features in the training set. Each
feature is then ranked based on its importance. Here we
define Si with the feature subset that contains the most i
important features. Then we repeat the procedure that trains
the model with Si N times and record the model accuracy.
For each CV procedure, the feature subset that gets the best
prediction accuracy is selected. To consider the balance and
variance of the whole scheme, the CV procedure is repeated
M times. The ranking of the features depends on their number
of appearance in the selected features over M iterations.
Feature scaling is widely used in machine learning algo-

rithms to avoid the situation that some features with a broad
range of values dominate the objective function and make
the model unable to learn from other features. In this paper,

85246 VOLUME 7, 2019

C. Zhu et al.: Evaluation of Machine Learning Approaches for Android Energy Bugs Detection With Revision Commits

TABLE 1. Feature descriptions.

FIGURE 2. Feature importance with lasso regularization based on
algorithm 4.

we used the z-score normalizing that removes the mean of the
data and scales the data to the unit variance. Given the feature
set F , we use f ∈ F to denote one feature within the feature
set. Given the training data with a size of n, we transform the
values of each feature as Equation 11.

Based on Algorithm 4, we performed feature selection on
the training data with the linear regression with Lasso regular-
ization. Figure 2 shows the result of feature importance with
the ranking of the features. Table 1 provides a detailed expla-
nation of the selected features to model energy consumption.
Figure 2 shows that the length of the test case influences
energy consumption mostly, which makes sense. The longer
the time the tests take, the more energy the application will
consume. Results also show that the number of software
interrupts and context switches affect energy consumption.
When the processor switches the work on one task to another
task, the state of volatile data like program counter, registers
and memory need to be saved, which needs the energy to
perform the task. Also, if the code change invokes more CPU
jiffies, then more energy will be consumed. Developers can
examine this small set of features for possible optimization
of the code structures.

fi =

∑n−1
j=0 fij
n

s(fi) =

√∑n−1
j=0 (fj − fi)

2

n
∀j · j ∈ fi ⇒ fij =

(fij − fj)
s(fi)

(11)

VI. COMPARE MACHINE LEARNING ALGORITHMS
FOR ENERGY MODELS
A. TUNING DIFFERENT MACHINE LEARNING MODELS
As mentioned in Section III, machine learning models might
have one or more parameters for different objective func-
tions. It is essential for supervised models to select appro-
priate parameters to achieve high prediction accuracy and
generality. Hyper-parameter tuning is one of the approaches
that find the tuple of hyper-parameters that generates the
optimal model that minimizes the objective function [44].
In this paper, we use hyper-parameter tuning together with
the 5-fold CV to get the best hyper-parameter set of each
model and compare the prediction ability of differentmachine
learning models. Table 2 provides the hyper-parameter that
requires tuning for each model. During the hyper-parameter
tuning, grid search is used as the approach to search through a
specified subset of hyper-parameter space. However, the grid
search approach is an exhaustive searching algorithm which
takes a lot of time and computation to find the optimal
parameter set. Thus we first evaluated the search range of
parameters by using R2 as the cross-validation score.

Figure 3 shows the process that determines the search range
of penalty α in linear and SGD regression with Lasso and
Ridge regularization. Results show that R2 of Lasso regular-
ization is decreasing when the value of penalty α increase
for the linear regression. A larger value of α will cause the
linear model to lose its generality. So we restrict the search
range of α for Lasso regularization within 0-0.02. Also, R2 of
Ridge regularization stay the same for the linear regression.
So we define the search range for α for Ridge regulariza-
tion within 0-0.1. As SGD regression updates the weights
over each iteration, so the R2 has small disturbance with the
changes of α penalty. Overall R2 stays the same for the Lasso
regularization, but it decreases with the increase of the α
penalty for the Ridge regularization. Thus we determine the
search range for SGD regression over Lasso regularization as
0-0.1 and Ridge regularization as 0-0.02.

Figure 4 shows the process that determines the search range
of penalty C , kernel coefficient and tolerance for support
vector regression. Results show that in SVRwith RBF kernel,
R2 increases with the increase of penalty C within 0-40 and
the value converges to a stable value. Thus we restrict the
search range for C in RBF kernel as 50-100. Moreover, it is
evident that R2 comes to peak value within the range 0-0.1
of kernel coefficient. So we determine the range for kernel

VOLUME 7, 2019 85247

C. Zhu et al.: Evaluation of Machine Learning Approaches for Android Energy Bugs Detection With Revision Commits

TABLE 2. Hyper-parameters in different machine learning models with search range, optimal setting and cross-validation score and standard deviation.

FIGURE 3. Hyper-parameter search range for linear and SGD regression with lasso and ridge
regularization.

FIGURE 4. Hyper-parameter search range for support vector regression with RBF and linear kernel.

coefficient as 0-0.1. As to the SVR with linear kernel, R2

has small disturbance for the penalty C and tolerance. So we
determine the search range for the penalty as 10-20, and
tolerance as 10−4 − 10−2.

Figure 5 shows the process that determines the search range
for AdaBoost, Random Forest, and Gradient Tree Boosting.
First, we evaluate the search range for learning rate and the
number of iterations for AdaBoost Regression. Results show

85248 VOLUME 7, 2019

C. Zhu et al.: Evaluation of Machine Learning Approaches for Android Energy Bugs Detection With Revision Commits

FIGURE 5. Hyper-parameter search range for AdaBoost, random forest and gradient tree boosting.

that there is a small disturbance of R2 for the number of iter-
ations, but R2 decreases sharply with the increase of learning
rate. It is shown that a large value of learning rate will cause
the model to overfit. It is better to increase the number of
iterationswith a small value of learning rate. Sowe restrict the
search range for learning rate as 0-2 and number of iterations
as 80-100. The number of trees is an essential parameter that
affects the performance of random forest. Results show that
there is no apparent variance for theR2 valuewith the increase
of the number of trees. However, toomany trees in the random
forest will cause overfitting. Sowe restrict the number of trees
as 70-100. During our experiment, the result shows that the
variance of R2 of GTB is small with the change of the number
of iterations. However, R2 will decrease evidently when the
learning rate is within 0.6-0.8. As a result, we restrict the
learning rate of GTB as 0-0.4.

B. ENERGY MODEL PERFORMANCE WITH DIFFERENT
MACHINE LEARNING ALGORITHMS
Table 2 provides the CV score as well as the standard devi-
ation error for each machine learning algorithm with the
optimal parameter set. The result shows that linear regression
with Lasso regularization has the best performance compared
with all the other algorithms. Compared with Ridge regular-
ization, Lasso regularization can improve the model general-
ity. Also, linear regression works better than SGD regression.
As SGD updates its weights continuously, the performance is
not stable.

Moreover, overfitting could occur if the number of itera-
tions is too large. The SVRmodel with linear kernel performs
better than the one with the RBF kernel, which indicates
that the energy model is linear to the selected features. The
regression-tree based models have less generality compared
with linear models as their R2 is around 0.88-0.89, while
the R2 of the linear model is around 0.95-0.96. So the linear

TABLE 3. Comparison of different machine learning models.

models have better generality compared with regression tree-
based models.
R2 only describes the generality of a model. We use MAE

to evaluate the prediction error of each model. As the SVR
with RBF kernel has poor performance based on the previous
experiment, we no longer assess it in the investigation. In the
analysis that compares of performance of different machine
learning algorithms, we split the training data into a training
set and a test set randomly. As there are only 472 readings
of data, so we took 80% as the training set and 20% as the
test set. The analysis is replicated ten times with different
random seed to balance the effect of random seeds in the
model. The training set and test set is preprocessed with the
selected features and specified feature scaler. Each model is
trained with the optimal parameter set and the training set.
Then the trained model is tested in the test set. We calculated
the MAE and R2 between the predicted energy and mea-
sured energy over each iteration. Next, we average the results
in Table 3. Results show that linear regression with Lasso
has the smallest MAE and highest R2 compared with all the
other machine learning algorithms, which means that linear
regression has the least prediction error and has the best gen-
erality. The MAE of linear regression is around 9.35, which
is about 5%-10% of error as the range of measured energy is
around 100-200. Also, the coefficient of determination value

VOLUME 7, 2019 85249

C. Zhu et al.: Evaluation of Machine Learning Approaches for Android Energy Bugs Detection With Revision Commits

FIGURE 6. Selected applications with predicted energy and measured energy.

of 0.94 shows the model has good generality. The result of
other algorithms shows either higherMAEor lowerR2, which
indicates that linear regression with Lasso is the best option
to build the energy model.

VII. MODEL EVALUATION AND
OPTIMIZATION STRATEGY
A. MODEL EVALUATION BASED ON REVISION HISTORY
Based on results shown in Section VI, we use linear regres-
sion with Lasso as the algorithm to train the energy model.
After we trained the model with the training data, we evaluate
the model with the data in [9]. This dataset contains the
resource usage and energy measurement for twenty appli-
cation over different revision history. Figure 6 shows the
selected applications with energy measurement, which have
abnormal rises during revision history. For example, the 11th
and 22nd commit of game_2048, the 6th commit of yelp,
35th commit of pinball, have exceptional rises of energy
consumption compared with the other commits. Some energy
bugs might be introduced into the application during these
commits. Then we applied our model on this data set with
the selected feature and specified feature scaler, the unusual
rises and falls can be detected by our model successfully.
Besides, our model can also mimic the energy consumption
pattern over the revision history. Take temaki application as an
example. Temaki is an Android application for creating sim-
ple lists quickly. The figure shows that there are several sharp
rises and falls for the measured energy consumption. Our
model can capture these patterns successfully. With the help
with our model, developers no longer require power meters to
measure voltage and current to calculate power consumptions
for their applications. They only need to write automatically
generated tests and collect the resource usage data for each
commit. Then they can use themodel to detect where there are
energy bugs introduced in the latest commit compared with
the measured energy data in previous commits.

B. OPTIMIZATION STRATEGY BASED
ON SELECTED FEATURES
Besides the energy model that captures the energy consump-
tion pattern over revision history, the selected features can
also guide developers to optimize their code with less energy
consumption. Based on Figure 4, nice and user are two
important features that affect the energy consumption. The
GPU jiffy stands for the time assigned for a process without
any interrupts. The number of CPU jiffies for the niced and
normal process indicates the CPU usage by the processes.
Chowdhury et al. also mitigate the complexity in energy
modeling with different power consuming states by counting
the number of GPU jiffies. Some techniques can be used
by developers to reduce the usage of CPU, namely reducing
the sampling frequency of sensors, putting some complicated
calculations on servers instead of on the client side, setting
GPS as coarse localization. The wake locks should always
be released once they are acquired to reduce the CPU usage
time. In addition, features such as sendto, recvfrom, connect,
bind also affect the energy consumption. These features are
related to sockets that communicate to the Internet with
TCP or UDP. To reduce the number of sockets, optimization
for the network related functions could be carried out. For
example, the partially-downloaded data could be cached to
avoid repeatedly redownloading the data. The data calls with
similar goals can be batched into one data call to reduce the
number of sockets. Also, developers can reduce the system
call to get data and time. Code optimization can be done to
reduce the number of major page faults.

VIII. CONCLUSIONS AND FUTURE WORK
Continuously energy modeling has been a challenging task
for Android developers. Massive manually measurement and
calculation is required for the previous energy measurement
work for Android applications. To ease the step that measures
energy consumption with power meters, we built the energy

85250 VOLUME 7, 2019

C. Zhu et al.: Evaluation of Machine Learning Approaches for Android Energy Bugs Detection With Revision Commits

consumption model with the resource usage data generated
from automatically generated tests. In this paper, we brought
up a balanced feature selection algorithm that selects the
most critical features for Android energy consumption. Our
algorithm selects 16 out of 122 features in the system-call-
based feature space and ranks the features with their impor-
tance to the final model. Optimization strategies for Android
applications are provided based on the selected features.
Differentmachine learning algorithms are compared based on
the MAE and R2 evaluation matrix. Each machine learning
model is trained with the optimal parameter set generated
from the hyper-parameter tuning approach. The CV results
show that the linear models perform better than non-linear
models and regression tree based models as the linear models
can achieve the R2 score with over 0.95 while the non-
linear models and regression tree based models can only
achieve 0.88.

To summarize, linear regression with Lasso regulariza-
tion has the best performance compared with Ridge regu-
larization, support vector regression, regression-tree based
models. Results show that the model trained with the linear
regression with Lasso regularization on the test set has the
MAE as 9.35 and R2 as 0.94, which is the best score among
all the models. We also use this model to capture the pat-
tern of measured energy consumption over revision history.
Figures show that the model can detect abnormal energy
changes effectively, which then could be used to replace the
energy measurement step with power meters.

Our paper uses resource usage of 472 applications as the
training data to train the model. More data could be collected
to better train and test the model with cross-validations.
A Test-as-a-Service (TaaS) can be created based on the
current Lasso model. The front-end allows developers to
upload Android apks to test the energy consumption over
each commit. The back-end server can use Raspberry PI to
run tests and collect resource usage data from the submitted
apks and predicted the energy consumption value with the
model proposed in this paper. Moreover, the collected data
can also be used as part of the training data and increase
the generality of the model. Also, our model only captures
the abnormal rises of energy consumption, which identi-
fies the commit that introduces the energy bug. However,
the specific code that introduces the energy bug cannot be
identified with the model. More work can be done to analyze
the call graph of Android applications with static analysis
and incorporate the code analysis into our framework and
guide the developers to resolve energy bugs more efficiently.
Furthermore, the current tests that collect resource usage
do not include localization tests. Some future work can be
done to model energy consumption with GPS or cellular
localization.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers
who provided helpful suggestions to improve the quality of
the paper.

REFERENCES
[1] D. Li, S. Hao, J. Gui, and W. G. J. Halfond, ‘‘An empirical study of the

energy consumption of Android applications,’’ in Proc. IEEE Int. Conf.
Softw. Maintenance Evol., Oct. 2014, pp. 121–130.

[2] C. Wilke, S. Richly, S. Götz, C. Piechnick, and U. Aßmann, ‘‘Energy con-
sumption and efficiency in mobile applications: A user feedback study,’’
in Proc. IEEE Int. Conf. Green Comput. Commun. IEEE Internet Things
IEEE Cyber, Phys. Social Comput., Aug. 2013, pp. 134–141.

[3] H. Jiang, H. Yang, S. Qin, Z. Su, J. Zhang, and J. Yan, ‘‘Detecting energy
bugs in Android Apps using static analysis,’’ in Proc. Int. Conf. Formal
Eng. Methods, Oct. 2017, pp. 192–208.

[4] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, ‘‘What do programmers
know about software energy consumption?’’ IEEE Softw., vol. 33, no. 3,
pp. 83–89, May 2016.

[5] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, ‘‘Fine-
grained power modeling for smartphones using system call trac-
ing,’’ in Proc. 6th Conf. Comput. Syst., Apr. 2011, pp. 153–168.
doi: 10.1145/1966445.1966460.

[6] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. W. M. van der Laak, B. van Ginneken, and
C. I. Sánchez, ‘‘A survey on deep learning in medical image analysis,’’
Med. Image Anal., vol. 42, pp. 60–88, Dec. 2017.

[7] Y. Sun, P. Babu, and D. Palomar, ‘‘Majorization-minimization algorithms
in signal processing, communications, andmachine learning,’’ IEEE Trans.
Signal Process., vol. 65, no. 3, pp. 794–816, Feb. 2016.

[8] F. Sebastiani, ‘‘Machine learning in automated text categorization,’’
ACM Comput. Surv., vol. 34, no. 1, pp. 1–47, 2002.

[9] S. A. Chowdhury and A. Hindle, ‘‘GreenOracle: Estimating soft-
ware energy consumption with energy measurement corpora,’’ in Proc.
IEEE/ACM 13th Work. Conf. Mining Softw. Repositories (MSR),
May 2016, pp. 49–60.

[10] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell, and
S. Romansky, ‘‘GreenMiner: A hardware based mining software reposito-
ries software energy consumption framework,’’ in Proc. 11th Work. Conf.
Mining Softw. Repositories, May 2014, pp. 12–21.

[11] M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, and S. Tarkoma,
‘‘Modeling, profiling, and debugging the energy consumption of mobile
devices,’’ ACM Comput. Surv., vol. 48, no. 3, p. 39, Feb. 2016.

[12] S. Romansky, N. C. Borle, S. Chowdhury, A. Hindle, and R. Greiner,
‘‘Deep green: Modelling time-series of software energy consumption,’’
in Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2017,
pp. 273–283.

[13] R. Damasevicius, J. Toldinas, and G. Grigaravicius, ‘‘Modelling bat-
tery behaviour using chipset energy benchmarking,’’ Elektronika Ir Elek-
trotechnika, vol. 19, no. 6, pp. 117–120, 2013.

[14] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, ‘‘Estimating mobile
application energy consumption using program analysis,’’ in Proc. 35th
Int. Conf. Softw. Eng. (ICSE), May 2013, pp. 92–101.

[15] Y. Hu, J. Yan, D. Yan, Q. Lu, and J. Yan, ‘‘Lightweight energy consumption
analysis and prediction for Android applications,’’ Sci. Comput. Program.,
vol. 162, pp. 132–147, Sep. 2018.

[16] S. Chowdhury, S. Borle, S. Romansky, and A. Hindle, ‘‘GreenScaler:
Training software energy models with automatic test generation,’’ Empir-
ical Softw. Eng., vol. 20, pp. 1–44, Jul. 2018.

[17] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff, ‘‘What is keeping
my phone awake?: Characterizing and detecting no-sleep energy bugs in
smartphone apps,’’ in Proc. 10th Int. Conf. Mobile Syst., Appl., Services,
Jun. 2012, pp. 267–280. doi: 10.1145/2307636.2307661.

[18] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury,
‘‘Detecting energy bugs and Hotspots in mobile apps,’’ in Proc. 22nd ACM
SIGSOFT Int. Symp. Found. Softw. Eng., Nov. 2014, pp. 588–598.

[19] R. Damaševicius, V. Štuikys, and J. Toldinas, ‘‘Methods for measurement
of energy consumption in mobile devices,’’ Metrol. Meas. Syst., vol. 20,
no. 3, pp. 419–430, Sep. 2013.

[20] D. Li, A. H. Tran, and W. G. J. Halfond, ‘‘Making Web applications more
energy efficient for OLED smartphones,’’ in Proc. 36th Int. Conf. Softw.
Eng., May 2014, pp. 527–538.

[21] D. Li andW. G. J. Halfond, ‘‘An investigation into energy-saving program-
ming practices for Android smartphone app development,’’ inProc. 3rd Int.
Workshop Green Sustain. Softw., Jun. 2014, pp. 46–53.

[22] S. A. Chowdhury, V. Sapra, and A. Hindle, ‘‘Client-side energy efficiency
of HTTP/2 for Web and mobile app developers,’’ in Proc. IEEE 23rd Int.
Conf. Softw. Anal., Evol., Reeng., Mar. 2016, pp. 529–540.

VOLUME 7, 2019 85251

http://doi.acm.org/10.1145/1966445.1966460.
http://dx.doi.org/http://doi.acm.org/10.1145/2307636.2307661.

C. Zhu et al.: Evaluation of Machine Learning Approaches for Android Energy Bugs Detection With Revision Commits

[23] A. Banerjee and A. Roychoudhury, ‘‘Automated re-factoring of Android
apps to enhance energy-efficiency,’’ in Proc. IEEE/ACM Int. Conf. Mobile
Softw. Eng. Syst., May 2016, pp. 139–150.

[24] L. Cruz, R. Abreu, and J.-N. Rouvignac, ‘‘Leafactor: Improving energy
efficiency of Android apps via automatic refactoring,’’ in Proc. IEEE/ACM
4th Int. Conf. Mobile Softw. Eng. Syst., May 2017, pp. 205–206.

[25] M. F. Tuysuz, M. Ucan, and R. Trestian, ‘‘A real-time power monitoring
and energy-efficient network/interface selection tool for Android smart-
phones,’’ J. Netw. Comput. Appl., vol. 127, pp. 107–121, Feb. 2019.

[26] C. Schaffer, ‘‘Overfitting avoidance as bias,’’Mach. Learn., vol. 10, no. 2,
pp. 153–178, Feb. 1993.

[27] R. Tibshirani, ‘‘Regression shrinkage and selection via the lasso,’’
J. Roy. Statist. Soc., B (Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[28] H. Robbins and S. Monro, ‘‘A stochastic approximation method,’’
Ann. Math. Statist., vol. 22, pp. 400–407, Sep. 1951.

[29] K. C. Kiwiel, ‘‘Convergence and efficiency of subgradient methods for
quasiconvex minimization,’’ Math. Program., vol. 90, no. 1, pp. 1–25,
2001.

[30] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

[31] H. Drucker, C. J. Burges, L. Kaufman, A. J. Smola, and V. Vapnik,
‘‘Support vector regression machines,’’ in Proc. Adv. Neural Inf. Process.
Syst., Jun. 1997, pp. 155–161.

[32] Y.-W. Chang, C.-J. Hsieh, K.-W. Chang, M. Ringgaard, and C.-J. Lin,
‘‘Training and testing low-degree polynomial data mappings via linear
SVM,’’ J. Mach. Learn. Res., vol. 11, pp. 1471–1490, Jan. 2010.

[33] R. E. Schapire, ‘‘The boosting approach to machine learning:
An overview,’’ Nonlinear Estimation Classification, vol. 171,
pp. 149–171, May 2003.

[34] Y. Freund and R. E. Schapire, ‘‘A decision-theoretic generalization of on-
line learning and an application to boosting,’’ J. Comput. Syst. Sci., vol. 55,
no. 1, pp. 119–139, Aug. 1997

[35] H. Drucker, ‘‘Improving regressors using boosting techniques,’’ in Proc.
ICML, vol. 97. 1997, pp. 107–115.

[36] T. G. Dietterich, ‘‘Ensemble methods in machine learning,’’ in Proc. Int.
Workshop Multiple Classifier Syst., Dec. 2000, pp. 1–15.

[37] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[38] J. H. Friedman, ‘‘Stochastic gradient boosting,’’ Comput. Statist. Data
Anal., vol. 38, no. 4, pp. 367–378, 2002.

[39] J. H. Friedman, ‘‘Greedy function approximation: A gradient boosting
machine,’’ Ann. Statist., vol. 29, pp. 1189–1232, Oct. 2001.

[40] C. E. Rasmussen, ‘‘Gaussian processes in machine learning,’’ in Proc.
Summer School Mach. Learn., Feb. 2003, pp. 63–71.

[41] Time. Accessed: Feb. 15, 2019. [Online]. Available: http://man7.org/
linux/man-pages/man7/time.7.html

[42] R. Kohavi, ‘‘A study of cross-validation and bootstrap for accuracy esti-
mation and model selection,’’ in Proc. 14th Int. Joint Conf. Artif. Intell.,
Aug. 1995, pp. 1137–1143.

[43] R. G. Carpenter, ‘‘Principles and procedures of statistics, with special
reference to the biological sciences,’’ Eugenics Rev., vol. 52, no. 3, p. 172,
Oct. 1960.

[44] M. Claesen and B. D. Moor, ‘‘Hyperparameter search in machine
learning,’’ Feb. 2015, arXiv:1502.02127. [Online]. Available: https://
arxiv.org/abs/1502.02127

CHENYANG ZHU was born in Changzhou,
Jiangsu, China, in 1990. He received the B.S.
degree from the Huazhong University of Science
and Technology, in 2012, the M.S. degree in com-
puter science and information from the University
of Pennsylvania, Philadelphia, PA, USA, in 2014,
and the Ph.D. degree in electronics and com-
puter science from the University of Southampton,
Southampton, U.K.

From 2013 to 2014, he was a Research Assistant
with the xLab, University of Pennsylvania. Since 2014, he has been a
Software Engineer with OSIsoft LLC. He is currently with the School of
Information Science and Engineering, Changzhou University. His research
interests include ensemble methods of machine learning, formal methods,
integrated formal methods, data visualization, and time modeling.

ZHENGWEI ZHU was born in Changzhou,
Jiangsu, China, in 1963. He received the B.S.
degree from Southeast University, Nanjing, China,
in 1980, the M.S. degree from the South China
University of Technology, Shanghai, China,
in 2014, and the Ph.D. degree from the Nanjing
University of Science and Technology, Nanjing.

From 1999 to 2007, he was an Assistant Pro-
fessor with the School of Information Science and
Engineering, Changzhou University. Since 2008,

he has been a Full Professor with the School of Information Science and
Engineering, Changzhou University. He has more than 50 publications,
more than ten of which are indexed by SCI and EI, and holds ten patents.
His research interests include computer networks, intelligent measurement,
and control systems. He managed and completed more than ten provincial,
municipal, and enterprise projects, one of which is funded by the National
Nature Science Foundation of China.

YUNXIN XIE was born in Jingzhou, Hubei,
China. She received the B.S. and M.S. degrees in
petroleum science from Yangtze University and
the Ph.D. degree in mineral prospecting and explo-
ration from the Chengdu University of Technol-
ogy, in 2018. She is currently a Lecturer with
the School of Petroleum Engineering, Changzhou
University.

WEI JIANG was born in Huaian, Jiangsu, China.
He received the B.S. degree from the Changzhou
University Huaide College, Changzhou, China.
He is currently pursuing the M.E. degree with
the School of Information Science and Engineer-
ing, Changzhou University. His research interests
include indoor position, pedestrian navigation, and
smartphone applications.

GUILING ZHANG was born in Xinyang, Henan,
China, in 1993. She received the B.S. degree
from the Changzhou University Huaide College,
in 2017. She is currently pursuing the M.S.
degree with the School of Information Science and
Engineering, Changzhou University. Her research
interests include static analysis and Android appli-
cation testing.

85252 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	MODELING ENERGY CONSUMPTION
	ENERGY BUG DETECTION
	CODE OPTIMIZATION

	MACHINE LEARNING MODELS
	LINEAR REGRESSION WITH REGULARIZATION
	SUPPORT VECTOR REGRESSION
	ADABOOST REGRESSION
	ENSEMBLE METHODS

	METHODOLOGY
	REVISION-BASED BUG DETECTION FRAMEWORK
	EVALUATION TECHNIQUE

	DATA DESCRIPTION WITH FEATURE SELECTION
	DATA DESCRIPTION
	FEATURE SELECTION AND FEATURE SCALING

	COMPARE MACHINE LEARNING ALGORITHMS FOR ENERGY MODELS
	TUNING DIFFERENT MACHINE LEARNING MODELS
	ENERGY MODEL PERFORMANCE WITH DIFFERENT MACHINE LEARNING ALGORITHMS

	MODEL EVALUATION AND OPTIMIZATION STRATEGY
	MODEL EVALUATION BASED ON REVISION HISTORY
	OPTIMIZATION STRATEGY BASED ON SELECTED FEATURES

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	CHENYANG ZHU
	ZHENGWEI ZHU
	YUNXIN XIE
	WEI JIANG
	GUILING ZHANG

