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ABSTRACT Application mapping of disseminated intellectual property into Network on Chip (NoC) is
a well-defined NP-Hard problem. Improvement of network performance in NoC is purely based on an
effective mapping approach with cost and performance metrics optimization which includes area, power,
delay, reliability, and thermal distribution. A self-adaptive mapping approach for NoC is proposed in this
paper. In this method, the self-adaptive chicken swarm optimization algorithm (SCSO) is used for an effective
mapping, which has never been applied with NoC. The proposed method reduces the power consumption of
NoC through a cognitive base using shared K-nearest neighbor clusteringmethod and it offers faster mapping
over standard and randomly generated benchmarks. The experimental results indicate that the proposed
method outperforms existing bio-inspired metaheuristic algorithms, especially for large application graph.

INDEX TERMS Network on chip, self-adaptive chicken swarm optimization, shared K-nearest neighbor
clustering, bio-inspired metaheuristic algorithm.

I. INTRODUCTION
As the number of intellectual property (IP) cores embedded
to the System on Chip (SoC) is increasing, the flexibility
and performance of the overall system is getting degraded.
In this scenario, Network on Chip (NoC) is emerged as a
new promising technology which improves the performance
and flexibility [1]. In a NoC, the IPs are communicating
among themselves through switch fabric (router) connected
in some standard topology. Each IP core in a NoC is con-
nected to a router. Usual data exchanges between IP cores
are replaced with message passing technique through switch
fabric [1], [2].

According tomany-core system principle, NoC contributes
up to 40% of the total system power and it becomes signif-
icant role in the performance of network [1], [2]. Selection
of an on chip interconnect architecture for NoC based system
significantly impacts area, power and latency [2]. Based on
the interconnection networks, various standard topologies are
developed for NoC. Among the existing conventional topolo-
gies, mesh topology is the most popularly used one [3]. Mesh
topology offers regular interconnect structure with short
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communication path among IP cores and high bisection
width. Further, mesh provides an equal size links with regular
fixed structure. Based on this context, several mapping tech-
niques were proposed over exact and search based method.
Further, the power, area and latency reduction in NoC is
possible strictly through the proper analytical modeling.

As mapping is a well-accepted NP-Hard problem, search
based mapping approach offers an optimum solution over
performance metrics of NoC. Hence, the selection of good
heuristic / metaheuristic algorithm plays a vital role in the
efficiency of solving ‘‘hard’’ problem. Metaheuristic algo-
rithm is a universal solution method which facilitates an
interaction between local improvement procedures and high
level strategies. Further, it must be good in both explo-
ration and exploitation. Exploration is related with global
search (diversification) and exploitation is related with local
search (intensification). Global search doesn’t need an ini-
tial solution and its goal is to find global optima of the
cost function and local search helps to locate the global
minimum accurately on the search space. Based on this
context, self-adaptive chicken swarm optimization (SCSO)
is considered in this work. SCSO offers a proper balanc-
ing between exploration and exploitation to avoid premature
convergence.
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To analyze the performance metric of NoC, present
work considers two models: power and communication
cost of the total network. This work also presents the
SCSO for an effective trade-off between performance met-
rics and faster mapping over 2D and 3D NoC. This
method facilitates to create a cognitive base for an ini-
tial mapping of IPs and SCSO improves the power
minimization and computation speed with the following
contributions:

(i) To estimate the total amount of weight for each core,
the core is selected randomly from directed application core
graph (DACG). This step ensures the neighbors of selected
core with direct connection.

(ii) To prepare the cognitive base, the average communi-
cation cost has been calculated for each core and arranged
them in different clusters using shared K-nearest neighbor
clustering method. This has enabled our proposed algorithm
to explore the promising regions of initial mapping much
better.

(iii) To minimize the performance metrics of 2D & 3D
NoC, proper analytical power model form [6]–[10], [19],
[21], [25] and communication cost model from [3], [25], [26]
are adopted.

(iv) Mapping solutions have been obtained through self-
adaptive chicken swarm optimization (SCSO) algorithm
from [26] for both 2D and 3D NoC.

(v) Final mapping solution has been demonstrated with
the comparison results in terms of total power and com-
munication cost of 2D & 3D NoC. In contrast to existing
bio-inspired algorithms, the proposed SCSO achieves the
better optimized result over power as well as communication
cost and improves the computation speed.

The rest of this paper is organized as follows: Section II
explains the previous work presented in literature. Section III
deals with power and communication cost models of 2D and
3D NoC. In Section IV, we introduce the proposed mapping
approach with shared K-nearest neighbor clustering method.
In Section V, presents the proposed SCSO for power mini-
mization. Section VI experimental results are validated for
the proposedmethod. SectionVII presents the conclusion and
future work.

II. RELATED WORK
Due to a rapid growth in NoC, mapping problem has drawn
the massive attention among the researchers. The work done
by Tousan et al., in [3] presents an integer linear program-
ming (ILP) as exact mapping method for mesh based 2DNoC
with energy minimization concept. ILP is a well-accepted
mathematical programming approach in exact mapping. The
work by Ye et al., in [4] derives the power models for
switch, internal buffer and interconnects wires. The work
in [5] presents the well-accepted mathematical expression of
energy models for 2D NoC interconnects. As an extension
of [5], an analytical power model for 2D NoC was developed
in [6] and [7]. The power model in [6] considers architecture
level powermodel alongwith router power and areamodeling

for router. Thework byOst et al. [7] is confirmed and verified
the power modeling in [6].

Simultaneously, the growth in very large scale integrated
(VLSI) circuit scaling introduced a rapid shift from 2D into
3D concept for NoC. The work [8] analyzes the interconnect
issues over SoC and 3D NoC. The work by Pavlidis and
Friedman [9] presents a well-accepted analytical modeling
for zero-load latency and interconnection length for 3D plan-
ner. Modeling of through silicon via (TSV) capacitance for
3D power model is introduced in [10] and it is a well-defined
model for 3D NoC. The precise arbiter leakage and area
model for 3D NoC is shown in work [11]. The work [12],
derives the performance evaluation of mesh based 2D and
3D NoC with the perception of energy dissipation among
the cores and wiring area. The work [13], exploits a proper
mathematical model for communication cost by considering
both vertical and horizontal hop counts in 3D NoC.

The work [14] exploits the detailed survey of applica-
tion mapping strategies for NoC and it deals with study of
different mapping approaches proposed in the last decade.
According to [14], a heuristic based mapping approach offers
a better result in the optimization over network performance
metrics. In [15], simulated annealing (SA) is adopted as a
metaheuristic algorithm for an efficient mapping with com-
munication requirements of IP as constraint for 2D NoC.
Although SA is good in exploitation, it takes long times to
find near optimal solution. Mapping through scheduling with
ant colony optimization (ACO) for 2D NoC was introduced
in [16]. As mapping is a NP-Hard problem, the probability
distribution in ACO changes by its iteration and time for
converging with optimal solution is uncertain. The work [17]
exploits the multi objective based mapping approach for dif-
ferent topologies of 2D NoC using genetic algorithm (GA)
as a heuristic. Further, GA performs well at exploration and
the efficiency of algorithm is purely dependent on selection
of proper parameters rates. The particle swarm optimization
(PSO) is utilized as mapping strategy on both 2D and 3DNoC
with communication metric as an objective function in [18].
In comparison with GA, PSO has faster convergence rate
with a relatively small population size. However, PSO can
be easily trapped into local minima especially with complex
problems. To address the issue of [15], the work [19] presents
a power aware mapping approach using simulated annealing
with tabu search (SAT) for 2D NoC.

Concurrently, the development of a heuristic based map-
ping for 3D NoC also gets more attention. The work [20]
presents a dynamic mapping approach using ACO for mesh
based 3D NoC. The work [21] exploits the power optimiza-
tion of 3D NoC using GA and PSO for mesh topology.
The work [22] presented an effective routing algorithm for
mesh topology called 3D-POM for improving the data com-
munication efficiency among 3D NoC and to reduce the
unwanted propagation delay between the source and des-
tination nodes. The core and communication power mini-
mization through ILP for mesh based 3D NoC is explored
in [23]. The bat algorithm (BA) is introduced in [24] for the
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energy aware mapping technique for 3D NoC. On the other
hand, BA requires an improved control strategy to switch
between exploration and exploitation at the accurate instant
and it needs proper parameter tuning for a better search. A
knowledge based memetic algorithm is established in [25] for
multi-objective application mapping approach for 3D NoC.
The work [25] exploited the proper analytical model for
power, area and delay for 3D NoC. However, the existing
approaches in [15]–[17], and [20]–[24] adopt a conventional
mapping method which causes larger computation time over
power minimization in 3D NoC and most works follow static
algorithm approach. The control parameters / constraints of
mapping approach need to be set before the algorithm begins
and it supports virtually a static mapping over 3D NoC.

According to literature survey of heuristic based mapping
approach [15]–[21], [24], the existing bio-inspired meta-
heuristic algorithms are not good in balancing between ran-
domness and determinacy of finding the optima. To address
this issue, we present a self-adaptive basedmapping approach
using shared K-nearest neighbor clustering method with
self-adaptive chicken swarm optimization (SCSO).

III. POWER AND COMMUNICATION COST
MODEL FOR NOC
In this section, power and communication cost models of 2D
and 3D NoC have been analyzed.

A. POWER MODEL
In this work consider both global link and router power for
the power model for 2D and 3D NoC. The global link power
(Pg) is estimated using [6], [7] and [19], [25] as follows

Pg = Ps + Psh + Pst (1)

where Ps, Psh and Pst represent circuit switching power, short
circuit power and static power respectively. The estimation
of router power is shown clearly in [6] and [19]. According
to [10], for 3DNoC Ps is purely dependent on horizontal (Phs)
and vertical (Pvs) switching power. The Pvs can be modeled
with the help of through silicon via (TSV) capacitance (Ctsv)
and the estimation is explained in [10]. The total power
consumption for 2D and 3D NoC (PTot) can be estimated
in [19] and [25] as follows

PTot =
n∑
i=1

n∑
j=1

wij.λij (2)

where wij and λij represent the weight and traffic distribution
matrix respectively. Estimation of wij and λij is shown in [21]
and [19], [27].

B. COMMUNICATION COST MODEL
The quality of mapping approach is defined by the total
communication cost of application under mapping [14]. The
total communication cost between core vi and vj (CT) consid-
ers sum of horizontal (Ch) and vertical (Cv) communication

FIGURE 1. Standard mesh based structure for 2D and 3D NoC.

cost [13]. Based on the mapping of cores in layer location
(x, y, z), Ch and Cv can be estimated as follows

Ch =
n∑
i=1

n∑
j=1

hcij,x
(
Source (vi) , Sink(vj)

)
× λij

+

n∑
i=1

n∑
j=1

hcij,y(Source (vi) , Sink(vj))× λij (3)

Cv =
n∑
i=1

n∑
j=i

hcij,z
(
Source (vi) , Sink(vj)

)
× λij (4)

where hcij,x , hcij,y and hcij,z represent the hop count between
core vi and vj in dimension x, y and z respectively; n rep-
resent the number of core presents in the network. The CT
among cores in 2D and 3D NoC can be calculated using well
accepted model presented in [13], [14].

CT = Ch + δCv (5)

where δ is the difference between Cv and Ch in (5). We set
δ as 0.15 and the suitable value of parameter δ can be fixed
with continuous exercise. In the view of 2D and 3D NoC,
an effective mapping can minimize the CT by reducing the
number of hops exists among the cores significantly [14],
[27], [28].

IV. PROPOSED MAPPING APPROACH FOR NOC
Proposed mapping approach adopts the graph theory con-
cepts to map DACG into communication task graph (CTG).
Fig. 1 represents the standard mesh structure of 2D and 3D
NoC

A. PROBLEM FORMULATION FOR MAPPING
Definition 1: A DACG graph G = (V,E,C) consists of
nonempty set V of cores in the application, E is said to be set
of directed edges by means of an ordered pair of elements V,
and C is a mapping from the set of edges E to communication
traffic unit with MB/s [19], [25], [27].

V = {v1, v2, v3, . . . , vk}& |V | = finite(k) (6)

E =
{
eij = (vi, vj)εV × V |vi, vjεV , i 6= j

}
(7)

and

C : E → R|C
(
vi, vj

)
= cij (8)
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Definition 2: A communication task graph (CTG) H =
(T,L,R) consists of a set T of tiles/nodes present in the target
topology, L is said to be set of links by means of ordered pair
of tiles in T and R is a mapping from the set of links L to
communication bandwidth unit with MB/s [19], [25], [27].

T = {t1, t2, t3, . . . , tl} (9)

L =
{
tij = (t i, tj)εT × T |ti, tjεT , i 6= j

}
(10)

and

R : L → R|R
(
ti, tj

)
= rij (11)

Definition 3: The deterministic routing mapping from
graph G to graph H defined as follows [19], [25]:

f : V (G)→ T (H ) (12)

size (V ) ≤ size (T ) H⇒ |V | ≤ |T | (13)

f (vi) εT H⇒ ∀viεV , ∃tjεT (14)

vi 6= vj H⇒ f (vi) 6= f
(
vj
)
∀vi, vjεV (15)

B. COGNITIVE BASE FOR INITIAL MAPPING
Cognitive base for initial mapping is created with five steps
as follows:

Step1: From DACG, select the core randomly

Rand (vi) , for viεV (16)

Step 2: Identify the existence of direct connection with each
core with matrix D

D =

{
1 if

(
vi, vj

)
= eijεE

0 Otherwise
(17)

Step 3: Estimate the weight (Wi) and average communication
cost (Ai) of each core vi defined as follows

Wi =
∑
eijεE

wij (18)

Ai =
∑
eijεE

wij
|N(vi)|

(19)

where wij represents the weight between core vi and vj; N(vi)
is the open neighborhood of vi. The neighbor is identified by

N(vi) =
{
vjεV |

(
vi, vj

)
= eijεE

}
(20)

Wi and Ai of each core provides the information of commu-
nication traffic over each core.

Step 4: Identify the hop counts between Source (vi) and
Sink(vj) through the hops matrix H =

[
Hij
]
. The matrix indi-

cates the minimum possible links to communicate between
the source and sink among the cores. Let d(vi, vj) be the
shortest path between the core vi and vj and N (vi, vj) be the
number of hops in path d(vi, vj)

Hij = Min(N (vi, vj)) (21)

Step 5: Form a different clusters using shared K-nearest
neighbor clustering method. An edge exists between a pair
of node vi and vj if and only if vi and vj have each other in

their closest K nearest neighbors list. The strength of edge
between vi and vj is represent by

str
(
vi, vj

)
=

∑
(K+1− o)× (K+1− p) , ∴ vio = vjp

(22)

where K represents the neighbors’ list size. o and p indi-
cate the positions of shared near neighbor in vi and vj list,
respectively. At the end of Step 5, a cognitive base will be
created with clustered DACG. Fig. 2a represents the VOPD
benchmark before clustering and Fig. 2b represents after
clustering.

In the perception of initial mapping with Fig. 2b, each
cluster in the cognitive base is represented by communication
traffic density through Wi and Ai along with information of
neighbor cores. On selection of each cluster for mapping
from cognitive base, the neighbor cores are also mapped
along with selected cluster. As a result, mapping process will
complete with in eight steps instead of sixteen steps by a
conventional mapping approaches. The initial mapping of
VOPD through cognitive base is shown in Fig. 2c. In this
work, random procedure has been adopted as a mapping
technique for initial phase of mapping. Further, the output of
initial mapping is taken as an input for SCSO algorithm for
theminimization of power and communication cost of 2D and
3DNoC. Fig. 3 describes the flow chart for an initial mapping
approach.

V. MAPPING USING SCSO
In this section, fitness function for optimization and effective
mapping using SCSO for NoC has been analyzed.

A. FITNESS FUNCTION FOR OPTIMIZATION
In this work, communication cost and power based optimiza-
tion has been adopted for a successful 2D and 3D mapping.
Further, the fitness function is formulated in such a way
that none of the elements in fitness function will dominate
the process of optimization [19]. The fitness function for
minimization can be expressed as [25]

Minimize : F = (PTot )ωP .(CT )ωC (23)

Subject to : n1 × n2 × n3 (24)

where n1, n2 and n3 represent the number of layers presents
in the 3D NoC and n3 = 1 represents the 2D NoC; ωP and
ωC represents the controlling factors of power and commu-
nication cost. The effectiveness of any fitness function can
get cancelled by assigning the respective control factor into
zero [19], [25].

B. CHICKEN SWARM OPTIMIZATION (CSO)
Initially, chicken swarm optimization (CSO) is proposed
in [26]. Earlier, CSO has never been applied for NoC map-
ping problem. CSO mimics the class-conscious order in the
chicken swarm and its behavior. CSO starts with set of groups
which holds {R,H ,C,MH }, presents in the swarm intelli-
gence where R, H, C andMH indicate the number of roosters,
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FIGURE 2. Standard NoC Benchmarks (a) VOPD Benchmark (b) Clustered VOPD (c) initial mapping in 2D mesh.

the hens, chicks andmother-hen. According to the behavior of
searching food, swarms are segregated into hierarchical order.
Further, the swarm with best numerous fitness values would
be considered as R, the swarm with worst numerous fitness
values are designated as C and others will be considered as
H. The MH is established randomly between H and C [26].
R will always dominate in searching food and H will follow
its group-mate R. The C will search for around the MH.
CSO initial population can be represented mathematically as
follows [26]

x ti =
(
x ti1, x

t
i2, . . . , x

t
iN
)

for i = 1, 2, . . . ,N (25)

x t+1i = x ti × (1+ rand(0, σ 2)) (26)

where x ti represents the ith individual swarm velocity at
time t; N represents the total number of population; rand
(0, σ 2) represents Gaussian distribution with 0 mean; stan-
dard deviation σ 2 and its estimation is clearly indicated
in [26]. The H competing for food can be expressed
as

x t+1i = x ti + Rand × x
t
i

[
α

(
x tr1,i
x ti
− 1

)
+ β

(
x tr2,i
x ti
− 1

)]
(27)

α = e
fi−fr1
(|fi|+ε) (28)

β = e(fr2−fi) (29)
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Rand ε [0, 1] represents a consistent random number; r1 is
a rooster index and r2 indicate rooster/hen index (chicken);
α and β indicates rooster and chicken group; f indicates the
fitness value of its corresponding x.

C. SELF-ADAPTIVE CHICKEN SWARM OPTIMIZATION
(SCSO)
In this paper, we modified the general CSO into self-adaptive
CSO which is more suitable for mapping approach. Self-
adaptation in CSO provides two advantages over control
parameters of swarm population as follows.

(i) Setting of control parameters is not compulsory before
the algorithm begins.

(ii) Control parameters can be added /adopted dynamically
during run which will ease the identification of feasible fit-
ness value over the search space.

The self-adaptation of CSO is recognized by concealing
the control parameters into representation of swarm pop-
ulation and authorizing them to undergo an operation of
the dynamic operator. Virtually, SCSO mimics the dynamic
mapping approach over conventional static mapping method.
SCSO can be represented mathematically as follows

x ti =
(
x ti1, x

t
i2, . . . , x

t
iN , x

t
r1,i, x

t
r2,i
)T

for i = 1, 2, . . . .N (30)

The control parameters like rooster (x tr1) and chicken (x tr2)
velocities are changed according to the following representa-
tions

x t+1r1,i =


x tr1,ilb + rand0

(
x tr1,iub − x

t
r1,ilb

)
,

if rand0 < ζ0

x tr1,i otherwise

(31)

x t+1r2,i =


x tr2,ilb + rand1

(
x tr2,iub − x

t
r2,ilb

)
,

if rand1 < ζ1

x tr2,i otherwise

(32)

where ζ0 and ζ1 represent the learning rates and it varies
between 0 and 0.1 while rand0 and rand1ε [0,1]. lb and ub
denote lower bound and upper bound values, respectively.
The C always moves around the mother for food and its
velocity position can be expressed as

x t+1i = x ti + F(x
t
MH ,i − x

t
i ) (33)

where x t+1i is purely dependent on equations (23) and (24).
x tMH ,i represents the position of mother hen. F represents
the random movement of C and Fε(0, 2). According to
self-adaptive over CSO the equation (25) can be re-written
as

x t+1i = ηx ti + F
(
x tMH ,i − x

t
i
)
+ L

(
x tr1,i − x

t
i
)

(34)

where η represent swarm control factor and it varies between
0and 1; L is the knowledge factor, which points out that C
learns from the R in the subgroup and represents the self
adaptive co-efficient for the C, which will vary (0,1).

FIGURE 3. Flow chart for an initial mapping.

D. SCSO FOR NOC MAPPING
The early swarm population is generated from the output
of initial mapping during the time t = 0. Based on the
parameter settings of SCSO, we can estimate the velocity
of present global best in the core mapping using the fitness
function represented in equations (23) and (24). Based on the
fitness function, the whole population is segregated into dif-
ferent sets according to class-conscious order in the chicken
swarm. Further, the movements of swarm is updated regu-
larly using equations (26) and (27) to identify the optimized
mapping with respect to power and communication cost. The
generation of new solution for improvised mapping is done
using (30), (31) and (32). Fig. 4 represents the flow chart for
the proposed SCSO.

E. PARAMETER SETTINGS OF SCSO
The proposed SCSO needs to set with the basic parameters
to verify the effectiveness of swarm intelligence. To obtain
an exceptional solution with SCSO, the parameter values
are chosen purely based on the number of trial run and
satisfactory performance. The selection of parameter values
also depends on properties of application. The values of
parameters need not to be the same for all the application.
The swarm population is set to 25 and number of iteration is
limited to 50. The values of rand0 and rand1 are set to 0.15∗N
and 0.5∗N. The set values of parameters remained unchanged
for both 2D and 3D NoC mapping. The effectiveness of the
proposed SCSO is validated for fitness function of power and
communication cost.

VI. EXPERIMENTAL RESULTS AND DISCUSSION
To evaluate the performance of the proposed method,
various experiments are conducted over standard NoC
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FIGURE 4. Flow chart for proposed self-adaptive chicken swarm
optimization (SCSO).

benchmarks and random generated benchmarks using test
graph for free (TGFF) tool [29]. The proposed methodol-
ogy is also verified for both 2D and 3D NoC with other
bio inspired algorithms like SA, ACO, GA, PSO, SAT
and BA. The heuristics are coded using C++ and the
performance of mesh based NoC is evaluated using cycle
accurate network simulator Booksim 2.0 [30] and Orion
3.0 [31]. Simulators are modified according to 2D and 3D
NoC and all the experiments run on a PC Intel core i7
– 8 GB RAM, 3.5 GHz processor. Table 1 represents the
details of standard NoC benchmarks with 2D and 3D mesh
sizes.

A. PERFORMANCE OF SCSO FOR 2D AND 3D NOC
AGAINST COMMUNICATION COST WITH STANDARD NOC
BENCHMARKS
In this section, performance of the proposed SCSO over
communication cost is estimated and analyzed against exist-
ing bio-inspired mapping algorithms. Table 2 represents the
estimation of communication cost (Hops× Bandwidth) for
2D NoC with MPEG-4 [14] and VOPD [19] benchmarks.
The proposed SCSO is also compared with ILP [3] based
exact mapping technique for 2D NoC (2D-ILP). In the view
of communication cost estimation, ILP is considered as one
of the best method in exact mapping technique [3], [14].

Based on the obtained results from Table 2, the pro-
posed SCSO offers the same results of exact mapping
approach. Table 3 indicates the percentage of deviation from
ILP based mapping technique over heuristic based mapping
algorithms for 2D NoC.

TABLE 1. Details of standard NoC benchmarks with mesh sizes.

TABLE 2. Computation of average communication cost for 2D NoC.

TABLE 3. Percentage deviation over ILP based mapping technique.

However, the results indicate that the proposed SCSO
offers the best result in comparison with other bio inspired
algorithms. SCSO and BA [24] based mapping technique
offer zero percentage deviation for MPEG-4 and VOPD
from ILP. However, on an average the proposed SCSO takes
63.60% less computation time compared with existing map-
ping algorithm. The communication cost and computation
time of standard NoC benchmarks for 2D NoC are repre-
sented in Table 4. In this work, we adopt 3D mesh struc-
ture [7], [10] for the performance analysis of SCSO. Further,
2D ILP is modified with respect to communication cost for
3D NoC by the method followed in [18] and it is named as
3D ILP. From Table 5, if we compare the proposed mapping
technique with 3D ILP, it is found that, except for VOPD,
SCSO produces similar results as 3D ILP with less computa-
tion time.

B. 2D AND 3D NOC MAPPING AGAINST
COMMUNICATION COST WITH RANDOM GENERATED
NOC BENCHMARKS
In this work, to validate the proposed SCSO, we have consid-
ered random generated benchmark using TGFF tool [29] to

84072 VOLUME 7, 2019



A. Alagarsamy et al.: Self-Adaptive Mapping Approach for NoC

TABLE 4. Communication cost and computation Time of 2D NoC for standard NoC benchmarks.

TABLE 5. Communication cost and computation time of 3D NoC for standard NoC benchmarks.

generate few DACG with 64 and 128 cores. The communica-
tion traffic among the cores is varied from 20 to 1200 MB/s
for some set of graphs and from 50 to 200 MB/s for others.
The random graphs follow the behavior of heterogeneous
communication among the cores. The degree of nodes with
respect to in and out differs from 1 to 10 to produce both
high and low communication traffic graphs. Further, 64 core
graphs are implemented in 2D NoC with 8× 8 mesh struc-
ture and in 3D NoC two layers (4× 8× 2) and four lay-
ers (4× 4× 4). 128 core graphs are implemented in 8× 16

structure for 2D NoC and in 3D two layers (8× 8× 2) and
four layers (4× 8× 4) structure.
Tables 6 and 7 represent the performance comparison for

2D and 3D NoC for random generated benchmarks. Based
on the obtained results from Table 6, on average, the pro-
posed SCSO has 12.06% improvement over GA, 11.96% over
PSO and 6.35% over BA for 2D NoC. Similarly, the results
of 3D NoC show that proposed SCSO has average improve-
ment of 14.60%, 14.33% and 8.46% over GA, PSO and
BA respectively for two layer realization. Further, SCSO
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TABLE 6. Communication cost and computation time for random generated graphs of 2D NoC.

TABLE 7. Communication cost and computation time for random generated graphs of 3D NoC.

has 15.38%, 14.98% and 8.43% improvement for four layer
realization.

C. PERFORMANCE OF SCSO FOR POWER OPTIMIZATION
WITH 2D AND 3D NOC
1) ANALYSIS OF ROUTER POWER
The power model of 2D and 3D NoC has been estimated with
90nm technology for an analysis. Further to study and analyze
the power model for router, a set of routers with different
number of ports and buffer size are modeled in VHDL [19].

To validate the router power consumption, a group of
experiments is performed using Synopsys R©Design compiler,
VHDLSIM and Power Compiler tools to compute power
consumption of routers (4, 5, 6, 7 and 8 Port) with different
operating frequencies [19].

In general, router power is proportional to number of ports
and traffic traces on each port [19]. Further, SCSO needs to
maintain number of ports per each router as minimum as
possible, route the traffic traces within the minimum port
and maintain the shortest traffic path to reduce the link
power.
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TABLE 8. Computation of total power (w) for 2D NoC with Mesh Topology for Standard NoC Benchmark.

TABLE 9. Computation of total power (w) for 2D NoC with mesh topology for Random Generated Graphs.

2) ANALYSIS OF SCSO MAPPING FOR 2D POWER
MINIMIZATION
In this section, the power model is considered for the per-
formance analysis of 2D with SCSO mapping approach. Pre-
dictive Technology Model (PTM) has been adopted to obtain
the parameters of interconnection links and devices using
BSIM3 model in [32]. To evaluate the effectiveness of the
proposed algorithm, SCSO has been implemented with both
standard and random generated benchmarks. In this work,
ILP has been considered as an exhaustive search (ES).

For standard benchmark, the comparative study with aver-
age percentage of improvement on power minimization with
existing bio inspired algorithm and average percentage of
deviation from ES for 2D NoC is shown in Table 8. From
the results of Table 8, the proposed SCSO has an average
improvement on power minimization of 23.70%, 19.99%,
14.71%, 14.50%, 18.30% and 7.68% over SA, ACO, GA,
PSO, SAT and BA respectively.

Similarly, ES has an average deviation of 33.25% over
SA, 26.83% over ACO, 18.90% over GA, 18.55% over PSO,
23.97% over SAT and 9.76% over BA. Finally, the proposed
SCSO outperforms existing mapping algorithms by 1.09%
deviation from ES. For MPEG-4, VOPD and MWD bench-
marks, the estimation of total power consumption for each ten
mapping tasks of 7 algorithms is executed and shown in the
boxplot in Fig. 5a, 5b and 5c respectively. As a result of box-
plot, the proposed SCSO indicates less power consumption

than existing heuristics. Table 9 represents the comparative
study of 2D NoC for random generated benchmark. From
the experimental results, the proposed algorithm has 10.55%
improvement on power minimization over GA, 10.48% over
PSO and 5.94% over BA. Similarly, SCSO has 16.95 %
computation time (seconds) improvement over GA, 17.10%
over PSO and 10.22% over BA.

3) ANALYSIS OF SCSO MAPPING FOR 3D POWER
MINIMIZATION
In this section, the proposed SCSO is applied for power min-
imization in 3D NoC over random generated graph. As like
Section V.B, the TGFF generated graphs are implemented
with two and four layers mesh structure for both 64 cores
and 128 cores. Table 10 represents the computation of total
power and computation time for 3D NoC. The experimen-
tal results form Table 10 indicates that the proposed SCSO
for two layer 64 and 128 cores outperforms existing bio-
inspired algorithms. SCSO has 14.66% improvement over
GA, 14.22% over PSO and 5.82% over BA. For four layers,
SCSO has 15.91% over GA, 14.88% over PSO and 6.82%
over BA.

Cognitive base for initial mapping approach improves the
mapping speed of SCSO. The issuance of the new set of
swarm population using self-adaptive method and the esti-
mation around new swarm helps to improving the quality of
fitness function by updating the local minima if the algorithm
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FIGURE 5. Boxplot for total power consumption: (a) MPEG-4, (b) VOPD and (c) MWD benchmarks.

identifies the new local minima than the existing. Further,
results of Table 10 prove that SCSO has better computation
time with 16.77% over GA, 16.75% over PSO and 10.89%
over BA for two layer 3D NoC. For four layers, 15.28%,
15.37% and 9.81% over GA, PSO and BA respectively. The
analysis of 2D and 3D NoC shows that the SCSO performs
better for large application graph.

4) PERFORMANCE COMPARISON OF SCSO OVER
PSO AND BA
To evaluate the performance of the proposed SCSO,
the effects of throughput and latency are analyzed with uni-
form and non-uniform synthetic traffic pattern with mesh

topology. The uniform and non-uniform synthetic pattern is
an approach for characterizing the message transfer among
the cores present in the network. The arbitrary traffic repre-
sents the most generic case, where one core transfers the mes-
sage (read/write) to other core with the uniform probability.
As a result, destination core can be chosen arbitrarily with
uniform probability distribution function [25]. In the non-
uniform synthetic pattern, each core transfers the message
to other core with equal probability except for a certain
core which receive the messages with a greater probabil-
ity [33], [34].

The performance of mesh based NoC is evaluated using
XYZ routing algorithm [30] with modified cycle accurate
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TABLE 10. Computation of total power (watt) for 3D NoC with mesh topology for Random Generated Graphs.

network simulator Booksim 2.0 [28] and Orion 3.0 [31]. The
average latency and throughput of the proposed algorithm are
explored for two layer mesh approach for 128 cores bench
mark. Fig. 6(a)–(c) represent performance of average latency
under uniform traffic pattern over G1, G3 and G4 of random
generated benchmark for 128 cores respectively. The perfor-
mance gain of the proposed SCSO is attained through the
effective router selection with minimized arbitration delay.

Fig. 6(d)–(f) represent another performance of throughput.
Further, throughput of the proposed mapping approach is
comparatively better than existing heuristics with reduced
average hop counts. Fig. 7(a)–(c) represent the performance
of average latency under non-uniform traffic pattern over G1,
G3 and G4 of random generated benchmark for 128 cores
respectively and Fig. 7(d)–(f) represent the performance of
throughput. Further, the average latency of the proposed
SCSO over 128 cores has been estimated near to satura-
tion point of 0.4 under uniform and non-uniform pattern.
As a result from Fig. 7(a)–(c), SCSO has 37.41% average
latency improvement over G1, 17.81% over G3 and 25.55%
over G4 with uniform pattern against the existing heuristics.
Similarly, SCSO has 22.57% improvement over G1, 22.37%
over G3 and 25.55% over G4 with non-uniform pattern.
The average latency is directly proportional to hop counts in
the network [33], [34]. The proposed SCSO offers the best
latency and throughput in comparison with GA, PSO and
BA for mesh topology through the minimized hop counts
mapping approach.

5) INTERPRETATIONS
Based on the results of various performance experiments with
self-adaptive based mapping approach with SCSO, the fol-
lowing interpretations are identified:

1. The initial mapping of existing heuristics based map-
ping approach for NoC like SA, ACO, PSO, GA and BA
normally starts with random mapping technique. However,
the proposedmapping approach forms the cognitive basewith
clustered DACG through shared K-nearest neighbor cluster-
ing method. Each cluster in the cognitive base is represented
by communication traffic density through Wi and Ai along
with information of neighbor cores. This approach offers
faster initial mapping over standard and random generated
benchmarks.

2. In comparison with existing heuristic methods, CSO
offers very promising performance because it inherits the
major properties of many heuristic algorithms like PSO and
differential evaluation etc,. Further, the swarm intelligence
level of CSO is much better in comparison with PSO and BA.

3. CSO starts with set of swarm groups. Based on the
behavior of searching food, swarm groups are segregated into
hierarchical order. The swarms of various groups form as a
team and coordinate themselves to search for a food. This
chicken diverse movement in CSO offers well in balancing
between randomness and determinacy of finding the optima.

4. Self-adaptation in CSO offers two advantages over con-
trol parameters of swarm population: (i) Setting of control
parameters is not compulsory before the algorithm begins
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FIGURE 6. Performance of SCSO for 128 cores under uniform traffic pattern: (a)–(c) Latency Vs injection Load; (d)–(f) Throughput Vs injection
load.
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FIGURE 7. Performance of SCSO for 128 cores under non-uniform traffic pattern: (a)–(c) Latency Vs injection Load; (d)–(f) Throughput Vs injection
load.
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and (ii) Control parameters can be added /adopted dynami-
cally during run which will ease the identification of feasible
fitness value over the search space.

5. The quality of mapping approach is defined by the total
communication cost of application under mapping [14]. The
communication mode for 3D NoC has been carefully ana-
lyzed by considering both vertical and horizontal directions.

6. To analyze the efficiency of the proposed mapping
approach, SCSO has been implemented with both 2D and
3D NoC and the results are compared with existing heuristic
algorithms. The results prove that SCSO outperforms existing
bio-inspired metaheuristic algorithms, especially for large
application graph.

7. To identify the effectiveness of the proposed algorithm
over power minimization for 2D NoC, SCSO was carried out
against ES to analyze the average percentage of deviation.
The results show the efficiency of proposed SCSO with min-
imum deviation against ES.

8. Finally, to evaluate the performance of the proposed
SCSO, the effects of throughput and latency are analyzedwith
uniform and non-uniform synthetic traffic pattern with mesh
topology. The results show that the proposed SCSO offers
the best latency and throughput in comparison with GA, PSO
and BA for mesh topology through the minimized hop counts
mapping approach.

VII. CONCLUSION
In this paper, we presented self-adaptive chicken swarm
optimization (SCSO) based mapping approach for 2D and
3D NoC with mesh topology. The effectiveness of map-
ping approach is evaluated with power and communication
cost for standard and random generated NoC benchmarks.
The competency of the proposed SCSO was assessed by
different experiments over alternative heuristics algorithms
like SA, ACO, GA, PSO and BA. The experimental results
revealed that SCSO outperforms other bio inspired algo-
rithms with minimization of both power and communication
cost. The performance analysis against the average latency
and throughput was done and the results prove that SCSO
offers better performance for both uniform and non-uniform
traffic patterns.

Further, this work can be extended in two directions. First,
more 2D and 3D topologies to evaluate the performance of
SCSO can be considered. Second, SCSO can be assessed
for application mapping with other performance metrics like
area, delay and reliability over 2D and 3D NoC.
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