
Received May 26, 2019, accepted June 19, 2019, date of publication June 27, 2019, date of current version July 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2925429

A Scheduling Method of Moldable Parallel Tasks
Considering Speedup and System Load
on the Cloud
JIANMIN LI 1, YING ZHONG1, AND XIN ZHANG2
1School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361005, China
2School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China

Corresponding authors: Jianmin Li (lijianmin2006@sina.cn) and Xin Zhang (mywork@nuist.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61806173 and Grant 61672442, in part
by the Joint Funds of Scientific and Technological Innovation Program of Fujian Province under Grant 2017Y9059, in part by the Science
and Technology Planning Project of Xiamen/Quanzhou City under Grant 3502Z20183055 and Grant 2017G030, in part by the Natural
Science Foundation of Zhejiang Province under Grant LQ18F020005, and in part by the Science and Technology of Wenzhou under Grant
S20170008.

ABSTRACT Themoldable parallel task (MPT) is a kind of parallel task that their sub-tasks hold the resources
exclusively, which has been widely used in different areas. Our paper focuses on the scheduling of moldable
tasks when every sub-task supports time-slice. The time-slice is a consecutive time that the sub-task holds
the resources exclusively. After every time-slice, the sub-task can be canceled, suspended, or continued.
We give the model of MPTs and propose a scheduling method for MPTs: MC (a heuristic scheduling method
supporting time-slice model on the cloud). The simulation results show that, even under a forecast accuracy
of system load under 90% and 95%, MC reduces average waiting time and average execution time; at the
same time, MC has a lower value in the percentages of unfinished tasks.

INDEX TERMS Moldable parallel task, speedup, parallelism, scheduling method.

I. INTRODUCTION
Cloud has been widely used in different aspects and it
brings convenience for many enterprises [1]. Cloud com-
puting takes infrastructure, platform, and software as ser-
vices and supports a pay-as-you-go model for geographically
distributed consumers [2]. There are three kinds of service
providing methods in Cloud: IaaS (Infrastructure as a Ser-
vice), PaaS (Platform as a Service), and SaaS (Software as
a Service). Many cloud platforms have been built by dif-
ferent companies, such as Microsoft Azure, Amazon EC2,
Google App Engine and Aneka [3]. Researchers also have
done much work on the Cloud, including the scheduling
methods [4], security, virtualization [5], load balance [6], and
so on [2], [7]–[10].

The application with big data always spends much time on
computing and data transmission. Parallelization is the most
important way to shorten the execution time of applications
with big data. It divides one problem into some sub-problems
that would be parallel executed. Parallel tasks are widely used

The associate editor coordinating the review of this manuscript and
approving it for publication was Jeonghwan Gwak.

in the Cloud [8]. Most of past work used DAG (Directed
acyclic graph) to model parallel tasks and given different
scheduling methods based on the DAG. Those scheduling
methods are mainly through intelligent selecting the execu-
tion route to achieve scheduling targets, such as the QoS
(Quality of Service) requirement, minimizing energy con-
sumption, maximizing output and profit and so on. Different
to the prior work, we focus on the scheduling of the MPT
considering the system load and the speedup of MPT. Espe-
cially, the sub-task supports the time-slice. The time-slice is
a continuous period and the sub-task holds resources exclu-
sively during a time-slice. Only at the end of every time-
slice, the allocated resources can be dropped. Our paper gives
attention to the scheduling of MPTs when those tasks have
nonlinear speedup and they support the time-slice.

The originality and novelty of this work is emphasized by
the following contributions:

1) We give a MPT model supporting time-slice under the
Cloud environment;

2) We give the reference parallelism from the system load;
3) We propose a schedule method for the MPTs based on

the time-slice based on the reference parallelism;

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ 86145

https://orcid.org/0000-0002-4734-9248


J. Li et al.: Scheduling Method of MPTs Considering Speedup and System Load on the Cloud

4) Comparisons are given to test our method to check the
performance in average waiting time, average execu-
tion time, and percentages of unfinished tasks.

The rest of the paper is organized as follows. Section II pro-
vides a literature review of scheduling models and schedul-
ing methods for parallel tasks. Section III gives the system
model. Section IV addresses our proposed system architec-
ture, MPTs models and so on. Section V describes a schedul-
ing method for MPT in the Cloud. Section VI describes
the simulation performance of our proposed methods and
existing methods. We conclude our study and further work
in Section VII.

II. RELATED WORK
Parallel tasks always reduce the execution time and they are
widely used in different areas, such as weather forecasting,
stoichiometric calculation, and so on. The data explosive
growth makes the parallel task more important that shortens
the execution time of applications with big data.

Most of past researchers used DAG (Directed-Acyclic
Graph) to model tasks, and they proposed methods from the
scheduling of the DAG. Each task is a DAG having a set
of subtasks (i.e., nodes) with precedence constraints (i.e.,
directed edges). The scheduler must complete the execution
of all its sub-parallel-tasks by some specified deadlines. They
tried to smartly select the execution route to reduce execution
time. Pathan et al. [11] proposed two-level preemptive GFP
(Global Fixed-Priority scheduling) policy: a task-level sched-
uler first determines the priority of ready tasks and a subtask-
level scheduler decides the execution orders of subtasks.
Yue et al. [12] used a dynamic DAG scheduling method con-
sidered the critical path and depth to enhance the scheduling
performance. Bhatti et al. [13] proposed LeTS (Locality-
aware Task Scheduling) for homogeneous multi-core sys-
tems. The LeTS heuristic took account of locality and load
balancing to reduce the execution time of target applications.
Wang et al. [14] proposed CPLMT (Cloud Parallel schedul-
ing based on the Lists of Multiple Attributes) for the parallel
tasks, which consider the requirements of jobs to different
attributes: bandwidth, memory, computing speed, and so on.
Li [15] focused the problem of non-clairvoyant scheduling of
independent parallel tasks on multiple multicore processors.
For a single multicore processor, they derived an asymptotic
worst-case performance bound for a non-clairvoyant offline
scheduling algorithm, called LTF (Largest Task First). Gen-
erally, those methods mainly tried to select of the execution
route to reduce the execution time.

Besides reducing execution time of tasks, other researchers
also tried to consider others scheduling targets, such
as the cost [16], QoE (Quality of Experience), energy
consumption [17], reliability [18], load balance, and so on.
Our research mainly focuses on the execution time, so we do
not introduce them here.

Different to above mention methods, some researchers
also give some scheduling methods just from the flexibil-
ity of parallel tasks. The parallel tasks can be classified

into three kinds according to the flexibility [19], [20]: rigid,
moldable, and moldable parallel. The rigid parallel tasks
have a parallelism in a set of constants. The parallelism
of MPTs even can be changed during execution. For the
MPT, the parallelism cannot be changed once it has begun.
Ye et al. [21] presented a constant competitive online algo-
rithm by applying a black-box reduction from the moldable
task scheduling to the rigid task scheduling. Focused on
DVFS (DynamicVoltage and Frequency Scaling) technology,
parallelization, real-time scheduling and resource allocation
techniques, Zahaf et al. [22] defined the scheduling of MPTs
as the optimization problem of an INLP (Integer Non-linear
Programming) problem. Wu and Loiseau [23] used a greedy
algorithm to satisfy multiple targets of MPTs: social welfare
maximization, machine minimization, minimize weighted
completion time of tasks. Chen [24] presented an iterative
method for improving the performance of scheduling MPTs,
which aimed to find a feasible schedule with theminimization
of makespan. Those methods always consider the DAG of
tasks, and try to select execution route to ensure their schedul-
ing targets. Javanmardi et al. [25] and Shojafar et al. [26]
proposed FUGE for scheduling problem in the cloud, which is
based on fuzzy theory and a GA (Genetic Algorithm). FUGE
aimed to perform optimal load balancing considering execu-
tion time and cost. They modified the SGA (Standard Genetic
Algorithm) and use fuzzy theory to devise a fuzzy-based
steady-state GA in order to improve SGA performance in
term ofmakespan. Besides that, FUGE algorithm assigns jobs
to resources by consideringmultiple attributes of VM (Virtual
Machine), such as processing speed, VMmemory, VM band-
width, and the job lengths.

Considering different values of speedups and the related
consumed resources, some new scheduling methods are
proposed from the view of speedup of parallel tasks.
Suter et al. [27] proposed FFDH (First Fit Decreasing
Height)-stretch for scheduling of parallel tasks and took it
as a 0-1 integer linear programming problem. They used a
three-step algorithm to solve the problem: parallel degree
allotment, task scheduling and frequency assignment. Mar-
chal et al. [29] proposed a practical speedup model for graphs
ofMPTs, which takes trade-off between tractability and accu-
racy. They proposed model-optimized variants of the existing
algorithms PROPMAPPING and FLOWFLEX, and proved
them are 2-approximation algorithms. Hao et al. [30] gave an
example of speedups under various parallelisms, and based
on the speedup, they gave a scheduling method according
to the system load and the speedup under different kinds of
parallelisms. Map-Reduce also widely used in the scheduling
of parallel tasks. Chen et al. [31] proposed a new MapRe-
duce Scheduler-BGMRS. The BGMRS utilizes the Bipartite
Graph modeling and it can obtain the optimal solution of
the deadline-constrained scheduling problem by transform-
ing the scheduling problem into a well-known graph problem:
minimum weighted bipartite matching.

Different to prior research, we pay attention to the schedul-
ing of MPTs for the case when they support the time-slice.

86146 VOLUME 7, 2019



J. Li et al.: Scheduling Method of MPTs Considering Speedup and System Load on the Cloud

Most of past work focuses on parallel tasks which exclu-
sive hold the resources until all tasks have been finished.
The time-slice gives the task the chance to be canceled,
suspended, and resumed after every end of the time-slice.
The parallel sub-tasks is denoted as some MPTs (Cloudlets
in Cloudsim [2], [9]) and each task (Cloudlet) has the same
execution time-one time-slice. Most of past work ignores
the fact that some tasks need much times to execute them,
the time-slice gives us a chance to divide one big task into
some small sub-tasks. This brings convenience for schedul-
ing tasks. There are many cloud simulation tools, such as
Cloudsim [32]–[34], GreenCloud, CloudSched, MDCSim,
iCanCloud, and DCSim. Those tools help us to evaluate our
proposed method.

III. THE SYSTEM MODEL
Figure 1 is physical structure of a Cloud. Every Host has
many PEs (Processing Elements) and a data center has many
hosts. Datacenter broker decides how to allocate resources in
the Cloud. From Figure 1, the total processing ability of the
system TP is:

TP =
∑

P(N ,MN ,LM ,N ) (1)

where,
-N is the number of data centers;
-MN is the number of hosts in every data center (every data

center may have different numbers of hosts);
-LM ,N is the number of PEs in every host (every host may

have different numbers of PEs).

FIGURE 1. Physical structure of cloud.

The computing ability is always denoted by MIPS/s
(Million Instructions Per Second).

Figure 2 describes the user view of the Cloud. The user
only has right to execute the task on the VMs assigned to
him according to the scheduling policy. A Datacenter always
handles several hosts and a host always manages multiple
VMs. The parameters of a host include: (1) attributes of
resources: computing speed, memory, storage; and (2) the
provisioning policy (scheduling method) for allocating pro-
cessing cores (or PEs) to VMs. The Host provides different

FIGURE 2. User view of cloud.

parameters (memory, hard disk, CPU, etc.) to VMs. The
host has two kinds of resource sharing policies for allocating
cores toVMs: space-shared and time-shared [2]. In this paper,
we assume that there is only one task on a computer node at
any time, in other words, those resources are belonging to
time-shared.

Fig. 1 and Fig. 2 address the holistic architecture of the
system. In fact, the datacenter broker manages the system.
It reduces or adds a new VM to the system according to the
system load (sometimes, it shuts down some VMs to reduce
the energy consumption when it has a lower system load).
At the same time, if it finds that the system is overloaded,
it adds some hardware to reduce load. And we assume the
system has a relative high load, so we do not consider shutting
down VMs in our system.

IV. MOLDABLE PARALLEL TASK SUPPORTING
TIME-SLICE MODEL
In this section, first, we introduce the MPT model that sup-
ports time-slice. Here, we give an example of MPTs-WRF
(Weather Research and Forecasting Model) [29]. WRF is
widely used in the weather forecast. From Figure 3, we find
that the maximum available parallelism of WRF is 48. If the
parallelism is less than 48, the execution time would be
shortened with the increase of the parallelism; when there are
more resources (more than 48) for the task, the execution time
would be prolonged. The reason is that the system needsmore
time to exchange data between different resources when the
MPT has a large parallelism (than a constant). Like most of
parallel tasks, WRF [29] has a nonlinear speedup.

According to the execution time of WRF under different
parallelisms, we model the MPT Ti as:

Ti =
{(
AiDi,Pi < pli,j, e ti,j >

)
|1 ≤ j ≤ Pi

}
(2)

pl i,j is the parallelism of the ith tasks of jth parallelism, and
et i,j is the execution time of ith tasks when the parallelism is
pl i,j.Ai and Di is the arrival time and the deadline of task Ti.
For task Ti, suppose that the maximum parallelism is Pi.
If the number of assigned resources is less than Pi, with the
increase of the number of resources, the execution timewould

VOLUME 7, 2019 86147



J. Li et al.: Scheduling Method of MPTs Considering Speedup and System Load on the Cloud

FIGURE 3. Execution time of WRF under different numbers of CPUs.

be reduced; if the assigned resources number is more than Pi,
with the improvement of the number of assigned resources,
the execution time would be delayed. The reason is, with
the increase of the number of assigned resources, more time
and more bandwidth need to be consumed between different
resources.When the parallelism of the task is pl i,j, the relative
execution time is et i,j.
Because some MPTs have a large value in the execution

time, even they are paralleled. So, it is important to support
the time-slice. Figure 4 addresses an example of theMPT that
supports time-slice. The task has 3∗3 cloudlets (sub-tasks)
and is denoted as ci,j(1 ≤ i, j ≤ 3). A small rectangle means
a cloudlet. The black rectangles are cloudlets that have not
been completed. The time-slice gives the cloudlet a chance
to get the error not until all cloudlets have been finished.
It also helps programmer to find the error point during a
time-slice. During every time-slice, the cloudlet holds the
resource exclusively, until all cloudlets (having same value
in i) have been finished. In Figure 4, though those cloudlets
(ci,3, 1 ≤ i ≤ 3) have been completed just after the third
time-slice, those cloudlets also hold the three resources until
the end of the third time-slice. In fact, the time-slice of tasks
is the same and it always is given by the system. In this paper,
we assume that the time-slice is sl. Figure 4 also gives us the
way to model MPTs on Cloudsim. A task can be denoted by a

FIGURE 4. Moldable parallel tasks supporting time-slice.

matrix of parallel cloudlets. The cloudlet in the same column
must be executed synchronized.

From Figure 4, we can take a task as many small cloudlets.
In Figure 4, we can see there are 3∗3 cloudlets in the task. So,
under the time-slice is SL, we give the model of the task Ti
(when the parallelism is pl i,j) as (l is the selected parallelism,
m is the identifier of the time-slice):

Ti = {c
l,m
i |l ∈

[
1, pl i,j

]
, m ∈

[
1,
⌊
et i,j

/
SL
⌋]
} (3)

When the task begins to execute, we assume that the dead-
line of those cloudlets as d l,mi :

d l,mi = Di − m ∗ SL (4)

V. A SCHEDULING METHOD FOR MOLDABLE
PARALLEL TASKS ON CLOUD
In the section, we assume that all parallel tasks have a same
scope of normalized parallelism [0, 1]. Without considering
the deadline, we assume that all parallel tasks are executed on
the same parallelism and the system ensures having enough
resources to execute all tasks-we call it as reference paral-
lelism (The reference parallelism is not the selected paral-
lelism of tasks).

A. A METHOD DECIDING THE REFERENCE PARALLELISM
In this section, we solve the problem to decide the reference
parallelism of those MPTs. In the first step, we do not con-
sider the deadline of tasks and suppose that all parallel tasks
are executed under the same reference parallelism.

First, we know that different parallel tasks have different
ranges of speedups. Hence, we need to normalize them and
to make all of them have the normalized parallelism in the
same range of [0, 1].

In formula (2), we assume task Ti has a parallelism of Pi.
We set all those parallelisms in the scope of [0, 1], and we use
SPi to denote the selected parallelism used in the execution.
So, the selected parallelism RPi is:

RPi = SPi ∗ Pi (5)

Suppose et i,temp and RPi,temp is the execution time and
the parallelism when the parallelism of task is temp. The
consumed resources CS tempi of the tasks under the selected
parallelism (temp = RPi) is:

CS tempi = RPi,temp ∗ et i,temp (6)

Considering the time-slice, according to formula (3), the
consumed resources is CSJ tempi :

CSJ tempi = RPi,temp ∗
⌊
et i,temp

/
sl
⌋
∗ sl (7)

Now, without considering the deadline of tasks, we assume
that all tasks have the same normalized parallelism (with the
same scope in [0, 1]), in other words, those tasks have the
same value in SPi. We call it as the reference parallelism and
suppose that it is AP. According to the formulas (1) and (7)
(suppose RPi,temp = AP):

TP =
∑

CSJ tempi (8)

86148 VOLUME 7, 2019



J. Li et al.: Scheduling Method of MPTs Considering Speedup and System Load on the Cloud

TP (Formula 1) is the total resources provided by the Cloud.
From formula (8), we get the average normalize paral-

lelism, and according to formula (5), we get the selected
parallelism for every task, and suppose it is APL i.
We must point out that, because of the difference in dead-

lines of tasks, we just get a reference parallelism, the selected
parallelism may be different to AP. And in section 5.2, we
give a detail introduction to schedule resources according to
the reference parallelism.

B. A METHOD FOR SCHEDULING RESOURCES
First of all, our scheduling method assumes that all tasks
are executed on the reference normalized parallelisms. Then,
we check two requirements: (1) deadline: we add resources
to the task to shorten the execution time only if we have
saved enough resources before the scheduling; (2) resource
fragment: whether we have a method to reduce more resource
fragment than current scheduling. The saved resources
(SRi) refer to the difference between the assigned resources
(CSJ temp1i , temp1 is the normalized parallelism) and the
resource under reference parallelism temp2 (CSJ temp2i : temp2
is the normalized parallelism, and the reference parallelism
is AP):

SRi = CSJ temp1i − CSJ temp2i (9)

Wemust point out that, SRi has a time influence factor TF i,
suppose the time is T :

TF i =

{
0 others;

SRi ∗
(
Di−T
Di−Ai

)
Ai ≤ T ≤ Di.

(10)

The number of total saved resources (TSR) is:

TSR =
∑N

i=1
(TF i ∗ SRi) (11)

Algorithm 1 describes the details of the schedulingmethod.
In general, there are two main steps in the scheduling. First,
we assume that the task is executed under the reference
parallelism (APL i).We need checking the finish timewhether
is smaller than the deadline. If it is, we check the parallelism
from 1 to APL i, to select the parallelism which has the
smallest resource fragment (first step, lines 8 ∼ 17). If it is
not, we check the parallelism fromAPL i to the maximum par-
allelism (MAPi), under the permission of the saved resources
before the scheduling, we select the parallelism which
first satisfies the requirement to the deadline (second step,
lines 19 ∼ 25).

We give a detailed explanation of Algorithm 1 here.
In line 1, TSR records the saving resources. Sometime,
we schedule some tasks with a smaller parallelism than
the reference parallelism. According to Amdahl’s law [34],
we would save some resources when the task is executed
under a lower parallelism. lr (line 2, Algorithm 1; same in
the following) is the number of resources that do not have
been assigned. Lines 3∼ 4 calculate the total saving resources
which is the gap between the consumed resource and the

Algorithm 1: SRP(N ,AP) //Schedule MPTs Under Ref-
erence Parallelism, N is the Number of Tasks in the
Scheduling List, AP is the Reference Parallelism

1. TSR = 0; //TSR records the saving resources.
2. lr = N ; // lr is the number of resources that do not have

been assigned
3. For i = 1 : N
4. TSR = TSR+

∑N
i=1 (TF i ∗ SRi);

5. For i = 1 : N
6. Get the reference parallelism (APL i) according to

the reference parallelism AP;
7. If (lr ≥ APL i) // there are enough resources for the

task to be executed with parallelism APL i.
8. Get the finish time of the task (ft);
9. Get the resource fragment minfr suppose that the

reference parallelism is AP;
10. If ft < Di
11. For sl = 1 : APL i // only check the

parallelism is less than AP
12. Get the finish time ft1 when the

parallelism of the task is APL i;
13. If ft < Di
14. Get the resource fragment rf when

we suppose that the parallelism is sl;
If rf ≤ minrf

15. minrf = rf ;
16. selp = sl;

17. else
18. For sl = APL i : MAPi // only checking the

normalized parallelism is more than AP
19. Get the finished time ft1 when the

parallelism of the task is sl;
20. If ft < Di
21. Get the total saved resources as

formula (11);
22. If TSR > 0;
23. selp = sl;
24. break;

25. SL i = sl; // Assigning sl resources to the ith task; in
other words, the parallelism of the task is sl.

resources under the reference parallelism. Line 6 gets the
reference parallelism (APL i) according to AP. Line 7 checks
the resources whether satisfy the system requirement. If it
is satisfied, we calculate the finished time (line 8) and the
resource fragment (line 9). Line 10 checks whether the exe-
cution time satisfies the requirement of the deadline.

If the deadline has been satisfied (lines 10 ∼ 18, we check
that the parallelism is changed from 1 to the reference par-
allelism (APL i) (lines 11 ∼ 18), to select the scheduling that

VOLUME 7, 2019 86149



J. Li et al.: Scheduling Method of MPTs Considering Speedup and System Load on the Cloud

has the smallest value in resource fragment (lines 13 ∼ 18).
If the deadline has not been satisfied (lines 19∼ 25), we check
that the parallelism which is changed from the reference
parallelism to the maximize parallelism (lines 19 ∼ 25), and
get the parallelism that which first satisfies the deadline as
the selected parallelism (lines 21 ∼ 25). Line 26 assigns sl
resources to the ith task.
Algorithm 1 just gives the method to obtain the parallelism

of every task. Figure 4 shows that a task consists of many
cloudlets. We can schedule those cloudlets sequential. But
this may bring scheduling problem. We know that, to get an
accurate speedup is very difficult, especially under the Cloud
and the big data environment. Many tasks need much time
(many time-slices) to execute them. If the task cannot be exe-
cuted as our expectation before the deadline, this brings bad
QoE to the user and reduces the system profit. So, we need
an urgency-based scheduling method for cloudlets. Seeing
from Figure 4, the last time-slice, if the task is not supposed
as our expectation and has more instructions to be finished,
we should give more time and resources to execute them. So,
we give an emergence fact to every task, which would have a
higher priority in the execution. In the next section, we would
give a dynamic priority to every cloudlet.

C. A METHOD DECIDES THE PRIORITIES OF TASKS
As mentioned above, the factors deciding the priority of the
task include: the time to deadline, the parallelism, the load of
the system. Because of the dynamic of the load, we judge the
load by the time of the end of every time-slice. For Figure 4,
we can get the system load by the end of every time-slice.

We assume that every task is executed under the reference
parallelism. Suppose that the time is nst , it is the end of the nth
time-slice.We assume that every task average assigns the load
to the assigned resources from the arrival time to the deadline.
Algorithm 2 gives the method to calculate the system load of
the time (the nstth time-slice).

Algorithm 2: sysload(nst) //Get the System Load of the
nstth Time-Slice

1. SJ = []; //SJ are the tasks that arrive before the nth
time-slice and have the deadline that is more than the nth
time-slice, there are N tasks in SJ ;

2. nowt = nst ∗ SL;
3. For i = 1 : N
4. If (Di ≥ nowt) and (Ai ≤ nowt)
5. Add Di to SJ ;

6. sysload = 0;
7. For i = 1 : len(SJ )
8. sysload = sysload+ (APRi ∗TAPRi)/(N ∗ (Di−Ai));

We introduce Algorithm 2 in details in the following. SJ
records the tasks that which arrive before the nth time-slice
and the deadline is more than the nth time-slice (line 1).
Lines 3 ∼ 5 get the task in SJ . sysload is the system load of

the time (nstth time-slice). APRi and TAPRi are the reference
parallelism and the relative execution timewhen it is executed
under reference parallelism. In line 8, we get the system load.
len(SJ ) gets the number of tasks in SJ .(APRi ∗ TAPRi)/(N ∗
(Di−Ai)) is the load given by ith task to the current time-slice.

We suppose that the priorities of cloudlets have a scope of
[0, 1]. When task Ti comes, first according to Algorithm 1,
we get the reference parallelism APL i (according to the nor-
malized reference parallelism AP), and the related working
time is TAPi (when the parallelism is APL i), so, we need NL
time-slices to execute the task (formula 12):

NL = TAPi/SL (12)

The task can be denoted as APL i ∗ NL cloudlets. We sup-
pose that the task at least needs to be completed before ANS
time-slice and ∂ percentages of the execution time to its
deadline. The priority of the cloudlets of different parallel
tasks can be got as Algorithm 3:

Algorithm 3: Cloudpri (Ji, ANS, ∂)

1. numsl = (Di − Ai)/SL;
2. For m = 1 : APL i
3. For n = 1 : NL // nth time-slice;
4. numstd = (Di − Ai)/SL − n; // numstd is the

number of time-slice of the cloudlet to the
deadline

5. ∂1 = ((TAPi − Ai)− (NL-n) ∗ SL)/(Di − Ai);
6. If (numstd > ANS) and (∂1 < ∂)
7. Pm,n = (NL − n)/(Di − Ai);
8. else
9. Pm,n = 1;

The main step of Algorithm 3 is to get the priority of
every cloudlet for Ti. Line 1 gets the number of cloudlets that
between the arrival time (Ai) and the deadline (Di). For every
cloudlet, line 4 gets the time to deadline Di; line 5 gets the
percentage of the time to deadline. Line 6 checks the leaving
time to the deadline whether it satisfies the absolute (dead-
line) and relative requirement (percentages) to the deadline.
If it does, we set the priority as (NL − n)/(Di − Ai) (line 7);
otherwise, we set it to 1 and so that it can get the resources as
soon as possible.

D. A METHOD FOR SCHEDULING OF THE
PARALLEL CLOUDLETS
As mentioned above, our system models the MPT as many
small parallel sub-tasks. In every parallel task, there are many
cloudlets (sub-tasks), and those cloudlets should be executed
synchronized. We suppose that the execution time of every
cloudlet is a time-slice SL, but not include the last cloudlets.
Because it is difficult to forecast the execution time without
errors, so we should pay more attention to the last cloudlet,
especially when the time closes to the deadlines of tasks.

86150 VOLUME 7, 2019



J. Li et al.: Scheduling Method of MPTs Considering Speedup and System Load on the Cloud

We model those tasks as:

CL = {(clpr i, cpl i, cpr i, cbhi)|i ≤ I } (13)

clet i = (clpr i, cpl i, cpr i, cbhi) (14)

where,
- I is the number of parallel cloudlets;
- clpr i is the priority of the cloudlet;
- cpl i is the parallelism of the cloudlet;
- cpr i are the prior tasks of the cloudlet, if the prior

cloudlets have been scheduled, it equals 0;
-cbhi is the succeed cloudlets of those cloudlets;
We use hbsi to denote that the clet i whether has been sched-

uled. If it equals 1, it has been completed; otherwise, it has
not been scheduled. We know that, if cpr i does not equal 0,
the task is not have been scheduled.We give a parameter cprf i
to denote the task whether has been scheduled:

cprf i =

{
1 cpr i = 0;
0 cpr i 6= 0.

(15)

There are four scheduling targets in our scheduling:
1) the total consumed resources (formula 16): which are

the total resources that have been allocated to the
cloudlets;

2) the total priority of all scheduled cloudlets (formula
17): which is the total priority of all scheduled cloudlet;

3) the number of finished cloudlets (formula 18);
4) the number of finished instructions (formula 19): which

is the total number of instructions of all executed
cloudlets.

The four targets are denoted as formulas (16) ∼ (19):

Max :
∑

cpl i ∗ hbsi ∗ cpr i (16)

Max
∑

cpl i ∗ hbsi∗clpr i ∗ cpr i (17)

Max :
∑

clpr i (18)

Max :
∑

clpr i ∗ pl i,1 ∗ et i,1 (19)

Especially, we calculate the number of instructions as the
time when the cloudlet has the smallest parallelism as a
parameter to judge the system performance. Suppose that I
is the total number of resources (the total processing ability).
The requirement is:∑

cpl i ∗ hbsi∗cpr i ≤ I (20)

Because hbsi only has two values: 0 or 1. So, the scheduling
problem becomes a 0-1 integer programming problem. And
we assume that every target has the same weight in the paper.

Algorithm 4 gives details of scheduling those cloudlets.
First, we would schedule those cloudlets that have a priority
of 1. Then, for others cloudlets, we would schedule them by
using a 0-1 integer programming.

We introduce Algorithm 4 in details in the following.
First, we sort all cloudlets CL by the descending order of
priorities of cloudlets (line 1, Algorithm 4; same in the
following). lrs records the un-assigned resources in line 2.

Algorithm 4: SchCloudlet(I ,NVM) //NVM is the
Number of Resources

1. Sort all cloudlets CL by the descending order of
priorities;

2. lrs = NVM; //lrs records the leaving resources
3. bpos = 0
4. While (clpr i == 1) and (lrs− cpl i ≥ 0)
5. lrs = lrs− cpl i;
6. Allocate cpl i resources to cloudlet clet i;

7. tar1 =
∑
cpl i ∗ hbsi∗cpr i; // first target

8. tar2 =
∑
cpl i ∗ hbsi ∗ clpr i∗cpr i; // second target

9. tar3=
∑
clpr i; // third target

10. tar4 =
∑
clpr i ∗ pl i,1 ∗ et i,1; // fourth target

11.
∑
cpl i ∗ hbsi∗cpr i ≤ lrs; // requirement

12. Zointp(tar1, tar2, tar3, tar4, lrs, hbsi)
13. For i = 1:num(hbs)
14. If hbsi == 0
15. Allocate cpl i resources to the clet i cloudlet;

Lines 4 ∼ 6 schedule cloudlets that must be scheduled first.
Those cloudlets always have a priority of 1. Lines 7 to 10 are
the four targets of our scheduling method. Our schedul-
ing method includes maximizing four targets: the total con-
sumed resources (line 7), the total priority of all scheduled
cloudlets (line 8), the number of finished cloudlets (line 9),
and the number of finished instructions (line 10). Line 11 is
the requirement to the scheduling. In line 12, we used a
0-1 integer programming to schedule those cloudlets and the
scheduling result is stored in hbsi. Lines 14 ∼ 15 schedule
resources as the result that we have got from line 13.

E. TIME COMPLEXITY
Suppose that themaximumparallelism of tasks is pl, the num-
ber of tasks is nt:

1) The complexity of Algorithm 1: for every task, to get
the parallelism that which has the minimum resource
fragment, so the complexity is O(nt ∗ maxpl);

2) The complexity of Algorithm 2: the complexity to get
tasks in SJ is O(nt), then we can take tasks in SJ as a
constant, so the complexity of Algorithm 2 is O(nt);

3) The complexity of Algorithm 3: for the time-slice (we
take the number of time-slice of every task as a con-
stant) of every task, Algorithm 3 tries to set the priority,
so the complexity of Algorithm 3 is O(nt);

4) The complexity of Algorithm 4: Algorithm 4 would
be scheduled at every end of the time-slice, so the
number of related cloudlets in one time-slice is decided
by the arrival rate, and we take it as a constant, so the
complexity of Algorithm 4 is O(1);

So, the complexity of our scheduling method is:

O(nt ∗ maxpl)+ O(nt)+ O (nt)+ O (1) = O(nt ∗ maxpl)

VOLUME 7, 2019 86151



J. Li et al.: Scheduling Method of MPTs Considering Speedup and System Load on the Cloud

VI. SIMULATIONS AND COMPARISONS
Algorithms 1 ∼ 4 work together to solve the schedul-
ing problem in the cloud, called MC (a heuristic schedul-
ing method supporting time-slice Model on Cloud). In this
section, we evaluate our method-MC on different aspects,
such as AET (Average Execution Time), AWT (Average
Waiting Time) and PFT (Percentages of un-Finished tasks).
We compare our method with FFDH (First Fit Decreasing
Height), HEFTP (Heterogeneous Earliest Finish Time for
Parallel tasks) and AFCFSP (AFCFS policy for moldable
Parallel tasks).

A. SIMULATION ENVIRONMENT
We assume that there are four datacenters (clusters) in the
simulation environment, and each of them has 10 hosts. There
are 500 VMs computing nodes in every datacenter. The node
in one cluster has the same processing speed. The process-
ing ability of every node in different clusters is randomly
changed from 80% to 120% of the standard computer node.
We assume that the speedup of all tasks under different paral-
lelisms are the same to WRF (In Figure 3), and the length of
the Cloudlet (task) is obeyed uniform distribution in the range
of [500, 9500] (s) (executed on the standard computer node).
It is also the execution time (in seconds) when the task gets
8 computer nodes (VMs) in Figure 3. The deadline of every
task is a random number in [0.75, 4] times of the execution
time of the task when the task has the minimum parallelism.
Those related parameters are listed in Table 1.

TABLE 1. Parameters used in the simulation.

It is difficult to attain the accurate execution time of
tasks, especially under the dynamic cloud environment. So,
it is difficult to get the system load. We give a method in
Algorithm 2. Like most of forecast system load methods,
it is impossible to forecast the system load very accurate.
In the simulation, we check our scheduling method under
different forecasting accuracies of the load. ‘‘MC100’’ means

that the Cloud has 100% accuracy to the forecast system load.
‘‘MC 95’’ means that the Cloud has 95% forecasting accuracy
to the system load. For example, for MC90, when the system
has the load of 100, then the system forecast load is a random
number in [90, 110]. Similar to ‘‘MC 95’’, ‘‘MC 90’’ means
that the system has 90% accuracy of the forecast system load.
In this paper, we would evaluate our schedulingmethod under
100%, 95% and 90% forecast accuracy of the system. λ is the
average arrival rate which has different ranges under different
values of the time-slice. We evaluate those methods when the
time-slice (in seconds, same in the following) is 360, 480 and
720, the arrival rates are changed from 30 to 32.5 with a step
of 0.5, from 40 to 45 with a step of 1, from 50 to 60 with a
step of 2, respectively.

We compare our method with other three methods in the
simulation. FFDH (First Fit Decreasing Height) [25]-stretch
proves that the scheduling of parallel tasks is a 0-1 integer
linear programming problem. It uses a three-step algorithm to
solve the problem: parallel degree allotment, task scheduling
and frequency assignment. In our simulation, the resource in
the cluster has the same processing ability, so we need not to
frequency assignment. Though HEFT (Heterogeneous Earli-
est Finish Time) is proposed for the non-parallel tasks, it has
been extended to the scheduling of parallel tasks [35], [36],
called HEFTP (Heterogeneous Earliest Finish Time for Par-
allel tasks). HEFTP always executes tasks in the shortest time,
so it always allocates as many as possible resources to every
task. AFCFS is widely used in many platforms and under
many conditions. AFCFS always allocates tasks as the order
of arrival time and allocates the least resources to ensure
the task can be finished before its deadline, called AFCFSP
(AFCFS policy for MPTs). We suppose that AFCFSP always
allocates as small as possible in parallelisms to tasks while
the execution time satisfies the deadline. In the simulation,
we also extend the three methods to ensure supporting time
slicing. We compare our method with FFDH, HEFTP and
AFCFSP in the simulation.

B. COMPARISONS FROM DIFFERENT ASPECTS
In this section, we give comparisons from the AET, AWT and
PFT. The horizontal axis of all figures represents the arrival
rates under different values of time-slice.

1) COMPARISONS OF AET
Figures 5 ∼ 7 show that the AETs of different methods
under different arrival rates when the time-slice (in seconds)
is 360 (s), 480 (s), and 720 (s), respectively.

Generally, all methods have an increasing trend with the
enhancement of arrival rates. AFCFSP always has the largest
value in AET, followed by FFDH,HEFTP,MC90,MC95, and
MC100. MC always has the smallest value in AET, even the
forecast system load is 90% (MC90). With the increase of
the forecast system load, the value of AET of MC reduces
gradually.

We give the average AET of different methods under dif-
ferent arrival rates in Table 2. The average AET (in seconds)

86152 VOLUME 7, 2019



J. Li et al.: Scheduling Method of MPTs Considering Speedup and System Load on the Cloud

FIGURE 5. AET when sl = 360 (s).

FIGURE 6. AET when sl = 480 (s).

FIGURE 7. AET when sl = 720 (s).

of HEFTP, FFDH, AFCFSP, MC90, MC95 and MC100 are
5.9863e + 03, 6.1859e + 03, 7.8924e + 03, 5.2196e + 03,
4.7397e+ 03 and 4.3523e+ 03, respectively. MC always has
a smallest value in AET even the accuracy of the forecasting
system load is 90%. Compared to the AET of HEFTP, FFDH,
andASFCFSP,MC 90 reduces 766.7 (s), 966.3 (s) and 2672.8
(s), respectively; MC100 performs better andMC100 reduces
1634 (s), 1833.6 (s) and 3540.1 (s), about 37.54%, 42.13%
and 81.34%.

MC always has the lowest value in AETs even we cannot
obtain an accurate system load (MC90). MC performs best
because it gives the reference parallelism, which ensures the
maximum parallelism under the permission of the system
load. As we known, a larger parallelism always makes a
shorter execution time in the range of the acceptable sys-
tem load. HEFTP gives better performance than FFDH and
AFCFSP, because HEFTP always tries to make every task

TABLE 2. Average AET under different time-slice (e + 03).

FIGURE 8. AWT when sl = 360 (s).

FIGURE 9. AWT when sl = 480 (s).

has the minimum execution time (maximum parallelism).
Though AFCFSP always assigns tasks as soon as they come,
but it gives the minimum parallelism to the task and that
makes the task has the maximum execution time. FFDH has
the same problem to AFCFSP.

2) COMPARISONS OF AWT
Figures 8∼ 9 show that the AWT of different methods under
different arrival rates when the time-slice (in seconds) is 360,
480 and 720, respectively. Generally, AWT of all methods are
increasing with the enhancement of arrival rates. The order of
AWTs from high to low is: AFCFSP, FFDH, HEFTP, MC90,
MC95 and MC100. MC has a lowest value in AWT even for
MC90.

Table 3 gives the average AWT of different time-slice.
The average AWT (in seconds) of HEFTP, FFDH, AFCFSP,
MC90, MC95, and MC100 are 1.0557e + 03 (s), 1.1172e +
03 (s), 1.0690e + 03 (s), 1.0476e + 03 (s), 1.0013e + 03 (s)
and 961.2096 (s), respectively. MC has the smallest value
in AWT. Compared to the average AWT of HEFTP, FFDH,

VOLUME 7, 2019 86153



J. Li et al.: Scheduling Method of MPTs Considering Speedup and System Load on the Cloud

TABLE 3. Average AWT under different time-slice (e + 03).

FIGURE 10. AWT when sl = 720 (s).

FIGURE 11. PFT when sl = 360(s).

AFCFSP, even AWT of MC90 reduces 81 (s), 696 (s) and
214 (s), about 0.77%, 6.64% and 2.24%.

Generally, all methods have a little difference in AWT
under the same scheduling condition (time-slice, average
arrival rate). FFDH is a little higher because it schedules
resource from a global optimization. which would enlarge the
waiting time. MC has the smallest value in AWT because the
priority in MC is changed with time, when the task has a high
value in the waiting time, it enhances the priority of being
executed. The accuracy of the forecasting execution time also
has a positive effect to the AWT of MC.

3) COMPARISONS OF PFT
Figures 11 ∼ 13 show that the PFTs of different methods
under different arrival rates when the time-slice is 360 (s),
480 (s) and 720 (s). All methods have an enhancement trend
with the increase of arrival rates. The order of PFTs from
high to low is HEFTP, AFCFSP, FFDH, MC90, MC95 and
MC100. MC always has the smallest value in PFT, even
MC90 also has better performance than other methods under
the same condition.

FIGURE 12. PFT when sl = 480 (s).

FIGURE 13. PFT when sl = 720 (s).

Table 3 gives the average PFTs of different methods.
We find that MC always has the smallest values in PFTs.
The average PFTs of HEFTP, FFDH, AFCFSP, MC90,
MC95 and MC100 are 20.1267%, 13.9067%, 14.3267%,
12.99%, 11.9767% and 10.7267%, respectively. Compared
to the PFT of HEFTP, FFDH, AFCFSP, MC100 reduces 9.4,
3.18 and 3.6 percentages, reduces by 87.63%, 29.65% and
33.56%.

MC has the smallest value in PFT because it considers
the system load and the deadline. Those two aspects make
every task has a higher probability to be executed before its
deadline. HEFTP always makes every task has a smallest exe-
cution time, it would make every task has a larger parallelism
and consume more resources. So, for the future coming tasks,
they may not be completed before their deadline. FFDH
always gets the first parallelism (Decreasing Height) that
satisfies the deadline, and AFCFSP always favors the task
with the smallest accepted parallelism, so, they have much
difference in PFT. But, the two methods are ignoring the time
to the deadline, so they do not perform as well as MC.

4) SUMMARY
Generally, MC has a smallest value in AET and AWT. At the
same time, MC also has the lowest value in PFT. Even the
forecast accuracy of the system load is 90%, MC also gets
a better performance in AWT, AET and PFT. MC performs
best because: (1) it considers the system load, and according
to the system load, MC gives the reference parallelism, which
ensures that every task has a minimum execution time from
overall load situation; (2) the priority changed with time and

86154 VOLUME 7, 2019



J. Li et al.: Scheduling Method of MPTs Considering Speedup and System Load on the Cloud

TABLE 4. Average PFT under different time-slice (%).

TABLE 5. Comparison of various metrics.

related to the deadline, which makes every cloudlet has a
chance to be executed if the cloudlet waitsmore time than oth-
ers. HEFTP just considers the execution time of the scheduled
task, and loses considering the system load. FFDH considers
the optimizing scheduling and does not consider the deadline.
On the contrary, AFCFSP just schedules tasks according to
the arrival time. So, the three methods just schedule resources
from some aspects.

The accuracy of system load also has a distinct influence
to the scheduling result. Higher accuracy always brings better
performance in AET, AWT and PFT. Compared to MC90 and
MC95, MC100 reduces 867.3 (s) and 387.4 (s) in AET,
reduces 86.3904 (s) and 40.0904 (s) in AWT, and reduces
by 21.10% and 11.65% in PFT. The reason is that when we
cannot get an accuracy forecast system load, it is difficult to
decide the execution time. This has a negative effect to the
scheduling. Therefore, MC90 and MC95 do not perform as
well as MC100.

C. SIMULATION ON CLOUDSIM
In this section, the simulation is executed on the
Cloudsim [2], [9], [38], [39]. In the simulation, there are four
datacenters (clusters) and each of them has 10 hosts. There
are 500 VMs computing nodes in every datacenter and each
of them has the same processing speed. The processing ability
of every node in different clusters is randomly changed from
80% to 120% of the standard computer node. Other param-
eters are the same to Table 1. Different to above mentioned
simulation, we only evaluate our method when time-slice is
360 seconds and the arrival rate is 31 Per. hour. Table 4 shows
that: (1) MC has the best performance in AET, AWT and
PET; (2) for MC, MC100 always has the best performance
in various metrics.

Compared to the last section, we also find those methods
have the same trend in above section. AET, AWT and PET
have the same trend to Fig. 5, Fig. 8 and Fig. 11 when the
arrival rate is 31, though there is a little difference in values.
So, the simulation results also prove the same trend of various
methods in the above mentioned simulation.

VII. CONCLUSIONS
In this paper, we focus on the scheduling of MPTs under
Cloud environment. First of all, we give the model of MPTs
which supports time-slice, and get the reference parallelism
according to the average system load. Then, according to the
time to the deadline, a method is used to give priorities to the
cloudlets. Finally, we give a scheduling method according to
the reference parallelism and the priorities. Simulation results
demonstrate that our proposed method has good performance
in AET, AWT and PFT.

This paper assumes that the system works under a system
load, as a future work, we hope that we can propose some
scheduling methods that which can adaptive to the change
of the system load. As the energy-aware scheduling [37] is a
hot topic in the scheduling and Cloudsim supports the DVFS
model in the simulation, we would do some work which
considers the energy consumption on Cloudsim.

REFERENCES
[1] T. Welsh and E. Benkhelifa, ‘‘Perspectives on resilience in cloud comput-

ing: Review and trends,’’ in Proc. IEEE/ACS 14th Int. Conf. Comput. Syst.
Appl., Oct./Nov. 2017, pp. 696–703.

[2] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
‘‘CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,’’ Softw.
Pract. Exper., vol. 41, no. 1, pp. 23–50, 2011.

[3] A. Touhafi, A. Braeken, A. Tahiri, and M. Zbakh, ‘‘CoderLabs: A cloud-
based platform for real-time online labs with user collaboration,’’ in Proc.
2nd Int. Conf. Cloud Comput. Technol. Appl. (CloudTech), May 2017,
pp. 317–324.

[4] A. Keivani, F. Ghayoor, and J.-R. Tapamo, ‘‘A review of recent methods
of task scheduling in cloud computing,’’ in Proc. 19th IEEE Medit. Elec-
trotech. Conf. (MELECON), May 2018, pp. 104–109.

[5] A. Kovari and P. Dukan, ‘‘KVM&OpenVZ virtualization based IaaS open
source cloud virtualization platforms: OpenNode, Proxmox VE,’’ in Proc.
IEEE 10th Jubilee Int. Symp. Intell. Syst. Inform., Sep. 2012, pp. 335–339.

[6] J. T. Mościcki and L. Mascetti, ‘‘Cloud storage services for file synchro-
nization and sharing in science, education and research,’’ Future Gener.
Comput. Syst., vol. 78, pp. 1052–1054, Jan. 2018.

[7] P. K. Senyo, E. Addae, and R. Boateng, ‘‘Cloud computing research:
A review of research themes, frameworks, methods and future research
directions,’’ Int. J. Inf. Manage., vol. 38, no. 1, pp. 128–139, 2018.

[8] F. Facchinei, G. Scutari, and S. Sagratella, ‘‘Parallel selective algorithms
for nonconvex big data optimization,’’ IEEE Trans. Signal Process.,
vol. 63, no. 7, pp. 1874–1889, Apr. 2014.

[9] M. Gherari, A. Amirat, M. R. Laouar, and M. Oussalah, ‘‘MC-Sim:
A mobile cloud simulation toolkit based on CloudSim,’’ Int. J. Comput.
Appl. Technol., vol. 57, no. 1, pp. 72–82, 2018.

[10] R. T. Zaidi, ‘‘Virtual machine allocation policy in cloud computing envi-
ronment using CloudSim,’’ Int. J. Elect. Comput. Eng., vol. 8, no. 1,
pp. 344–354, 2018.

[11] R. Pathan, P. Voudouris, and P. Stenström, ‘‘Scheduling parallel real-time
recurrent tasks on multicore platforms,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 29, no. 4, pp. 915–928, Apr. 2018.

[12] S. Yue, Y.Ma, L. Chen, Y.Wang, andW. Song, ‘‘Dynamic DAG scheduling
for many-task computing of distributed eco-hydrological model,’’ J. Super-
comput., vol. 75, no. 2, pp. 510–532, 2017.

[13] M. K. Bhatti, I. Oz, S. Amin, M. Mushtaq, U. Farooq, K. Popov, and
M. Brorsson, ‘‘Locality-aware task scheduling for homogeneous parallel
computing systems,’’ Computing, vol. 100, no. 6, pp. 557–595, 2018.

[14] Q. Wang, R. Hou, Y. Hao, and Y. Wang, ‘‘A parallel tasks Scheduling
heuristic in the Cloud with multiple attributes,’’ Ksii Trans. Internet Inf.
Syst., vol. 12, no. 1, pp. 287–307, 2018.

[15] K. Li, ‘‘Non-clairvoyant scheduling of independent parallel tasks on single
and multiple multicore processors,’’ J. Parallel Distrib. Comput., to be
published. doi: 10.1016/j.jpdc.2018.06.001.

VOLUME 7, 2019 86155

https://doi.org/10.1016/j.jpdc.2018.06.001


J. Li et al.: Scheduling Method of MPTs Considering Speedup and System Load on the Cloud

[16] Y. Xin, Z.-Q. Xie, and J. Yang, A Load Balance oriented Cost Efficient
Scheduling Method for Parallel Tasks. New York, NY, USA: Academic,
2017.

[17] K. Li, ‘‘Scheduling parallel tasks with energy and time constraints on
multiple manycore processors in a cloud computing environment,’’ Future
Gener. Comput. Syst., vol. 82, pp. 591–605, May 2017.

[18] X. Xiao, G. Xie, C. Xu, C. Fan, R. Li, and K. Li, ‘‘Maximizing reliability
of energy constrained parallel applications on heterogeneous distributed
systems,’’ J. Comput. Sci., vol. 26, pp. 344–353, May 2017.

[19] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and
P. Wong, ‘‘Theory and practice in parallel job scheduling,’’ in Job Schedul-
ing Strategies for Parallel Processing (Lecture Notes in Computer Sci-
ence), vol. 1291, no. 13. Cham, Switzerland: Springer, 1997, pp. 1–34.

[20] F. A. B. da Silva and I. D. Scherson, ‘‘Towards flexibility and scalability in
parallel job scheduling,’’ in Proc. IASTED Conf. Parallel Distrib. Comput.
Syst., Nov. 1999.

[21] D. Ye, D. Z. Chen, and G. Zhang, ‘‘Online scheduling of moldable parallel
tasks,’’ J. Scheduling, vol. 21, no. 6, pp. 647–654, 2018.

[22] H.-E. Zahaf, A. E. H. Benyamina, R. Olejnik, and G. Lipari, ‘‘Energy-
efficient scheduling for moldable real-time tasks on heterogeneous com-
puting platforms,’’ J. Syst. Archit., vol. 74, pp. 46–60, Mar. 2017.

[23] X.Wu and P. Loiseau, ‘‘Algorithms for scheduling malleable
cloud tasks,’’ 2018, arXiv:1501.04343. [Online]. Available:
https://arxiv.org/abs/1501.04343

[24] C.-Y. Chen, ‘‘An improved approximation for scheduling malleable tasks
with precedence constraints via iterative method,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 29, no. 9, pp. 1937–1946, Sep. 2018.

[25] S. Javanmardi, M. Shojafar, and D. Amendola, ‘‘Hybrid job scheduling
algorithm for cloud computing environment,’’ in Proc. 5th Int. Conf. Innov.
Bio-Inspired Comput. Appl. (IBICA). Cham, Switzerland: Springer, 2014,
pp. 43–52.

[26] M. Shojafar, S. Javanmardi, S. Abolfazli, and N. Cordeschi, ‘‘FUGE:
A joint meta-heuristic approach to cloud job scheduling algorithm using
fuzzy theory and a genetic method,’’ Cluster Comput., vol. 18, no. 2,
pp. 829–844, 2015.

[27] F. Suter, F. Desprez, and H. Casanova, ‘‘From heterogeneous task
scheduling to heterogeneous mixed parallel scheduling,’’ in Lecture Notes
in Computer Science, vol. 3149, M. Danelutto, M. Vanneschi, and
D. Laforenza, Eds. Berlin, Germany: Springer, 2004, pp. 230–237.

[28] H. Xu, F, Kong, and Q. Deng, ‘‘Energy minimizing for parallel real-time
tasks based on level-packing,’’ in Proc. IEEE Int. Conf. Embedded Real-
Time Comput. Syst. Appl. (RTCSA), Aug. 2012, pp. 98–103. doi: 10.1109/
RTCSA.2012.10.

[29] L. Marchal, B. Simon, O. Sinnen, and F. Vivien, ‘‘Malleable task-graph
scheduling with a practical speed-up model,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 29, no. 6, pp. 1357–1370, Jun. 2018.

[30] Y. Hao, L. Wang, and M. Zheng, ‘‘An adaptive algorithm for schedul-
ing parallel jobs in meteorological Cloud,’’ Knowl.-Based Syst., vol. 98,
pp. 226–240, Apr. 2016.

[31] C.-H. Chen, J.-W. Lin, and S.-Y. Kuo, ‘‘MapReduce scheduling for
deadline-constrained jobs in heterogeneous cloud computing systems,’’
IEEE Trans. Cloud Comput., vol. 6, no. 1, pp. 127–140, Jan./Mar. 2018.
doi: 10.1109/TCC.2015.2474403.

[32] H. Ouarnoughi, J. Boukhobza, F. Singhoff, and S. Rubini, ‘‘Integrating
I/Os in cloudsim for performance and energy estimation,’’ ACM SIGOPS
Operating Syst. Rev., vol. 50, no. 2, pp. 27–36, 2017.

[33] E. Rani and H. Kaur, ‘‘Study on fundamental usage of Cloudsim simulator
and algorithms of resource allocation in cloud computing,’’ in Proc. 8th
Int. Conf. Comput., Commun. Netw. Technol., Jul. 2017, pp. 1–7.

[34] S. K. Garg and R. Buyya, ‘‘Networkcloudsim: Modelling parallel appli-
cations in cloud simulations,’’ in Proc. 4th IEEE Int. Conf. Utility Cloud
Comput., Dec. 2012, pp. 105–113.

[35] S. Pei, M.-S. Kim, and J.-L. Gaudiot, ‘‘Extending Amdahl’s law for
heterogeneous multicore processor with consideration of the overhead of
data preparation,’’ IEEE Embedded Syst. Lett., vol. 8, no. 1, pp. 26–29,
Mar. 2017.

[36] R. Carvalho, G. Andrade, D. Santana, T. Silveira, D. Madeira, R. Sachetto,
R. Ferreira, and L. Rocha, ‘‘Evaluating dynamic scheduling of tasks in
mobile architectures using ParallelME framework,’’ in Proc. Int. Conf.
Comput. Sci., 2018, pp. 744–751.

[37] D. Machovec, B. Khemka, S. Pasricha, A. A. Maciejewski, H. J. Siegel,
G. A. Koenig, M. Wright, M. Hilton, R. Rambharos, and N. Imam,
‘‘Dynamic resource management for parallel tasks in an oversubscribed
energy-constrained heterogeneous environment,’’ in Proc. IEEE Int. Par-
allel Distrib. Process. Symp. Workshops, May 2016, pp. 67–78.

[38] S. K.Mishra, D. Puthal, B. Sahoo, S. K. Jena, andM. S. Obaidat, ‘‘An adap-
tive task allocation technique for green cloud computing,’’ J. Supercomput.,
vol. 74, no. 1, pp. 370–385, 2018.

[39] E. Barbierato, M. Gribaudo, M. Iacono, and A. Jakóbik, ‘‘Exploiting
CloudSim in a multiformalism modeling approach for cloud based sys-
tems,’’ Simul. Model. Pract. Theory, vol. 93, pp. 133–147, May 2019.

JIANMIN LI received the M.S. degree from Com-
puter Science Department, Xiamen University,
in 2009, and the Ph.D. degree from the Department
of Automation, Xiamen University, in 2015. He is
currently a Faculty Member with the School of
Computer and Information Engineering, Xiamen
University of Technology. His research interests
include computer vision, machine learning, and
pattern recognition.

YING ZHONG received the M.S. degree from the
School of Software, Hunan University. She is cur-
rently anAdvanced Experimenter with the Xiamen
University of Technology. Her main research inter-
ests include data analysis and information retrieval
technology.

XIN ZHANG received the M.S. degree in control
theory and control engineering from the Zhejiang
University of Technology, Hangzhou, Zhejiang,
China, in 2006. She is currently pursuing the Ph.D.
degree with the Nanjing University of Informa-
tion Science and Technology. She is currently
a Teacher with Wenzhou Medical University,
Wenzhou, Zhejiang. Her main research interests
include scientific computing, image processing,
and pattern recognition.

86156 VOLUME 7, 2019

http://dx.doi.org/10.1109/RTCSA.2012.10
http://dx.doi.org/10.1109/RTCSA.2012.10
http://dx.doi.org/10.1109/TCC.2015.2474403

	INTRODUCTION
	RELATED WORK
	THE SYSTEM MODEL
	MOLDABLE PARALLEL TASK SUPPORTING TIME-SLICE MODEL
	A SCHEDULING METHOD FOR MOLDABLE PARALLEL TASKS ON CLOUD
	A METHOD DECIDING THE REFERENCE PARALLELISM
	A METHOD FOR SCHEDULING RESOURCES
	A METHOD DECIDES THE PRIORITIES OF TASKS
	A METHOD FOR SCHEDULING OF THE PARALLEL CLOUDLETS
	TIME COMPLEXITY

	SIMULATIONS AND COMPARISONS
	SIMULATION ENVIRONMENT
	COMPARISONS FROM DIFFERENT ASPECTS
	COMPARISONS OF AET
	COMPARISONS OF AWT
	COMPARISONS OF PFT
	SUMMARY

	SIMULATION ON CLOUDSIM

	CONCLUSIONS
	REFERENCES
	Biographies
	JIANMIN LI
	YING ZHONG
	XIN ZHANG


