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ABSTRACT This paper presents an automation strategy for multi-terminal HVDC (MT-HVDC) systems
combining a dc optimal power flow (dc OPF) routine and a unified reference controller (URC). In the
presented automatic framework, the dc OPF algorithm is implemented at the power dispatch center (PDC)
of the MT-HVDC system to find optimal reference operation points of the power converters to minimize the
losses during the operation of the MT-HVDC grid and solves the contradiction between minimizing losses
and preventing commutation failure. At the local control systems, the operating points of the voltage-source
converter (VSC) stations are tuned based on the calculations executed in the PDC, which enables fast
response to power fluctuation and ensures a stable dc voltage. However, if the communication between
the two control layers is lost, the MT-HVDC grid remains stable based on the pre-defined V—P droop
characteristics for the power converter stations till the connection establishes again, and a set of new operating
points is generated and sent. The static and dynamic simulations conducted on the CIGRE B4 HVDC test
grid establish the efficient and effective grid control performance with the proposed automation strategy. The
analysis shows that the proposed control scheme achieves the desired minimum losses while, at the same
time, satisfying the system constraints.

INDEX TERMS CIGRE B4 HVDC test system, DC optimal power flow, multi-terminal HVDC systems

(MT-HVDC), power dispatch center (PDC), unified control strategy.

I. INTRODUCTION
Broad academic and industrial studies within the field
of Multi-Terminal HVDC (MT-HVDC) systems/grids have
been conducted worldwide [1]-[8]. More than 200 HVDC
projects have been launched worldwide since 1951 [4]. Over
the past two-decade, some HVDC applications have been
expanded with multi-power converter stations in order to
explore the first operational MT-HVDC systems [2], [3]-[6].
Significant benefits and application concepts have been
recognized and proposed with regards to the MT-HVDC
system/grid [S]-[7]. The MT-HVDC systems can serve as
the most promising solution for the integration of har-
vested offshore wind power into onshore ac grids [8].
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Moreover, MT-HVDC grids can facilitate construction of the
European super grid [9]-[14].

The need for MT-HVDC grids and their rewards for future
power systems are well established. Conversely, at the time
of writing this paper, the knowledge on this subject is rare.
Some suggestions for primary control of DC grid voltage
have been described in [1], [5], [15]-[20] that present several
advantages and disadvantages. However, the MT-HVDC grid
development still requires significant research, specifically
in relation to grid control and operation, and interaction
with connected AC grids [21], [8]. It would not be easy to
adjust/control the power flow via redacting the set-points
of VSCs in HVDC grid. Thus, DC Optimal Power Flow is
important to enable the congestion management, handling the
power market requests, loop power flow control and to avoid
the bottleneck of power transmission [22], [23]. Overloading
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of DC-link may lead to its damage and may cause eventual
cascaded failure of whole system [1].

The DC OPF would accomplish the MT-HVDC require-
ments; losses, reliability, cost and power flow control along
with the DC link voltage control [6], [24]-[26]. In [27],
a two-layer hierarchical control framework taking into
account of VSC-HVDC stations and the extra Serial-Parallel
DC Power Flow Controller (SPDC-PFC) station was pro-
posed and investigated. One of the objectives here is to maxi-
mize the utilization of existing DC grids within their reliable
and safe boundaries via unified reference control (URC).
DC OPF, subject, has attracted researchers both from industry
and academia. Even CIGRE working group WG B4-58 is
inspired and devoted to analyze the techniques, feasibility
and the devices for automatic power flow in MT-HVDC
systems [28].

Inter-area oscillations, reliability and stability of
MT-HVDC systems are expressed in terms of DC-link volt-
age stability [29], [30]. Dynamic performance and stability
analysis of DC grids have been comprehensively studied
in [31]-[33] and established that DC grid stability might be
on risk because of instabilities originated from the connected
weak ac grids, resonance generated in MT-HVDC, constant
utility load and the addition of HVDC-CBs [32]. Despite the
availability of several studies on this topic, there is a clear gap
of research regarding detailed dynamic research/study of DC
OPF in concern of a Unified Reference Controller (URC) and
thus, its impacts on MT-HVDC systems to develop a strategy
towards optimal operation.

This paper presents an automation strategy for MT-HVDC
grids combining a DC Optimal Power Flow (DC OPF) routine
and a Unified Reference Controller. In the presented auto-
matic framework, DC OPF algorithm is implemented at the
Power Dispatch Centre (PDC) of the Multi-Terminal VSC-
HVDC grid to find optimum reference operation points of
the VSCs taking in account the operational limitations and
MT-HVDC grid loss minimization. The power flow algo-
rithm used in this paper contains an optimization algorithm
designed in [34] for transmission loss minimization. At the
local control systems, operating points of the converters
are tuned based on the calculations executed in PDC. URC
is implemented in the local control of MT-HVDC systems
as a step towards flexible operation and thus automation.
Owing to the obligation of AC power systems, fixed fre-
quency and voltage-frequency droop modes are implemented,
which gives provision of operation mode transition. AC fre-
quency support and DC-link voltage stabilization is the key
feature of the proposed strategy. As a result, MT-HVDC
grid would participate in stabilization of the AC system
by inertia sharing among different interacted AC networks.
However, if the communication between two control lay-
ers is dropped, the DC system remains stable based on the
pre-defined droop characteristics for the converter stations till
the connection is established again and a set of new operating
points is generated and sent. Static and dynamic simulations
conducted on the CIGRE B4 HVDC test grid demonstrate
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FIGURE 1. Proposed automation pyramid for MT-HVDC grid.

the effective control routine with the proposed automation
approach.

In this paper, a complete control-framework is pre-
sented in order to provide an efficient control and perform
power-sharing in the MT-HVDC systems based on the DC
OPF. This enables running at the supervisory control cen-
ter and programming a Unified Reference Controller at the
primary control of the VSC stations stepping towards the
automation of MT-HVDC grids.

Il. AUTOMATION APPROACH

Fig.1 illustrates the proposed automation framework in a
pyramid form for MT-HVDC grid. The proposed framework
has a hierarchical control structure that is comprised of power
converter stations and grid control layers. To be clearer,
low-level control of power converter stations is dedicated
to the issues such as optimization of VSC-HVDC stations
control parameters and the high-level control of the power
converter level is devoted to the URC strategy. In the grid
level, optimal power flow procedure and URC signal calcu-
lations are performed.

IIl. DISPATCH CENTER

DC optimal power flow is perceived as a limited version of the
AC OPF, as reactive power (Q) is not available in MT-HVDC
systems/grids.

Various objective functions can be defined for an OPF
procedure [35], [36]. The problem of DC OPF to minimize
the transmission losses in Multi-Terminal HVDC system is
expressed by (1)-(5) considering an MT-HVDC system with
N-DC buses. This can be expressed as follows:

N N N
fy=min| Y GV +3 Y G (vi—-v)*| @
i=1

i=1 j—(i+1)

where Gj;, is an element of the MT-HVDC grid’s conductance
matrix and Pg; is the generations and Py; is loads at the
terminal i. N be the number of converter station/buses. And
subject to the following equality and inequality constraints:

gV.P)=0 2
|Pi| < P, i=1,...,N 3)
VRN < Vpei < VB ji=1,...,N (4)
Ipck| <Ip&%. k=1,....M 5)
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where M is the number of transmission lines.
Constraints (3)-(5) show the limitations of the Multi-Terminal
VSC-HVDC system DC-link voltages, the power of the
VSC-HVDC stations and the direct current through the trans-
mission lines, respectively. Pf"ax, in constraint (3), indicates
the maximum permissible power of the i”* VSC. In (4), Vmin
and V" designate the lower and upper bounds of DC hnk
Voltages in MT-HVDC system, respectively. In (5), Ip& is
upper limit of the allowable direct current transferred by the
k™ transmission line.
In (1), V is the vector of system’s DC bus voltages:

= [Vbc.1, Vpcas -« Voewnl! (6)

The minimization function is:

ZG,,V +Z Z N

i=1 j=(i+1)
The constraint expressed in (2) consist discrepancy
between demand and generation which imposes in DC OPF
equations, as following:

fv) =

g(V.P)=1lg1.8,....en1" ®)
P =[PPy, ....,Py]" ©)
Here, P denotes the vector of grid’s powers:
N
8= ZGz‘jViVj-i-PGi — Py (10)
j=1

The DC OPF problem stated in (1)-(5) is a nonlinear-
constrained optimization problem which can be solved by the
use of a gradient-based optimization technique, as:

LV, P)=f(V)+q(V.,P,D+1Tg(vV,P) (11)

Here, A is a vector of Lagrange multipliers for the equality
constraint presented by (12). I is the vector of direct currents
flowing through DC transmission lines and ¢ is the penalty
function for the inequality constraints and defined by:

qV, P I

Z V V mln pr min i (V
- — PP)? pfomas ;

+ Z (Ipc.xi —
k=1

where, pfimin ;, pfyma ;, pfpmax ;, and pf; ; denote the penalty
factors for minimum and maximum limits of DC-link voltage,
power converter stations limits, and transmission lines limits,
respectively [35].

The result of the DC OPF will be achieved by equating the
Lagrangian derivative with respect to the unknown variables
to zero, and then to solve the problem iteratively:

Vm“) Pfymax i

2
I5E3) Pl 12)

AL g  of ag 1"

— =Lt 422 13
vV av+av+[av} (13)
oL _ (V,P) (14)
o S
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IV. LOCAL CONTROLLERS

With the ability of switching between the VSC-HVDC sta-
tions operational modes, grid will automatically deal with
the perturbations in loads and primary sources and, even
go through the fault contingencies. Fig. 2 demonstrates the
control structure of the VSC-HVDC stations, regarded as
URC. This control structural design is anticipated as a unified
technique to control and operate VSC-HVDC stations in
MT-HVDC systems. The control layers, inner current con-
troller and the outer controllers as shown in Fig. 2(a) are
identical to the classic control arrangements of VSC-HVDC
station.

The detailed layout of the URC is presented in Fig. 2(b).
Pges is an active power mandate set by the DC OPF algo-
rithm, and Ak is a parameter matrix given in (15). Kpy is
proportional gain for frequency control, Kjr is integral gain
for frequency control, Kp, is proportional gain for voltage
control, and Kj, is integral gain for voltage control as shown
in Fig. 2(b).

Ky K
Ag = | 2 OF 15
K |: Ko K (15)

The elements of Ag matrix are decided in PDC contains
an optimization algorithm designed in [34]. The URC can be
used for all the VSC stations, and the role of each station can
be simply assigned or changed via ‘control order settings for
URCs’ in PDC. The elements of Ax may be zero or non-zero
during various control modes, but it should always have zero
elements to evade from the control fighting. With the distinct
arrangement of Ak, the URC accomplishes various functions,
thus allocate the necessary operation mode to the controlled
VSC station. Moreover, for operation modes like f or Vpc
control, P, should be set to zero. T}, is the transition time,
and the gain scheduling block will adjust Ak to the objective
during the transition time. The grid operation modes is chosen
and generalized as follows:

Frequency control: Kpr # 0, Ky # 0, Kp, = 0, Kj, = 0.

K
Pref = (KPf + Tlf> (fref _f) (16)

P-Vpc droop control: Kpy = 0, Ky = 0, Kp, # 0,
K, =0.

Pref = Pger + Kpu(VDC - VDC_ref) (17)
Vpc control: Kpr = 0, Ky =0, Kp, # 0, K, # 0.

Prop = (Kpu + —) (Vbc — Vpe_ref) (13)

P-f droop control: Kpr # 0, Ky = 0, Kp, =0, Ky, = 0.

Pref = Pset + Kpf(fref _f) (19)
Vpc-f control: Kpy # 0, Kir = 0, Kpy # 0, Kz = 0.

Pref = Pger + Kpf(fref _f) + Kpu(VDC - VDC_ref) (20)

In order to switch to fixed power mode, Kpr, Kjr, Kpy,
and Ky, should set to zero.
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FIGURE 2. Local control for VSC stations.

V. AC-DC INTERACTION AND INERTIA SHARING

So far, MT-HVDC systems simply play the role of an energy
corridor for AC grids, and mostly the issues related to the
control and operation of DC side are investigated. AC-DC
interaction and inertia sharing means to increase the inertia
of an island/weak AC system. An AC grid can be considered
as a weak grid from two points of views: first, high AC-grid
impedance [37] and second, low AC-generation inertia. Nor-
mally, inertia emulation control is developed by regulating
DC grid voltage following the AC frequency in a specified
trajectory based on the inertia characteristics and the energy
stored on the DC bus acts as inertia reserve [38], [39]. With
reference to the suggested URC, the perturbations from AC
grid will also be handsomely managed. It means that fluc-
tuations from AC side will alter the MT-HVDC grid volt-
ages and hence affect the frequencies of other connected AC
networks.
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FIGURE 3. CIGRE B4 DCS3 five terminal HVDC grid test system.

Coupling dynamics give provision to share strength of stiff
areas to mitigate the disturbances in overall network. On the
other hand, it may propagate the perturbations in the system
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TABLE 1. Transmission lines data.

. R L C G
Line Data  Length [Qkm] [mHkm] [uF/km] [uS/km]
OHL (DC)  900km  0.0114 0.9356 0.0123 0.000
OHL (AC)  600km  0.0200 0.8532 0.0135 0.000
Cable (DC) 900km  0.0095 2.1120 0.1906 0.048
Cable (AC) 150km  0.0184 2.5729 0.2315 0.059

TABLE 2. VSC stations parameters.

VSCstation R(Q) L(mH) C(uF)
Cb-Al 0.403 33 450
Cb-Bl 0.403 33 450
Cb-B2 0.403 33 450
Cb-C2 1.210 98 150
Cb-D1 0.650 49 300

TABLE 3. DC OPF results of the steady state base-case.

DCbus DC voltage (pu) Net power (pu)
Bb-C2 1.012 +0.371
Bb-Dl1 1.013 +0.783
Bb-El 1.016 -0.470
Bb-Al 1.015 -0.671
Bb-B1 1.014 -0.091
Bb-B2 1.007 +0.634
Bb-B4 1.011 -0.415

and even cause instability. The second situation needs to
be evaded via right control design. This topic is covered in
details in [40].

VI. SIMULATION RESULTS

The proposed control framework is evaluated considering
CIGRE B4 DCS3 Multi-Terminal VSC-HVDC systems [41].
As shown in Fig. 3, the test system is a 5-terminal bipolar
meshed VSC-HVDC grid, engaged to assess the anticipated
automation control strategy. The base power and DC voltage
for normalization are 1200 MVA and 400 kV, respectively.

Electrical data of DC transmission lines and converter
stations parameters are given in Tables 1 and 2, respectively.
L and R are total inductance and resistance between AC grid
and the VSC-HVDC converter while C is the capacitance of
DC bus in Table 2.

Simulation results are presented to confirm the effective-
ness of the projected DC OPF control and dynamic interac-
tion between AC and DC grids during base case, deficiency in
power generation in weak AC network and ultimate breakage
of transmission line.

A. STATIC SIMULATION OF THE BASE-CASE

Static base-case simulation based on DC OPF data is given
in Table 3. Due to omitting the DC transmission losses in
this figure, sum of the incoming and outgoing power at buses
deviate from zero. Slack converter Cb-B1 has least droop
slope. Thus, it has largest contribution to power sharing and
DC grid voltage control.

B. GENERATION DEFICIENCY IN WEAK AC GRID
Firstly, event E4 is triggered in which one of the synchronous
machines within weak AC grid A0 loses its 200 MW power
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FIGURE 4. MT-HVDC grid response to deficiency in power generation.

under P-Vpc droop control mode because of sudden loss
in mechanical power. Fig. 4 shows that the other genera-
tor in AO raises its yield to maintain power equilibrium.
Since the frequency is dropped due to loss of generation,
VSC-HVDC station tries to increase its power injection to
stabilize the system frequency, accompanied with the fall in
DC-link voltage at Ba-A1. For such a scenario, the proposed
URC control would automatically shift to stabilize the fre-
quency, voltage and power profiles via DC OPF algorithm
implemented in dispatch center. Results based on different
control modes of URC are shown in Fig. 4 and numerically
tabulated in Table 4. Optimal reference operation points of the
VSCs are found using (7) to minimize the operational losses
by avoiding commutation failure, as achieved in Fig. 2. It is
clear in Fig. 4 that control transition from P-Vp¢ droop to P-f
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droop shows significant performance than other three control
shifting setups with minimized losses.

For instance, although it seems from Fig. 4 that fixed-f
transition (50 Hz) shows better frequency response than P-f
(49.76 Hz) droop control but overall response is not promis-
ing. As each employed VSC have specific power transfer
capability. Fixed-f shows better frequency response but the
power drawn by the converter is much higher (0.9275 pu) than
the converter rating which may damage the VSC converter.
Similarly, the DC-link voltage stabilizing time is longer under
the fixed-f than P-f droop transition. The P-f droop control
also improves the frequency response which is under the
safe limitation (1% of nominal value) and at the same time
power carrying capability is not violated. P-f droop transition
(49.76 Hz) also shows better frequency response than f-Vpc
transition (49.621 Hz) as depicted in Fig. 4.

During P-f droop control, the power flow through
Cb-Al increases to compensate DC-link voltage via Cb-B1 as
shown in Fig. 3 and Fig. 4, respectively. Converter station
Cb-B1 and Cb-B2 increase its injected power to 0.397 pu
and 0.547 pu, respectively, with no change in imported power
from Cb-C2 and Cb-DI1 (i.e. 0.3712 pu and 0.7830 pu),
respectively. VSCs connected with the strong AC grid BO,
having stiff frequency are not affected with E5. And thus,
the frequency of weak AC grid AO becomes stable as it
receives inertia support from VSC Cb-Al that is connected
with Cb-B1 and Cb-B2, which are further linked with strong
AC grid BO. Hence, BO shares inertia with AQ.

By comparing different control modes profiles in each
scope of Fig. 4 and numerical data of Table 4, it is estab-
lished that AC system supporting effect, power flow and
DC-link voltages are improved along with minimization of
transmission losses via proposed DC OPF routine and URC
implementation. Prominently, DC voltage and power profiles
after event E, are still closely matching with DC OPF results
of the base case.

C. BREAKAGE OF TRANSMISSION LINE

Event Ep, breakage of transmission line, is experienced on
one of the two paralleled transmission lines (TLs) connecting
Ba-Al and Ba-AQ under P-Vp¢ droop control, resulting in
total loss of TL and hence power transfer is lost. As the
reactance of the line instantly increases and thus the power
injected and supplied by both VSC Cb-A1 and synchronous
machines of AQO rapidly decreases, resulting in the transients
in frequency of A0 and DC voltage at Cb-A1. Thus, remain-
ing transmission line becomes overloaded. Proposed OPF
control for MT-HVDC is designed to deal with such an
uncertain behavior of the system automatically.

At the local control systems, the operating points of the
converter stations are tuned based on the calculations exe-
cuted in the PDC, which enables fast response to power
fluctuation and ensures a stable DC voltage. The trade-off
between AC frequency and DC voltage supports is shown
in Fig. 5 and numerically expressed in Table 5 based on
the optimized reference control parameters of the URC.
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FIGURE 5. MT-HVDC grid response to breakage of transmission line.

The control would then modify itself to stabilize the fre-
quency, DC voltage, and power flow. Frequency response is
improved and transients are lowered for better power quality.
Simulations proved that MT-HVDC system shows decent
response (fast settling time) for a shift in P-Vpc droop to P-f
droop control than other three controls shift as shown in Fig. 5
(a, b, c, d) under the same circumstances by achieving mini-
mization loss.

The operation and control of CIGRE B4 DCS3 MT-HVDC
grid test system under all three test scenarios show that the
designed control and operation strategy combining a DC
OPF routine and a Unified Reference Controller is effective.
Minimization of transmission losses achieved by executing
the DC OPF in supervisory control to find optimal reference
operation points of VSCs. Results clearly show that the weak
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TABLE 4. Numerical results of MT-HVDC grid response to deficiency in power generation.

P-Vic (49.6148 Hz)

P- Vi to Fixed £ (50 Hz)

P- Vpc to P-f(49.7641 Hz)

DC bus DC voltage (pu) Net power (pu) DC voltage (pu) Net power (pu) DC voltage (pu) Net power (pu)
Bb-C2 1.017 +0.3710 1.005 +0.3712 1.013 +0.3712
Bb-D1 1.018 +0.7830 1.006 +0.7830 1.013 +0.7830
Bb-El 1.016 -0.4704 1.004 -0.2992 1.012 -0.4044
Bb-Al 1.015 -0.3532 1.002 -0.9275 1.010 -0.5747
Bb-B1 1.014 -0.3237 1.003 -0.5143 1.010 -0.3970
Bb-B2 1.007 -0.6285 0.997 -0.4182 1.003 -0.5475
Bb-B4 1.011 +0.6309 1.001 +0.4192 1.007 +0.5493
P- VD(; to Fixed VD(; (495980 HZ) P- VD(; to f—VD(; (496213 HZ)

DC bus DC voltage (pu) Net power (pu) DC voltage (pu) | Net power (pu)

Bb-C2 1.016 +0.3712 1.016 +0.3712

Bb-D1 1.018 +0.7830 1.016 +0.7830

Bb-El 1.016 -0.4779 1.014 -0.4441

Bb-Al 1.015 -0.3284 1.013 -0.4414

Bb-Bl 1.015 -0.3156 1.013 -0.3528

Bb-B2 1.007 -0.6376 1.006 -0.5962

Bb-B4 1.011 +0.6400 1.009 +0.5984

TABLE 5. Numerical results of MT-HVDC grid response to breakage of transmission line.

P-Vpc (49.952 Hz)

P-Vic to Fixed f (50 Hz)

P-Vic to P-f (49.970 Hz)

DCbus DC voltage (pu)  Net power (pu)  DC voltage (pu) ~ Net power (pu) ~ DC voltage (pu) ~ Net power (pu)
Bb-C2 1.017 +0.3712 1.016 +0.3712 1.017 +0.3712
Bb-DI 1.018 +0.7830 1.016 +0.7830 1.017 +0.7830
Bb-El 1.016 -0.4700 1.015 -0.4490 1.015 -0.4624
Bb-Al 1.015 -0.3544 1.015 -0.4252 1.014 -0.3801
Bb-B1 1.014 -0.3241 1.013 -0.3475 1.014 -0.3325
Bb-B2 1.007 -0.6280 1.006 -0.6022 1.006 -0.6187
Bb-B4 1.011 +0.6304 1.009 +0.6004 1.010 +0.6210
P-VDC to Fixed VDC (4991 HZ) P-VDC to f—VDC (49973 HZ)

DC bus DC voltage (pu)  Net power (pu)  DC voltage (pu)  Net power (pu)

Bb-C2 1.019 +0.3712 1.017 +0.3712

Bb-DI 1.019 +0.7830 1.017 +0.7830

Bb-El 1.017 -0.4911 1.015 -0.4609

Bb-Al 1.016 -0.2841 1.014 -0.3852

Bb-B1 1.016 -0.3009 1.014 -0.3342

Bb-B2 1.008 -0.6537 1.006 -0.6168

Bb-B4 1.012 +0.6563 1.010 +0.6191

AC grids receive decent inertia sharing and DC-link voltage
and, power flow are upgraded by means of the proposed
control approach based on DC OPF and URC.

VIl. CONCLUSIONS

In this paper an optimal operation and unified control strategy
for efficient and effective control and, power-sharing in
MT-HVDC grids is proposed. In the anticipated control tech-
nique, a DC OPF procedure was implemented at the grid
dispatch center. Then, at the local control systems, parameters
of the unified control strategy were tuned based on the DC
OPF which results in the operating point of the MT-HVDC
grid, to provide an optimal operation of the MT-HVDC
system to minimize the transmission losses and solves the
conflict between minimizing losses and preventing commu-
tation failure.

Dynamic simulations of five-terminal CIGRE B4 DCS3
MT-HVDC grid test system are developed in Simulink/
MATLAB to extol the merits of the presented automatic
control strategy. The simulated workbench was assessed for:
(i) normal conditions (ii) deficiency in power generation
in a weak AC grid (iii) breakage of a transmission line.
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Simulation results proof that the proposed DC OPF rou-
tine and URC implementation show significant improvement
in AC grid supporting effect (inertia sharing), DC power
flow and DC-link voltages regulation during both steady
and dynamic states by achieving desired minimum losses.
Further, simulations established that MT-HVDC grid profiles
well match with test (i) base case DC OPF results during both
test (ii) and (iii), respectively.
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