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ABSTRACT Nowadays, the world is facing the dual crisis of the energy and environment, and renewable
energy, such as wave energy, can contribute to the improvement of the energy structure of the world,
enhance energy supply and improve the environment in the framework of sustainable development. Long-
term prediction of the significant wave height (SWH) is indispensable in SWH-related engineering studies
and is exceedingly important in the assessment of wave energy in the future. In this paper, the spatial and
temporal characteristics of wave energy in the South China Sea (SCS), and adjacent waters are analyzed.
The results show that there are abundant wave energy resources in the waters around the Taiwan Strait,
the Luzon Strait, and the north part of the SCS with annual average SWH (SWH) of over 1.4 m and obvious
increasing trend. Then, the SARIMA approach considers the relationship between the current time and the
values, residuals at some previous time and the periodicity of the SWH series are proposed to forecast the
SWH in the SCS and adjacent waters. The results obtained are promising, showing good performance of the
prediction of monthly average SWH in the SCS and adjacent waters.

INDEX TERMS SARIMA, long-term prediction, significant wave height (SWH).

I. INTRODUCTION
As the second decade of the 21st century passing away,
the two problems, crisis of resource and environmental pol-
lution, are approaching gradually. The development and uti-
lization of renewable energy sources will play an important
role in the future sustainability of human society [1]–[3].
Wave energy has received much attention recently due to
its large storage capacity, wide distribution and pollution-
free, as well as the conservation of terrestrial resources and
needing no immigration [4], [5]. Since the temporal and
spatial variability of wave height, highly irregular frequency
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and direction, it is often described as an unreliable source
of energy. In addition to this, if the risk and uncertainty
level increases in expected generation, it will function as an
inhibiting factor toward energy security. Therefore, the avail-
ability of accurate SWH forecasts in the management rou-
tines involved in Wave Energy Converters (WECs) provides
considerable support for optimizing the operational costs
and improving their reliability [6], [7]. In the other words,
by applying accurate SWH forecasting, the wave energy can
be scheduled and wave power penetration will be increased.
This has significant economic impact on the system operation
and can substantially reduce costs. Therefore, applying SWH
prediction methods offering the best possible accuracy over a
number of time scales is required [8].
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As mentioned, wave prediction is a difficult and vital sub-
ject for development and utilization of wave energy resource
due to its stochastic nature, so the research work on this
topic has been intense in the last few years [9]–[11]. For
instance, Mahjoobi and Etemand-Shahidi investigated the
performances of classification and regression trees for predic-
tion of wave height in 2008. Wind speed and wind direction
are given as input variables, and the SWH is the output
parameter. Results indicate that the decision tree, as an effi-
cient novel approach with an acceptable range of error, can
be used successfully for forecasting SWH [12]. And then,
Mahjoobi and Ehsan Adeli Mosabbeb employed support vec-
tor machine (SVM) to predict SWH and compared SVM
results with those of artificial neural network (ANN), multi-
layer perceptron (MLP) and radial basis function (RBF) mod-
els. Comparisons indicate that the error statistics of SVM
model marginally outperforms ANN even with much less
computational time required [13]. Kamranzad et al. employed
ANN as a robust data learning method to forecast the wave
height for the next few hours in 2011. Meanwhile, they evalu-
ated the effects of different parameters using different models
with various combinations of wind and wave parameters [14].
In the same year, Ozger investigated the relationship between
oceanwave energy andmeteorological variables such as wind
speed, air temperature, and sea temperature and proposed
a new approach based on an expert system of fuzzy logic
modeling to predict wave power [15]. Nitsure et al. obtained
satisfactory results by using genetic programming (GP) based
models for 12h and 24h ahead to forecast wave heights [16].
The performance of different ordinal and nominal multi-
class classifiers is evaluated by J.C. Fernandez et al. The
results obtained show an acceptable reconstruction by ordinal
methods with respect to nominal ones in terms of wave height
and energy flux [17]. L. Cornejo-Bueno et al. presented
a hybrid Grouping Genetic Algorithm-Extreme Learning
Machine approach (GGA-ELM) for SWH and wave energy
flux prediction and obtained good results. This approach
can solve feature selection problems and may be applied to
alternative regression approaches [18]. Wenxu Wang et al.
compared the predicted performances and generalization
capabilities of Mind Evolutionary Algorithm-BP neural net-
work strategy (MEA-BP) with the Genetic Algorithm-BP
neural network model (GA-BP) and Standard BP neural net-
work model (St-BP). The performance study results demon-
strate that MEA-BP performs better than others with faster
running time and higher prediction accuracy [19].

The researches mentioned above have made great progress
in short-term prediction of wave energy, and they usually
focus their attention on the prediction of a single point. These
researches can help improve the efficiency of wave energy
conversion. So far, the short-term forecasting protocols are
relatively well developed for wave energy resources [4], [20].
However, medium- to long-term predictions of wave
energy resources, which are central to the development
of future operating and trading strategies, for example,

FIGURE 1. Topography of the South China Sea and adjacent waters.

when considering whether it is possible to manage the wave
power requirements of a remote reef population up to a year
in advance, the long-term prediction of wave energy must
play a key role in the decision-making process [4], remain
scare. In this paper, the model for the long-term and regional
prediction of wave energy resources is proposed, which will
contribute to the construction of future WECs network and
provide a significant tool for optimizing operating costs and
improving reliability.

In this paper, we construct SARIMA model based on the
periodicity of monthly average SWH and predict it in the
South China Sea and adjacent waters in 2017. The paper is
structured as follows. Section II presents a brief introduction
of the source of the data materials. Then the spatial and
temporal characteristics of SWH in the SCS and adjacent
waters are analyzed in Section III. In Section IV, we intro-
duce the principle of time series analysis method in detail
and the framework of SARIMA model for predicting SWH
in the SCS and adjacent waters. Finally, the performance of
SARIMA approach is evaluated.

II. STUDY AREA AND METJODLOGY
In this study, the wave field in the South China Sea and adja-
cent waters were simulated over the period from 0000 UTC
on January 1st, 1990 to 1800 UTC on December 31st, 2017
using the third-generation wave model WAVEWATCH-III
(WW3), with Cross-Calibrated, Multi-Platform (CCMP)
wind filed as driving field. The CCMP data set comes
from ESE (NASA Earth Science Enterprise), it combines
cross-calibrated satellite microwave winds and instrument
observations using a Variational Analysis Method (VAM) to
produce high-resolution (0.25 degree) gridded analyses. The
range selected for model calculation is 4.125◦N-26.125◦N,
104.125◦E-124.125◦E (Figure 1). The spatial resolution takes
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FIGURE 2. Observed and simulated daily-averaged SWH in point C in 2017.

0.25◦ × 0.25◦ and the time step takes 900s, with outputs
logged every 3h. In this paper, the SWH data from Jason-2
altimetry is regarded as the in situ wave data (Observed data),
because of sparse voluntary ship data and no wave buoy data
in the SCS and adjacent waters. And then, the WW3 sim-
ulated data to be continuous in time and high resolution
in space is more suitable for building prediction models
compared with the data mentioned above. To validate the
precision of the simulated SWH data, three points including
A (119◦E, 24◦N), B (121◦E, 20◦N) and C (115◦E, 15◦N) are
taken respectively in the Taiwan Strait, the Luzon Strait and
the South China Sea. The temporal and spatial resolution of
observed and simulated data are inconsistent. Do average of
simulated SWH in a day, the daily-averaged SWH of every
point is obtained. As shown in Figure 2, the simulated data
and observed data have a good consistency in the trend of the
curve in point C. And the scatter plot of satellite observed
and simulated SWH in the whole domain also is shown
in Figure 3.

The Bias, the correlation coefficient (CC) and the root
mean square error (RMSE) are calculated individually in
point A, B, C and the whole domain in order to better evaluate
the accuracy of the simulated SWH. The specific content is
shown in Table 1.

Bias = ȳ− x̄ (1)

CC =

∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)
2∑n

i=1 (yi − ȳ)
2

(2)

RMSE =

√
1
N

∑n

i=1
(yi − xi)2 (3)

FIGURE 3. Scatter plot of satellite observed and simulated SWH in the
whole domain.

where, ȳ represents the average value of simulated data,
x̄ represents the average value of Jason-2 altimetry data,
yi and xi respectively represent observed SWH and simulated
SWH, and N is the total number of samples. As can be
seen from Table 1, there is a negative bias of less than
0.15 between the simulated and the observed data in the
three points and the bias is −0.254 in the whole domain.
It indicates that the simulated data are slightly smaller than
the observed data. The CC values of the three points and the
whole domain are all above 0.85, and their RMSE values
are less than 0.6. From the statistical analysis, we can find
that the simulated data is reliable. Previous researches also

TABLE 1. Statistical error of the simulated swh in point A, B, C, and the whole domain.
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FIGURE 4. Annual average SWH from 1990 to 2017.

indicate the ability ofWW3 onwave field simulation by using
TOPEX/Poseidon (T/P) satellite SWH data and wave buoy
data [21]–[23]. Among the three points, the sea area at point
C is the broadest, the bias, the correlation coefficient and the
root mean square error all reach the ideal results. Compared
with point B and C, point A has the narrowest sea area, which
is slightly worse than point B and C in Bias, CC and RMSE.
This result indicates that WW3 wave model is more suitable
for the study of wide sea areas, correspond with previous
research [24].

III. ANALYSIS OF WAVE CHARACTERISTICS IN THE
SOUTH CHINA SEA AND ADJACENT WATERS
Before discussing the prediction of SWH in the SCS and
adjacent waters, the characteristics of SWH in this region
need to be fully understood, including spatial differences and
temporal differences. These analyses can improve our under-
standing of the variation of SWH and provide a foundation
for improving the long-term prediction.

The SCS and adjacent waters locate in the edge of
the Pacific Ocean, so the annual average SWH in this
region is clearly lower than that in the ocean, basically
within 2.0 m [22]. As shown in Figure 4, the SWH in the SCS

and adjacent waters has obvious spatial differences. The large
value center of SWH locates in the Luzon Strait, basically
between 1.6m and 2.0 m, and the SWH in the north part of the
SCS and the eastern part of Taiwan Island is 1.4-1.6 m. It is
observed that the large value regions of the SCS and adjacent
waters are distributed in the northeast and southwest zones.
Finally, the small value regions of SWH are found in the edge
of the SCS, of about 1.0 m, due to the complex geographical
environment.

The annual average SWH in the SCS and adjacent waters
has been analyzed in above section. We can learn that the
wave energy reserves in different regions. Also, the poten-
tial of wave energy resources in different regions should be
evaluated. The long-term variation of the SWH is analyzed
using linear regression method shown in Figure 5. Simi-
larly, we analyze the long-term trend of SWH in the SCS
and adjacent waters from 1990 to 2017 in Figure 6. It is
obvious that the SWH in most areas of the SCS and adja-
cent waters exhibits a significant increasing trend, of about
0.2-1.2 cm/yr. The larger growth area is mainly distributed
in the waters around the Taiwan Island and the northern part
of the SCS, of about 0.5-1.2 cm/yr, especially in the waters
of the Taiwan Strait, the annual average growth of the SWH
reaches 1.1-1.4 cm/yr.

IV. PREDICTION OF SWH
A. TIME SERIES ANALYSIS
The Autoregressive Moving Average (ARMA) model is one
of the most popular approaches for understanding and pre-
dicting the future value of a specified time series [25]. ARMA
model based on two parts: autoregressive (AR) part and mov-
ing average (MA) part.

Autoregressive (AR) model specifies that the output
variable xt depends linearly on its own previous values:
xt−1, xt−2, . . . xt−p and on a stochastic term εt , where p deter-
mines the number of steps into the past needed to predict the
current value. The notation AR(p) indicates an autoregressive
model of order p. The AR(p) model is defined as:

xt = a0 + a1xt−1 + a2xt−2 + . . .+ apxp + εt (4)

where a0, a1, . . . , ap are the autoregressive coefficients of the
model, and they are constants. εt is a Gaussian white noise.

FIGURE 5. The long-term trend of SWH.
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FIGURE 6. Long term trend of SWH from 1990 to 2017.

Different from the AR model, which believes that there
is an autoregressive relationship between the series, and the
residual series is not correlated at different moments, and it
requires that the residuals are not correlated with the values of
previous moments, moving average (MA)model based on the
idea that the current value of the series, xt can be explained
as a function of q past external disturbances: εt , εt−1, . . . εq,
An moving average model of order q, abbreviated MA(q),
is of the form:

xt = µ+ εt + b1εt−1 + b2εt−2 + . . .+ bqεq (5)

where µ is the mean of the series, εt is the Gaussian white
noise, also is the disturbance of current time. b1, b2, . . . , bq
are the parameters of the model and εt−1, εt−2, . . . εt−p are
white noise error terms.

For a time series {xt : t ∈ Z }, if a p-order autoregressive
model is modeled, and there is still some correlation between
residual sequences, then we need to mix the autoregressive
model and moving average model to get the ARMA model.
In an ARIMA model, the future value of a variable is sup-
posed to be a linear combination of past values and past
errors [26], expressed as follows:

xt = c+ a1xt−1 + a2xt−2 + . . .+ apxp + εt
+ b1εt−1 + b2εt−2 + . . .+ bqεq (6)

where c is a constant, ai (i = 1, 2 . . . p) and bj (j = 1, 2 . . . q)
are constants representing the auto-regressive AR, and the
moving average MA parameters of order p, q, respectively.
xt is the actual value and εt expresses the Gaussian white
noise with mean zero in time t.

AR model, MA model and ARMA model are gener-
ally used in stationary time series. Non-seasonal ARIMA
model and seasonal ARIMA (SARIMA) are applied in
some cases where data show evidence of non-sationarity,

where an initial differencing step (as shown in equation (7-8))
can be applied one or more times to eliminate the non-
stationarity. The former is an important method to study
non-stationary time series with trend only, and the latter
is an important method to study non-stationary time series
with trend and periodicity. Non-seasonal ARIMA model and
seasonal ARIMA are generally denoted ARIMA(p, d,q) and
SARIMA(p, d, q)× (P,D,Q)m, respectively. Where param-
eters p, d, q are non-negative integers, p is the order of the AR
model, d is the degree of differencing, and q is the order of the
MA model. P, D, Q refer to the autoregressive, differencing,
andmoving average terms for the seasonal part of theARIMA
model, and m is the period of the time series.

x,t = xt − xt−1 (7)

yt = xt − xt−m (8)

Akaike Information Criterion (AIC) and Bayesian Infor-
mation Criterion (BIC) [27] are the criterions to measure the
goodness of statistical model fitting and the effectivemethods
to determine the orders of p and q. These values can be given
qualitatively as follows:

AIC (k, l) = ln
(
σ̂ 2 (k, l)

)
+

2 (k + l + 1)
N

(9)

BIC (k, l) = ln
(
σ̂ 2 (k, l)

)
+
ln (N ) (k + l + 1)

N
(10)

where, the parameter N is the length of the observed
series, σ̂ 2 (k, l) is estimated value of the error variance
when p = k, q = l. In this paper, the upper bound
p0 and q0 of (p, q) are determined to be 3 and H =

{(k, l) | 0 ≤ k ≤ p0, 0 ≤ l ≤ q0}. For any (k, l) ∈ H , cal-
culate AIC function or BIC function according to the equa-
tion (5-6) to minimize AIC (k, l) or BIC (k, l), in this case,
(k, l) is the order of the model.

B. PREDICTION METHOD: SARIMA MODEL
A brief flowchart of the SARIMA algorithm is shown
in Figure 7. Take the data in point C as an example,
the process of SARIMA modeling is described in detail in
the following steps.
Step 1: Acquisition of SWH data. The time series of

monthly average SWH from January 1990 to Decem-
ber 1999 is shown in Figure 8(a). It can be seen that the time
series has a period with a length of 12, that is, the monthly
average SWH is related to the season. In one period, the SWH
always rises from high to low, that is, the SWH reaches the
maximum in winter, followed by spring and autumn, and the
smallest in summer. Therefore, it may be non-stationary and
seasonal differencing method was used to make it stationary.
Step 2: Making 12-step differencing to the SWH series.

The specific formula as equation (8), where m = 12. The
result is shown in Figure 8(b).
Step 3: Testing the stationarity of the series after 12-step

differencing. The seasonal differencing of SWH time series
jump around zero and it has no obvious trend and periodicity,
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FIGURE 7. Program flowchart of the SARIMA algorithm.

FIGURE 8. Time series diagram of SWH (a) and seasonal differencing (b).

FIGURE 9. Sample autocorrelation (a) and Sample partial autocorrelation (b) of seasonal differencing time series.

which can be seen from Figure 8(b). And the differenc-
ing series passed the Augmented Dickey-Fuller (ADF) test,
which means that there is not unit root in the series. Therefore
the sequence can be considered as stable.
Step 4: White noise test. It can be seen from the sample

autocorrelation graph Figure 9(a) and sample partial auto-
correlation graph Figure 9(b), the autocorrelation coefficient
does not fall within the range of 2 times the standard devia-
tion. So the data is no-white noise.

Step 5: Model selection. Both the autocorrelation coef-
ficient and partial autocorrelation coefficient are trailing,
SARIMA (p, 0, q)× (0, 1, 0)12 model is established.
Step 6: Estimating the orders p, q of the model SARIMA

(p, 0, q)× (0, 1, 0)12. As described in Section IV-A,
the value of AIC can be able to compute for different models
by varying p and q each SWH series from January 1990 to
December 2016. Here, the upper bound p0 and q0 are both
set 3.
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FIGURE 10. AIC values of different orders.

The AIC values of different orders are shown in Figure 10.
We can see that the minimum value of AIC has been found
by red circle, with the orders (3, 3). Therefore, the SARIMA
(3, 0, 3)× (0, 1, 0)12 model is established.
Step 7: The selection of prediction step. Forecast-

ing performances of the SARIMA (3, 0, 3)× (0, 1, 0)12
model have been evaluated on the basis of one-step
ahead 1, 2, 3, 4, 6, 12 out of sample forecasts. Actual and
predicted values of 12 months with different steps as shown
in Figure 11. The initial values of prediction of different
steps are the same, slightly than the actual value. As the
predicted time increases, their values gradually separate.

However, their overall trends are consistent, all similar to the
trend of actual values.

Still, Bias, CC and RMSE are used to measure the good-
ness of prediction with different steps. The formulas have
been shown in section II, equation (1-3). The Bias, CC, and
RMSE of these models are as shown from Table 2. From
Bias, we can see that the predicted values is smaller than
actual values. Except for 6-step prediction, the Bias is all
around −0.1. There is a close relationship between predicted
values and actual values, among these models, 12-step and
1-step prediction are best, 6-step, 4-step and 3-step prediction
are inferior, 2-step prediction is worst. It can been seen from
RMSE that the 6-step, 4-step predicted results are worse than
the other 4 models. Through the above analysis, we can find
the 12-step prediction has the best performance in prediction
of SWH.

Taken together, we choose SARIMA (3, 0, 3)× (0, 1, 0)12
model and 12-step prediction as the final prediction model to
predict SWH in the South China Sea and adjacent waters.

V. PREDICTED RESULTS AND DISCUSSION
The monthly average SWH of simulated data and predicted
data in the SCS and adjacent waters in 2017 is presented
in the form of contour maps in Figure 12. From the figure,
we can see that the SWH in the SCS and adjacent waters
reaches its peak in winter (January, February and December),
and most of the areas are above 1.2 m. The lowest SWH
appears in spring (March, April and May) and summer
(June, July and August), basically between 0.3 m and 1.2 m.

FIGURE 11. Actual and predicted values with different steps.

TABLE 2. Statistical analysis of prediction models of different steps.
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FIGURE 12. Monthly average SWH of simulated data (1-12) and predicted data (a-l) in 2017.

In autumn (September, October and November), the SWH of
the first month, September, is low, only a small part of the
area receives 0.9 m. The SWH in October and November is

slightly lower than in winter, but it is much higher than other
times. While in the view of time line, the trend of simulated
values is consistent with that of the simulated values.
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FIGURE 13. The overall Bias between predicted and simulated data in 2017.

FIGURE 14. The Bias (a), CC (b), and RMSE (c) between predicted data and simulated data in 2017.

From the perspective of physical space, the spatial dis-
tribution of predicted and simulated SWH is similar, and
is consistent with the analysis in the section III. The large
values are mainly concentrated in the waters near the Taiwan
Island, the Luzon Strait and the northern part of the SCS,
showing a zonal distribution of northeast to southwest. In the
waters around the Taiwan Island, predicted values are slightly
lower than simulated values, expect for July and September.
In the Luzon Strait, there is fluctuation between predicted
SWH and simulated SWH. In January, April and October,
the predicted values are slightly lower, in February, June,
August, September and November they are higher, and more
accurate results are obtained in other months. In the south-
central part of the SCS, the predicted results are complex, but
the bias between predicted values and simulated values are
within 0.3 m.

In order to further verify the accuracy of the prediction,
we analyzed the Bias, CC and RMSE between predicted data
and observed data using equation (1-3). Where, ȳ represents
the average value of predicted data, x̄ represents the average
value of simulated data, yi and xi respectively represent pre-
dicted SWH and simulated SWH, and N = 12.
Do average of Bias of all grid points in every month,

the overall Bias is shown in Figure 13. The Bias is bigger
than other months in August, September and October. Sim-
ilarly, the Bias, CC and RMSE at every 0.25◦ × 0.25◦ grid

point in the SCS and adjacent waters are obtained, as shown
in Figure 14. From Figure 14(a), it is clearly that the predicted
SWH are slightly bigger than simulated values in the northern
and southern part of the SCS, of about 0 to 0.1 m. How-
ever, in other regions, the differences between predicted and
simulated values show the opposite phenomenon, the Bias
is about −0.2 to 0 m. The Bias of our prediction results
within −0.1 to 0.1 m accounts for 77.32% of study region.
The overall Bias is relatively small. As can be seen from
Figure 14(b), the correlation between simulated values and
predicted values is relatively high, and the correlation coef-
ficient basically above 0.8, of about 79.24 % of study area.
Only in the southeast of the verification area, the results of
CC are unsatisfactory, which may be due to complex geog-
raphy. Figure 14(c) presents the RMSE between predicted
and simulated values. The RMSE of the SCS and adjacent
waters is basically below 0.4, of about 82.18% of study area.
Therefore, on thewhole, SARIMAmethod has achieved good
results in predicting SWH of the SCS and adjacent waters.

VI. CONCLUSIONS
In this paper, the wave field in the SCS and adjacent waters
was simulated using the third-generation wave model WW3,
with high resolution and continuous time. And the compari-
son between WW3 simulated data and satellite altimeter data
proves that WW3 numerical model is capable of simulating
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the wave field in the SCS and adjacent waters. Based on
WW3 simulated data, we analyzed the wave characteristics
of the SCS and adjacent waters from space and time. The
northern part of the SCS, Luzon strait and Taiwan Strait
are advantageous areas for the exploitation and utilization of
wave energy resources. The SWH is 1.4-2 m, with an average
annual growth of 0.5-1.4 cm/yr.

Due to the complicated and stochastic behavior of ocean
waves, long-term prediction of SWH is full of challenge.
By analyzing the time series of SWH in the SCS and adjacent
waters, it is found that the SWH in this area is non-stationary
with a period of 12. A novel approach based on SARIMA
model is proposed for the SWH prediction. This approach
takes into account the relationship between current time and
the values, residuals at some previous time and the period-
icity of the SWH series. The statistical analysis shows that
SARIMA model has a good performance for the long-term
prediction of SWH in the SCS and adjacent waters.
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