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ABSTRACT A method combined ensemble empirical mode decomposition, Volterra model and deci-
sion acyclic graph support vector machine was proposed to improve adaptability, feature resolution, and
identification accuracy when diagnosing mechanical faults in an on-load tap changer of a transformer.
In detail, the ensemble empirical mode decomposition algorithm was applied to decompose the multi-
channel vibration signals in the switchover process of the on-load tap changer. Then, a Volterra model for
the mechanical state of the on-load tap changer was established based on time-frequency characteristics
obtained through the use of the ensemble empirical mode decomposition algorithm. Moreover, a matrix of
coefficient vectors was also used in the Volterra model. This method will not only reduce the aliasing effect
of empirical mode decomposition but also obtain high-resolution characteristics of nonstationary vibration
signals. Furthermore, taking the singular values of the Volterra coefficient matrix as the fault characteristic,
the data states of the model for diagnosing the on-load tap changer were automatically classified and
identified by establishing a rapid, multi-classification decision acyclic graph support vector machine model
with a low misjudgment rate. Finally, based on a certain on-load tap changer, the test platform for simulating
mechanical faults was built. On this basis, by using the proposed method, the vibration signals generated
due to typical mechanical faults, such as loosening of moving contacts, lessening of transition contact, and
motor jam were acquired and analyzed, thus validating the effectiveness of the method through case studies.
Compared with other methods, the new method could overcome many defects in existing methods and it has
higher fault identification accuracy.

INDEX TERMS Mechanical variables measurement, signal processing algorithms, fault diagnosis, elec-
tromechanical devices, support vector machines, power transformers, switches, time series analysis.

I. INTRODUCTION
On-load tap changer (OLTC) is an important part
guaranteeing on-load tap changing transformers (OLTCTs)
can realize voltage regulation, so its reliability directly influ-
ences the safe and stable operation of OLTCTs and allied
power transmission and distribution networks [1]. OLTC is
the only movable part of OLTCTs. With increasing voltage
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regulation operations, the fault rate of it increases compared
with that of the other parts. Statistical data show that mechan-
ical faults (including loose contacts, spindle jamming, and
spring failure) are the main fault types in OLTCs, accounting
for more than 95% of all faults [2]. Mechanical faults can
directly damageOLTCs andOLTCTs, further triggering other
faults, affecting their electrical performance and leading to
serious consequences [3]. Therefore, it is important to explore
effective methods to detect mechanical faults in OLTCs. This
could ensure the safe and stable operation of the power.
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In the fault detection of electrical equipment, methods such
as detecting the action time, applying the position sensors or
the ultrasonic sensors are relatively common, but they are not
suitable for the detection of mechanical faults of the OLTC.
According to test results, there is no significant difference in
the time required for tap changing under different working
conditions [2]. Therefore, it is not feasible to use the switch-
ing time to diagnose themechanical failure of the on-load tap-
changer. At the same time, mechanical failures such as loose
contacts do not cause significant positional changes in the
OLTC contacts. Therefore, it is also not feasible to use posi-
tion sensors to detect OLTC mechanical faults. Studies show
an ultrasonic signal may be generated when a partial dis-
charge occurs inside the transformer [4]. The ultrasonic signal
would propagate outward through insulating oil, windings,
separators, oil paper, etc. Therefore, if an ultrasonic sensor is
used to detect the mechanical faults of the OLTC, it is highly
susceptible to interference from ultrasonic waves generated
by partial discharge inside the transformer. Vibration analysis
is currently the common method for diagnosing mechanical
faults of OLTC. The use of the vibration analysis method
allows a complete inspection of the internal mechanical state
of the OLTC without the need to disassemble the OLTC [2].
It can greatly improve themaintenance staffs’ work efficiency
and troubleshooting accuracy, which will effectively reduce
the power outage time.

How to extract reasonable and effective features from
vibration signals is the key of vibration analysis method.
In related studies, Kang and Birtwhistle [5], Gan et al. [6]
used wavelet analysis to extract time-domain characteristics
of vibration signals (including peak time and amplitude).
In addition, self-organizing mapping and genetic algo-
rithm (GA) were applied to compare the characteristics in
normal state with those in fault state to establish OLTC vibra-
tion signal database, so as to obtain the evaluation criteria of
typical OLTCs working state. However, the actual vibration
signal of OLTCs has strong real-time and randomness, and the
traditional time-frequency analysis method cannot identify
the time-domain information, which has poor adaptability.
From the perspective of chaos characteristics of OLTC vibra-
tion signals, Zhou and Wang [7] reconstructed vibration sig-
nals in high-dimensional space and defined stage distribution
coefficients to determine normal and fault states of power
grid. However, the definition of evaluation criteria ignored
the vector characteristics of reconstructed signals, so there
was only a limited fault diagnosis capability. By contrast,
P. Chen et al. effectively made up for this shortfall. They
used the K-means algorithm to cluster the reconstructed sig-
nals, and diagnosed the changes of mechanical faults accord-
ing to the deviation of the center vector of clustering [8].
However, due to the limitations of the clustering algorithm
itself, the reconstruction information could not be completely
reflected. Therefore, the feature resolution and accuracy of
the clustering algorithm are poor when detecting the charac-
teristics of vibration signals. Through empirical mode decom-
position (EMD) algorithm, Li et al. [1] decomposed vibration

signals and diagnosed mechanical faults of OLTC through its
frequency domain characteristics. However, due to the signif-
icantModeMixing effect of EMDalgorithmwhen processing
instantaneous nonlinear signals, the decomposition results are
not very accurate. To solve this problem, Duan andWang [2],
inspired by integrated ensemble empirical mode decompo-
sition (EEMD) [9], proposed a narrowband noise-assisted
multivariable EMD (NA-MEMD) method to obtain the time-
frequency characteristics of multi-channel vibration signals
during OLTC switching. In addition, they also proposed to
use the power matrix similarity index to detect mechanical
faults on OLTCs. This method overcomes some shortcomings
of traditional methods and has high fault diagnosis efficiency.
However, thismethod relies onmatrix similarity to judge fault
types, and the judgment index is relatively single, which is
easy to cause misjudgment.

To improve adaptability, feature resolution and identifi-
cation accuracy when diagnosing mechanical faults in an
OLTC, a method combined EEMD, VolterraModel and Deci-
sion Acyclic Graph Support Vector Machine (DAG-SVM)
was proposed. In this paper, the Volterra model for chaotic
time series was firstly applied to OLTC fault diagnosis, which
could efficiently process non-stationary signals. Based on
this, a new feature extraction method combining EEMD and
Volterra model was proposed, which has high adaptability
and feature resolution. Moreover, The DAG-SVM multi-
classification model was applied to identify OLTC mechan-
ical faults, which could realize the pattern recognition and
automatic division of various mechanical faults of OLTC.
Finally, an OLTC mechanical fault test platform was built,
which could simulate some typical mechanical faults, such
as loosening of moving contacts, lessening of transition
contact and motor jam. Based on test platform, the new
OLTC mechanical fault diagnosis method was verified by
experiments.

II. THE THEORETICAL BASIS OF THE NEW METHOD FOR
DIAGNOSING MECHANICAL FAULTS OF OLTC
As the onlymovable part of the transformer, a switch progress
of the on-load tap-changer contains a series of action events.
In this progress, the contact collision, friction and other com-
ponents are accompanied by the generation of mechanical
vibration signals [2]. Typically, these vibration signals can be
used for time-frequency vibration analysis. When there are
some hidden troubles in the OLTC, the vibration signal of the
OLTCT surface will be different from the normal state [2].
Therefore, the vibrationwaveforms of thesemotion processes
are recorded and analyzed, which can effectively reflect the
operating conditions of the OLTC.

The proposed method for diagnosing mechanical faults
of OLTC is a combination of EEMD, Volterra Model and
DAG-SVM. Among them, EEMD and Volterra Model can
realize feature extraction of OLTC vibration signals, while
DAG-SVM can realize pattern recognition of multiple faults.
The overall flow chart of the method is shown in Figure 1.
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FIGURE 1. Method for diagnosing mechanical faults in OLTC based on
EEMD-Volterra and DAG-SVM. This figure illustrates the steps of the
method proposed in this paper and the purpose of each step.

1) The three channels of vibration signals during the
OLTC switching process are measured by the vibration
sensors from three directions of X, Y, and Z axes;

2) EEMD is a time-frequency analysis method that
decomposes a single-channel vibration signal into a
series of components to extract its time-frequency char-
acteristics;

3) The Volterra model is a prediction method of phase
space reconstruction. Its coefficient vector matrix can
quantize the time-frequency information contained in
the signal. The singular values of thematrix can be used
as the characteristic parameters of pattern recognition;

4) DAG-SVM is a multi-class classification model that
enables pattern recognition of fault types.

A. ENSEMBLE EMPIRICAL MODE DECOMPOSITION
The vibration analysis method of the OLTC generally
includes two parts: feature extraction and pattern recognition.
Feature extraction of vibration signal is the key to identify
mechanical faults of on-load tap changers. The vibration sig-
nal of on-load tap changer is a typical transient non-stationary
signal, so the traditional Fourier transform is obviously not
suitable for vibration signal processing because of the res-
olution problem [5]. Meanwhile, Wavelet analysis has the
shortcomings of energy leakage and non-adaptability [6].
Thus, Empirical Mode Decompositio9n (EMD) [1] is intro-
duced into vibration signal processing of on-load tap changer
mechanical.

EMD decomposition can decompose the collected vibra-
tion signals into several IMF components according to the
characteristics of the on-load tap changer vibration signals.
Therefore, EMD decomposition is very suitable for the pro-
cessing of nonlinear and non-stationary vibration signals [1].
By using an EMD method, signals were decomposed into
a series of intrinsic mode functions (IMFs) whose ampli-
tude and phase vary with time. IMFs need to satisfy two

conditions [1]: firstly, the number of zeros is equal to that of
poles, or the difference between the two numbers must be no
more than 1; secondly, the upper and lower envelope lines are
partly symmetric with respect to the timeline. Based on the
EMD method, IMF components of multi-component signals
at different orders can be screened. Each IMF component
reflects the characteristics of an intrinsic mode of original
signals (narrowband signals) at different time-scales, and
therefore instantaneous frequency exhibits definite physical
significance.

Starting from the signal characteristics, the EMDalgorithm
first extracts the high-frequency IMF with the smallest time
feature scale from the signal. Then it separates the low-
frequency IMF with large time feature scale layer by layer,
and finally obtains the residual component according to the
stopping principle. If the original signal is s(t), then its EMD
decomposition process is [1]:

1) Primary selection: this step uses cubic spline inter-
polation. That is, connecting the maximum value of
the original signal to obtain the upper envelope, and
connecting the minimum value of the original signal
to obtain the lower envelope. The average value m(t)
of the upper and lower envelopes is then calculated and
rejected in the original signal. The result is taken as the
initial value h1(t) of the IMF, namely:

h1 (t) = s (t)− m (t) (1)

2) Verification: this step verifies whether h1(t) could meet
the requirements of the IMF. If not, import h1(t) into
the first step for further calculation until the result could
meet the requirements. At this time, the result is an IMF
component, which is denoted as c1.

3) Loop: this step takes r1 (t) = x (t) − c1 as the new
input signal and loops through the first two steps until
the input signal is less than a threshold value res or
becomes a monotonic function. At this time, the EMD
decomposition will end and the original signal could be
expressed as:

s (t) =
n∑
i=1

Ci + res (2)

However, there are still some shortcomings in the EMD
method. The main disadvantage is the Mode Mixing prob-
lem in the decomposition process. Mode Mixing refers to
the phenomenon that an IMF component contains multiple
signals of different frequencies, or the same frequency sig-
nal component is decomposed into different IMFs [9]. The
discontinuity of the original signal frequency is the main
cause of Mode Mixing. EMD decomposes signals in order
of frequency from high to low. Due to the discontinuity of
the signal frequency, when the decomposition of the high-
frequency signal is imperfect, in order to satisfy the method,
a part of the next frequency band is required to compensate
for the missing portion of the high-frequency decomposition.
This will cause the high-frequency component to become

VOLUME 7, 2019 84805



Y. Xu et al.: Method for Diagnosing Mechanical Faults of on-Load Tap Changer

a mixed component [9]. Therefore, in this case, the IMF
component decomposed by the EMD method does not have
a real physical meaning, thereby affecting subsequent signal
processing.

EEMD was proposed to overcome the Mode Mixing of
EMD. The EEMD algorithm inhibits Mode Mixing by utiliz-
ing the characteristics of a quasi-binary filter in the decom-
position of Gaussian white noise [9]. That is, Gaussian white
noise is added to the original signals, then the composite sig-
nals are decomposed by using EMD. And the noise in IMFs
can be eliminated, so that original signals can be decomposed.

The procedural steps of EEMD are as follows [9]:
1) Initialize the number of loops N and the noise ampli-

tude of the Gaussian white noise added to the signal,
and let i = 1.

2) A Gaussian white noise ni(t) is added to the original
signal s(t) to form a new signal si(t). si(t) represents the
new signal formed by adding the Gaussian white noise
at the ith time, and ni(t) represents the ith Gaussian
white noise, and the expression is as follows:

si (t) = s (t)+ ni (t) (i = 1, 2, · · · ,N ) (3)

3) EMD decomposition is performed on the newly formed
signal si(t) to obtain n IMFs, and the result is as shown
in the formula (4).

si (t) =
n∑

k=1

ci,k (t)+ ri,n (t) (4)

where, ci,k (t) is the obtained IMF component, ri,n(t) repre-
sents the residual component, and n represents the number of
IMFs.

4) Repeat steps (1)-(3) for a total of N times, each time
adding different Gaussian white noise of the same
amplitude, and finally obtaining a set of IMFs:

{{c1,1(t), c1,2(t), · · · ,c1,n(t)}, · · · ,

{cN ,1(t), cN ,2(t), · · · , cN ,n(t)}} (5)

5) The mean value of the IMFs obtained by the N -time
EMD method decomposition is calculated, and the
average value is taken as the final result, and the cal-
culation formula is as shown in the formula (6).

ck (t) =

∑N
i=0 ci,k (t)
N

(i = 1, 2, · · · ,N ; k = 1, 2, · · · , n)

(6)

The decomposition process of the EEMDmethod is shown
in the figure 2.

EEMD can inhibit ModeMixing and accurately extract the
features of vibration signals at the main frequency band. And
the frequency structures of the OLTC vibration signal under
different operating conditions are significantly different [2].
Thus, the vibration signal can be separated into Intrinsic
Mode Functions (IMFs) of different frequency intervals by
using EEMD, and the characteristics of mono-components

FIGURE 2. Flow chart of EEMD decomposition.

can be extracted to realize the identification of mechanical
faults.

B. VOLTERRA MODEL FOR CHAOTIC TIME SERIES
The frequency structure of an IMF is not unitary, and its
frequency is distributed in a range, thus it is not appropriate
to use IMFs directly as characteristic parameters. Therefore,
it is necessary to select appropriate methods to refine and sim-
plify its feature information. The Volterra model for chaotic
time series is a good solution. It could not only solve the
non-stationary problem of signals but also greatly relieves
the computational complexity and improves the computing
speed [10].

The theory of phase-space reconstruction forms the basis
for predicting chaotic time series. Takens [11] proposed
phase-space reconstruction on chaotic time series {x(n)} by
applying delay coordinates. The mid-point of the phase space
can be expressed as follows:

X (n) = {x (n) , x (n− τ) , · · · , x [n− (m− 1) τ ]} (7)

where, m and τ refer to the embedding dimension and time
delay, respectively. Takens’ theorem [11] shows that, when
the embedding dimension m ≥ 2d + 1 (d denotes the
dimension of system dynamics), the reconstructed dynamic
system is topologically equivalent to the original dynamic
system. The chaotic attractors in the two-phase spaces show
diffeomorphism. Therefore, it is feasible to attain the state
at the next moment in time according to the current state
of the system, thus acquiring the predicted value of a time
series at the next moment [10]. Essentially, the prediction
using a chaotic time series is an inverse problem of dynamic
systems, that is, reconstructing the dynamic model F[X(n)]
of the system according to the state of the dynamic system,
namely,

x (n+ T ) = F [X (n)] (8)
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where, T refers to the forward predictive step length (T > 0).
There are many methods available for constructing a non-
linear function to approach to F[X(n)]. In this study, by using
the Volterra series expansion [10], a non-linear prediction
model F[X(n)] for a chaotic time series is established.
The input and output of the non-linear discrete system

are set to X (n) = {x (n) , x (n− τ) , · · · , x [n− (m− 1) τ ]}
and y (n) = x (n+ 1). In this case, the Volterra series expan-
sion for the function governing the non-linear system is as
follows:

x (n+ 1) = h0 +
p∑

k=1

yk (n) (9)

where,

yk (n) =
m−1∑

i1,··· ,ik=0

hk (i1, · · · , ik)
k∏
j=1

x
(
n− ijτ

)
(10)

where, hk (i1, · · · , ik ) is called the k-order Volterra kernel
and p represents the expansion order of the Volterra series.
In practical application, it is hard to realise the expansion
of the infinite series and therefore it is necessary to apply
limited-order truncation and time-limited summation. For
convenience of illustration, by taking second-order truncation
and m summation operations as an example, the Volterra
series expansion for predicting a chaotic time series is
expressed as follows:

x (n+ 1) = h0 +
m−1∑
i1=0

h1 (i) x (n− i1τ)

+

m−1∑
i1,i2=0

hk (i1, i2) x (n− i1τ) x (n− i2τ) (11)

The vectors of coefficients of Volterra series and input
signals are separately displayed as follows:

W (n) = [h0, h1 (0) , h1 (1) , · · · ,

h1(m− 1), h2 (0, 0) , h2 (0, 1) , · · · ,

h1 (m− 1,m− 1)]T (12)

Z (n) = {1, x (n) , x (n− τ) , · · · ,

x [n− (m− 1) τ ] , x2 (n) , x (n) x (n− τ) , · · · ,

x2 [n− (m− 1) τ ]
}T

(13)

Formula (7) can be expressed as follows:

x (n+ 1) = ZT (n)W (n) (14)

By using a normalised adaptive algorithm with least mean
square residuals, the exact value of the coefficient vec-
torW(n) can be obtained. Under this circumstance, W(n)
contains important information characterising the state of the
system [10].

The basic idea of extracting the characteristics of mechani-
cal faults of an OLTC is summarised as follows: the mechan-
ical vibration signals in the switchover process of the OLTC

are decomposed by using EEMD. Afterwards, by utilising
the Volterra series, various IMF components are expanded
to form a matrix of coefficient vectors. Furthermore, the sin-
gular value of the matrix is calculated as the classification
basis for diagnosing mechanical faults in the OLTC. The
procedural steps are as follows:

1) The Volterra model for each IMF component is sep-
arately established and the coefficient vector W(n) of each
model is calculated.

2) The coefficient vector of each Volterra model for IMF
components is taken as lateral vector of the matrix to form a
Volterra coefficient matrix.

3) The singular values of the Volterra coefficient matrix are
calculated and taken as characteristic of the mechanical faults
in the OLTC.

C. DECISION ACYCLIC GRAPH SUPPORT VECTOR
MACHINE
In terms of pattern recognition, the widely used methods
are artificial neural network (ANN) and support vector
machine (SVM) model. ANN is composed of a large num-
ber of nonlinear neurons, so nonlinearity is its inevitable
characteristic, and it has been successfully applied in many
fields for its good nonlinear processing ability and effect [12].
Although the early theory of SVM is only applicable to linear
processing, with the introduction of kernel function, SVM
can map nonlinear input samples to high-dimensional fea-
ture space, which greatly enhances the nonlinear processing
ability of SVM [13]. ANN has strong learning ability, easy
to realize parallel computing, and also has good adaptive
ability and fault tolerance. However, the network structure
of ANN is difficult to determine [14]. If it is not selected
properly, problems such as over-fitting or under-learning will
occur. For example, if the initial value of the network is
set differently, the network structure and effect will also be
different. In comparison, the system structure of SVM is
relatively simple. Although the structure of SVM is similar
to three-layer BP ANN, the hidden layer of SVM can be
determined automatically by the algorithm, and the scale of
the system can be adjusted adaptively [13]. Therefore, SVM
does not have the problem of structure determination like
ANN and does not need too much prior knowledge. In the
processing of small sample data, ANN has poor learning
effect. However, SVM is a machine learning method based on
small samples, whose computation is almost irrelevant to the
sample dimension, which is more suitable for solving many
practical problems [13]. In the field of diagnosingmechanical
faults in OLTC, different OLTCs have differences in working
principle, mechanical structure and voltage level, so trained
SVM or ANN of a specific OLTC may not be well applicable
to other OLTCs. Therefore, whether to use SVM or ANN,
if you want to diagnose a mechanical fault of a certain type
of OLTC, it is necessary to obtain OLTC’s actual vibration
data for training. However, OLTC is affected by operating
procedures, so the number of actions is limited in a certain
period of time [15]. In this case, it is difficult to obtain a
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large amount of data of the same working condition during
its operation. This puts a high demand on the model’s ability
to process small sample data. In a word, although which of
SVM and ANN are more advanced is still inconclusive, SVM
is obviously more suitable for diagnosing mechanical faults
of OLTC.

The idea of using an SVM to solve classification problems
is to search for an optimal hyperplane which can satisfy the
classification requirement. On the condition of satisfying the
classification accuracy of the optimal hyperplane, it needs to
guarantee a blank space at the two sides of the hyperplane
to be a maximum [16]. The method can solve non-linear
problems and theoretically realise the optimal classification
of linearly separated data. Mechanical faults on an OLTC
are generally few in number, and the SVM shows excellent
performance in classification of small sample data, so it was
applied here as the classification method [17].

However, SVM has an obvious disadvantage compared
to ANN. That is, SVM was originally proposed for binary
classification problems and cannot be directly used to solve
multivariate classification problems [18]. However, the fault
diagnosis problem of OLTC is multivariate classification,
so how to effectively extend SVM to multivariate classifi-
cation is an urgent problem to be solved. At present, there
are two main solutions for multi-classification SVM [18]:
one is to directly establish multi-objective classification func-
tion solution, which uses more variables and the computa-
tional complexity is too high; the second is to transform the
multi-classification problem into multiple binary classifica-
tion problems, mainly including voting method, hierarchical
method and Directed Acyclic Graph Support Vector Machine
(DAG-SVM) methods . And the first two methods have poor
performance in some aspects such as rejection blind zone and
sample balance, so it is necessary to developDAG-SVMdiag-
nostic methods. DAG-SVM combines the sample balance of
SVM and the feature of the hierarchical classifier without
blind spots, so it is widely used in the current diagnostic
methods [16].

The DAG-SVM is a multi-classification expansion strat-
egy, which can relieve asymmetry in samples, optimises train-
ing and decision-making times [16]. The strategy is proposed
on the basis of a decision directed acyclic graph (common in
graph theory) during the decision phase. For the classification
problem, the DAG-SVM uses k(k-1)/2 SVMs to exclude
impossible classification results layer by layer. Finally,
the final classification result can be obtained. Because each
classifier corresponds to two types of samples, it has better
sample balance and thus has better classification effect [18].
On the condition of not increasing the computational burden
during decision-making, the DAG-SVM chooses different
decision-making paths for different data, thus improving par-
titioning accuracy. By taking four-classification problem as
an example, the decision-making structure of the DAG-SVM
is as shown in figure 3.Where i denotes theworking condition
category of OLTC, i = 1, 2, 3, 4; 1-vs-4 denotes the SVM
model trained by the category 1 and category 4 training data.

FIGURE 3. Diagnostic process of four-classification DAG-SVM. It is
composed of 6 binary classification SVM based on decision directed
acyclic graph.

FIGURE 4. The SYJZZ-35 OLTC and the experiment platform. SYJZZ-35 is an
experimental model for simulating OLTC mechanical faults. The
experimental platform consists of SYJZZ-35 and data acquisition system.

The top layer contains only one node, called the root node,
the second layer contains 2 nodes, and so on, and the N th
layer contains only N nodes.
The following are examples of the data classification pro-

cess of DAG-SVM: For input sample X whose category is 4,
X will go through the 3 nodes: a-c-f, and finally be classified
into category 4; if the given category of X is 3, X will pass
through the three nodes: a-c-e or a-b-e or a-c-f, and finally
divided into category 3.

III. TEST EXPERIMENT FOR ON-LOAG TAP CHANGER
MECHANICAL FAULTS
A. THE EXPERIMENTAL ON-LOAG TAP CHANGER
In the present study, an SYJZZ-35 OLTC was used: with an
embedded composite resistance-type transition structure, the
SYJZZ-35 OLTC can integrate the functions of tap selector
and switch. The core of the switch and the electrical mecha-
nism are designed as an integrated plug-in structure. It can be
installed in a single oil cavity isolated from the transformer
(figure 4).
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FIGURE 5. Simulating a motor jam fault inSYJZZ-35 OLTC.

The three-phase SYJZZ-35 OLTC adopts jumper voltage
regulation at the middle part, with the rated voltage of 35 kV,
resistance transition, direct switching, and seven working
positions. Moreover, with the simple structure, this type of
OLTC has a long service life, and it is easy to disassemble
and maintain, making it fit for purpose.

B. TESTING OF TYPICAL MECHANICAL FAULTS ON THE
ON-LOAG TAP CHANGER
To validate the effectiveness of the new time-frequency vibra-
tion analysis, the loosening and jamming faults (including
loosening of moving and transition contacts as well as motor
jamming) were simulated. Owing to loosening and jamming
faults accounting for more than 60% of all faults, these faults
were a good representation. Existing test and operational
experience showed that early mechanical faults of the OLTC
were difficult to detect through existing monitoring of quan-
tities including current and rotation angle. In this experiment,
the loosening can be simulated by partly removing fastening
screws or springs, and motor jamming was simulated by
applying resistance to the motor shaft (figure 5, figure 6).

Figure 7 shows the schematic diagram of the test system,
which includes:

¬ OLTC Automatic controller: It can issue commands to
the OLTC to enable the OLTC to complete voltage and gear
adjustments;

 SYJZZ-35 OLTC: The most important part of the test
platform, which can simulate the mechanical faults and gen-
erate vibration signals during the switching process;

® UTL2001X piezoelectricity acceleration sensors: It is
used to detect vibrations from the OLTC;

¯The signal conditioningmodule: It can process the vibra-
tion signal by amplification, isolation, filtering, denoising,
etc. Therefore, noise interference can be removed.

° DATAQ DI-4108 data acquisition system: It can trans-
form the analogy signal into a digital signal. Its sampling
frequency is 50 kHz.

± Computer: Data logging and data processing
Three UTL2001X piezoelectricity acceleration sensors

(sensitivity: 500 mV/g, Nos 1∼3) produced by Quatech
Electronic Company Ltd (Beijing, China) were used in the
experiment. By applying a DI-4108 data acquisition system
(DATAQ Company Ltd, USA) the vibration signals in the

FIGURE 6. Simulating a typical loosening fault in SYJZZ-35 OLTC.

switchover process of the OLTCwere tested. Based on practi-
cal experience, to reduce the interference of vibration signals
from transformers during operation and for convenience of
installation, the three sensors were separately distributed on
the top and two flanks of the wall of the transformer tank.
In this way, it was convenient to acquire mechanical vibra-
tion signals in three different orthogonal directions in the
switchover process of the OLTC, as shown in figure 8.

The steps for data acquisition are as follows:

1) Adjusting the OLTC automatic controller to send an
action instruction to the OLTC;

2) The OLTC performs gear shifting to generate a vibra-
tion signal;

3) The piezoelectricity acceleration sensors on the surface
of the OLTC receives the vibration signal and sends it
to the signal conditioning module;
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FIGURE 7. Schematic diagram of the experimental platform. This
figure shows the composition and connection of the experimental
platform (figure 4b).

FIGURE 8. Positions of the piezoelectricity acceleration sensors. Three
sensors collect vibration signals in three directions of X, Y and Z axes.

4) The signal conditioningmodule processes the vibration
signal by amplification, isolation, filtering, denoising,
etc., and then sends the signal to the data acquisition
system;

5) The data acquisition system transforms the analogy
signal into a digital signal and sends it to the software
on the computer for recording and processing.

Additionally, to verify the consistency of the switchover
process of the OLTC and eliminate the influence of random
error on the test result, a full tap position test was conducted.
The OLTCwas switched over from the first tap position to the
seventh tap position (uplink) and then reverse-switched over
to the first tap position (downlink), and this cycle repeated
nine times. For each type of fault, 108 groups of data were
acquired, in which 54 groups of data separately corresponded
to odd-even and even-odd shifts. Additionally, for the loos-
ening of contacts, the contacts in each of the three phases of
the OLTC were all simulated by considering the influence of
different fault positions on the collected vibration signals.

IV. EXPERIMENTAL ANALYSIS
A. ENSEMBLE EMPIRICAL MODE DECOMPOSITION
At first, the vibration signals in the switchover process of
the OLTC under normal working conditions were analysed.
Figure 9 displays the vibration signals measured at three
points in a switchover process and IMFs obtained by using
EEMD (limited by word-count, only IMF1 to IMF4 are
shown). The vibration signals were all time-variant and non-
stationary. Figure 10 displays general spectrums for vibration
signals under four working conditions:

1) Under normal working condition, the frequency of
the OLTC vibration signal is mainly concentrated
within 2500 Hz;

2) Under moving contact loosening condition, the low
frequency part and the frequency within 2500 Hz -
6000 Hz will be significantly enhanced compared with
the normal working condition;

3) Under transition contact loosening condition, the low
frequency part has no obvious change compared with
the normal working condition, but the frequency com-
ponent around 2500 Hz will increase significantly;

4) Undermotor jamming condition, the frequency compo-
nents below 5000 Hz will increase significantly com-
pared with the normal working condition.

In summary, the frequency structure of the OLTC vibration
signal under different working conditions will be signifi-
cantly different. Therefore, it is feasible to diagnose typical
mechanical faults of OLTC by performing frequency domain
analysis on OLTC vibration signals. EEMD can separate
the vibration signal into mono-components (IMFs) of dif-
ferent frequency intervals, then the characteristics of mono-
components can be quantified byVolterra model to realize the
identification of mechanical faults.

Figure 11 shows the Hilbert marginal spectrums of IMF1 to
IMF3 (normal working condition) obtained by using the tra-
ditional EMD and the EEMD. The magnitude of the Hilbert
marginal spectrum represents the sum of the amplitudes of a
certain frequency in a signal at various times [11]. As shown
in figure 11, the IMF2 obtained by using EMD had exhibited
Mode Mixing. While, by using EEMD, possible Mode Mix-
ing could be effectively inhibited. Therefore, various narrow-
band frequency components contained in vibration signals
can be independently distributed in various IMFs

B. OBTAINING FAULT FEATURES BASED ON THE
VOLTERRA MODEL
In the previous process, the vibration signal has been decom-
posed into IMFs by using EEMD. Figure 9 shows that
the IMF4 component contained less information. Therefore,
IMF1 to IMF4, with a majority of the characteristics of the
OLTC therein, were used in next steps. Each IMF could
establish a Volterra model. As discussed in Section 1.2,
a finite truncation of the Volterra series would be performed
and a coefficient vector could be formed by the coefficients
of the first 10 terms. Furthermore, the coefficient vector
corresponding to each IMF could be seemed as a row of a
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FIGURE 9. The original vibration signals measured by the piezoelectricity acceleration sensors and the IMF1-IMF4 obtained by EEMD
decomposition.

FIGURE 10. General spectrums for vibration signals under different working conditions.

FIGURE 11. Hilbert marginal spectrums of IMFs obtained by using EMD and EEMD (Normal Working Condition).

matrix. So, a matrix of 12×10 could be built based on 12
coefficient vectors, which is the Volterra coefficient matrix.
It characterizes the information contained in the vibration
signal during an OLTC switching process.

It is worth noting that the embedded dimension m = 3 of
the Volterra model for a chaotic time series can be solved by
using Cao’s method [17] while the delay time r = 1 was
calculated by applying mutually available information [19].
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TABLE 1. Volterra coefficient matrix under normal working conditions.

TABLE 2. SVD result under normal working conditions.

TABLE 3. SVD result under moving contact loosening conditions.

The expansion order of the Volterra series was two. For
example, table 1 shows the Volterra coefficient matrix under
normal operating conditions obtained by using EEMD and
Volterra model.

Table 2 to table 5 list the singular values obtained
through singular value decomposition (SVD) of the Volterra
coefficient matrix in various working conditions. Limited
by word-count, only five groups of samples from each
working condition are displayed. Each group of singular
values corresponds to a vibration signal during the OLTC

TABLE 4. SVD result under transition contact loosening conditions.

TABLE 5. SVD result under motor jamming conditions.

switching process. The singular values in table 2 to table 5
could be used as characteristic parameters for judging the
mechanical state of the OLTC.

As shown in table 2 to table 5, the SVD results of the
OLTC in different mechanical states presented significant
regularity at monitoring point 1 while the singular values at
other monitoring points varied. This can be easily explained
from the perspective of the model structure and the positions
of monitoring points during the experiment. The tap posi-
tions of SYJZZ-35 OLTCs were switched over by rotation,
however, due to the requirements of non-intrusive detection,
the sensors cannot enter the interior of the transformer but
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FIGURE 12. Four-classification DAG-SVM model. This model was built in IBM SPSS Modeler according to the principle shown in figure 3.

were only installed on the wall of the tank. This meant that,
during the full tap position switchover experiment, the vibra-
tion signals collected by the two sensors at the flanks of
the tank were influenced by the tap switchover positions;
however, monitoring point 1 was located on the top of the
tank and therefore was not significantly influenced. That is,
except for monitoring point 1, the trend of the singular values
at the other monitored points were difficult to explore by
using the observational method. Thus, it is necessary to apply
SVMs. Through much data training, the SVM can realise
an intellectualised output of decisions, classify and predict
data. It can avoid the misjudgement caused by subjective
experience of maintenance engineers, showing high accuracy
and reliability.

C. IDENTIFYING MECHANICAL FAULTS ON OLTC USING
THE DECISION ACYCLIC GRAPH SUPPORT VECTOR
MACHINE
A DAG-SVM classification model was established by using
specialised data mining tool IBM SPSS Modeler. In one
switch process, 12 singular values (each measurement point
corresponds to 4 singular values) can be obtained by using
EEMD, Volterra model and SVD. They were used as decision
variables for SVM classification. Meanwhile, the mechanical
working condition was taken as an object variable. Working
conditions were labelled: normal working condition–1, loos-
ening of moving contact–2, loosening of transition contact–3,
and motor jam–4. Taking the diagnostic process inher-
ent to DAG-SVM (figure 3), positive and negative sample
sets for each two-classification SVM could be determined.
By employing IBM SPSS Modeler, a four-classification
DAG-SVM model was established (figure 12).

The singular values of Volterra coefficient matrix could
be imported into the data source module, which could
be used to train binary SVM modules. According to the

DAG-SVM construction method, these binary SVMmodules
can constitute a multi-classification SVM model to classify
and identify various typical mechanical faults in an OLTC.

The singular values of the Volterra coefficient matrix
would be obtained by the new method. 432 sets of data were
used in in the process of building the DAG-SVM model.
Among them, 108 sets of normal working conditions, 108 sets
of moving contact loosening conditions, 108 sets of transition
contact loosening conditions, and 108 sets of motor jam-
ming conditions. And they were divided in terms of training
(60%), validation (20%) and test (20%) sets. According to
the operating experience of STATE GRID Corporation of
China, the on-load tap-changer is switched about 2,000 times
in 2 years [15]. Once it had been running for half a year or
one year, it should be dismantled and repaired according to
the operating specifications [15]. The fault diagnosis method
analysis method proposed in this paper aims to eliminate
the mechanical hidden danger of the on-load tap-changer,
and the vibration waveform of the same mechanical fault is
extremely similar, so the number of data sets is sufficiently
representative.

According to the classification of DAG-SVM model,
the fault category and tendency score of each data group could
be obtained (table 6).

In table 6, X01-X12 represents the 12 singular values
obtained by the singular value decomposition (SVD) of the
Volterra coefficient matrix. Among them, the vibration signal
of each measurement point is processed to obtain 4 sin-
gular values (1#: X01-X04, 2#: X05-X08, 3#: X09-X12);
‘‘Actual Condition’’ indicates the actual mechanical fault
type corresponding to the set of singular values (normal
working condition–1, loosening of moving contact–2, loos-
ening of transition contact–3, and motor jam–4) and ‘‘Model
Judgment’’ represents the judgment result of the DAG-SVM
model; The classification result obtained by the support
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TABLE 6. Diagnostic results of mechanical states of the OLTC based on experimental data.

vector machine is a prediction result and it is not completely
determined. ‘‘Tendency score’’ in table 6 indicates the pos-
sibility of this prediction result being correct. Its value is
between 0.0 and 1.0. The higher the value, the higher the
accuracy of the prediction result. Table 6 shows that for the
20 sets of verification data, the diagnostic results obtained by
the new method proposed in this paper are consistent with
the actual situation. Moreover, the ‘‘tendency score’’ index
of each group of data is greater than or equal to 0.85, which
indicates that the judgment result of the fault diagnosis model
of this paper has high accuracy.

The experimental results revealed that the model for data
diagnosis used in this study can detect typical mechanical
faults in an OLTC with high accuracy.

To verify the effectiveness and accuracy of the pro-
posed feature extraction method, different feature extractions
was conducted, involving Wavelet Packet Decomposition
(WPD) [6], EMD [1], EEMD [2], and EEMD-Volterra. More-
over, by applying the DAG-SVM [16] model, a comparison
was made of the extraction efficacy of different methods.
By checking 200 sets of vibration data in the switchover
process of the OLTC under different working conditions, the
accuracies of the four feature extraction methods are as listed
in table 7.

According to table 7, compared with the other feature
extraction method methods, the EEMD-Volterra method pro-
posed in the paper showed a higher accuracy (at the same
time, the analysis above could be verified).

To verify the effectiveness and accuracy of the proposed
pattern recognition method, this paper presents the confusion
matrices [20] of SVM [13], ANN [12] and DAG-SVM [16]

TABLE 7. Accuracies of different methods for fault diagnosis (OBTAINED
by checking 200 sets of vibration data).

to compare the classification accuracy of the three methods.
The feature extraction method all used the EEMD-Volterra.
Both SVMandDAG-SVMusedRadial Basis Function (RBF)
kernel [22]. RBF neural network [23] is a kind of feedfor-
ward neural network. It can approximate arbitrary nonlinear
functions with arbitrary precision and has global approxi-
mation ability, which fundamentally solves the local opti-
mal problem of Back Propagation (BP) neural network [23].
Therefore, the RBF neural network is compared with SVM
and DAG-SVM as a representative of ANNs. By checking
200 sets of vibration data in the switchover process of the
OLTC under different working conditions, the confusion
matrices of the three pattern recognition methods are as listed
in table 8 to table 10.

The statistical analysis results of the classification of the
three pattern recognition methods are shown in Table 11. The
‘‘Kappa’’ coefficient is another measure of the accuracy of
the classification, which indicates the degree of fit between
the predicted condition and the true condition, and it is a more
accurate evaluation index of the objective [21]. The formula
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TABLE 8. Confusion matrix of SVM with RBF kernel (obtained by checking
200 sets of vibration data).

TABLE 9. Confusion matrix of RBF neural network (obtained by checking
200 sets of vibration data).

TABLE 10. Confusion matrix of DAG-SVM with RBF kernel (obtained by
checking 200 sets of vibration data).

TABLE 11. Statistical results of classification accuracy of three pattern
recognition methods.

is as follows:

Kappa =

N
c−1∑
i=0

aii −
c−1∑
i=0

(ai+a+i)

N 2 −
c−1∑
i=0

(ai+a+i)

(15)

where, aii represents the value on the diagonal of the con-
fusing matrix; ai+, a+i respectively represent the sum of the
ith row of the confusing matrix and the sum of the jth column;
N is the total number of test samples.
In Section II, Part C, this article has compared SVM, ANN

and DAG-SVM in detail, and pointed out the superiority of
DAG-SVM compared to the other two methods, which can
be verified here. Due to the weak multi-classification capa-
bility of the SVM [18], it obtained the worst classification
result. ANNhas themultiple classification capability, so it has
higher classification accuracy than SVM, but it is limited by
the number of samples and did not achieve the best result [13].

TABLE 12. Statistical results of classification accuracy of three pattern
recognition methods with different kernel.

DAG-SVM is a multi-classification extension of SVM. It has
strong multi-classification ability [18] and can process small
sample data well [13], thus achieving the best classification
effect.

Transform the kernel functions [22] of SVM and
DAG-SVM, use the same method to obtain the confusion
matrices and calculate the classification accuracy. The sta-
tistical results are shown in Table 12. At the same time,
the classification accuracies of RBF neural network and BP
neural network [23] are also listed in the table.

It can be seen from Table 12 that the DAG-SVM algorithm
with RBF Kernel has the highest classification accuracy for
the pattern recognition of OLTCmechanical fault types and it
is most suitable for the diagnosis of OLTC mechanical faults.

V. CONCLUSIONS
AMethod based on EEMD-Volterra and DAG-SVMwas pro-
posed for diagnosing mechanical faults in an OLTC. By using
the EEMD-Volterra method, the features of vibration signals
in the switchover process of OLTC were extracted. Mean-
while a DAG-SVM classificationmodel for classification and
fitting was established based on IBM SPSS Modeler, expect-
ing to partition the automatic classification of mechanical
states of the OLTC in an intelligent manner. The method can
overcome issues related to fuzziness, complexity, and non-
linearity of the diagnosis of mechanical faults in an OLTC.

1) The EEMD algorithm can extract features from vibra-
tion signals at the main frequency band and inhibit possible
ModeMixing, thus improving the accuracy of decomposition
of vibration signals of the OLTC.

2) The Volterra model for chaotic time series could not
only solve the non-stationary problem of signals but also
greatly relieves the computational complexity and improves
the computing speed.

3) By using IBM SPSS Modeller, an intelligent multi-
classification fitting model DAG-SVM was established to
produce intellectualised output of decisions and intuitively
classify and predict the data.

4) The experimental results showed that the method pro-
posed could detect typical mechanical faults in an OLTC,
showing a higher accuracy than other existing methods.
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In conclusion, the effectiveness and practicability of the
proposed method for diagnosing mechanical faults of OLTC
were fully validated. Furthermore, it is necessary to simulate
and analyse more faults, so as to improve the database of
features of mechanical states of OLTCs. It is expected to
provide a theoretical basis and practical guidance for on-line
monitoring and fault diagnosis in an OLTC.

APPENDIX

TABLE 13. The abbreviation table.
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