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ABSTRACT The explosive growth of motor vehicles in urban areas has heavily burdened the existing
transportation systems. Consequently, there are recently emerging smart transportation paradigms that
aim to ease urban transportation pressure. Smart traffic signal control, which is considered as one of
the breakthrough technologies in smart transportation paradigm, has ushered significant academic and
industry efforts for its considerable benefits. The state-of-the-art proposals usually rely on a centralized
infrastructure with powerful computing abilities to deal with a large amount of different traffic data. However,
the centralized processing approach is often hindered by a long and even unbearable response latency,
restricting its wide deployment and applications in the real world. To overcome this latency-related issue
and achieve near-optimal traffic signal control in nearly real time, we have proposed a non-centralized
approach as well as a fog computing-based architecture, and thus traffic data can be handled in a smarter
way. To be specific, the traffic data are processed right at where it was generated, i.e., at the edge rather than
at a centralized facility. In this paper, the phase timing of a single intersection is to be handled real-time by a
local fog node with a genetic optimization algorithm, and the task for the regional optimization is offloaded
to the centralized cloud and executed. The simulation experiments are conducted on the simulator to evaluate
the performance of our proposal, and the results confirm that the proposed architecture and algorithm have
significant improvement on the average duration time compared to existing approaches.

INDEX TERMS Fog computing, smart transportation, genetic algorithm, signal control.

I. INTRODUCTION
The explosive growth of motor vehicles in the wave of
urbanization leads to a series of traffic pressures and issues
in current cities. Significant academic and industry efforts
have been spent on mitigating traffic flow and easing traffic
pressures in the past few decades. Traffic signal control has
benefitted a lot from the Information and Communication
Technique (ICT), and quickly developed over the past few
years. Typical traffic signal control has gone through sev-
eral rounds of evolvements, from original fixed-time control
systems to actuated or adaptive control systems, to handle
the increasingly complicated and heterogeneous traffic data
in real time. In fixed-time control systems, the sequence
of phases is consistently fixed on one traffic signal cycle,
while the timing in one cycle is pre-set based on statisti-
cal traffic flow data during different periods of one day.

The associate editor coordinating the review of this manuscript and
approving it for publication was Antonella Longo.

The principle behind this strategy is simple and easy to deploy
without investing in new infrastructure. However, this kind
of control system does not take into account the stochastic
nature of traffic flow and unpredictability of vehicle arrival at
intersections.

Loop detectors deployed near the intersections can detect
and track traffic information such as the number of incoming
vehicles. Thus the actuated control systems, to some extent,
reflect the stochasticity of vehicles and improve the perfor-
mance of traffic control, especially compared to fixed-time
control systems. However, in the actuated systems, real-time
data tracking traffic flow such as vehicle speed and accel-
eration can not be detected directly, although it plays an
important role in optimizing Urban Traffic Control (UTC)
and predicting the stochastic nature of traffic flow.

To further improve the performance of traffic control,
adaptive traffic systems incorporate several technologies,
such as loop detectors, camera detectors, infrared ray, radar,
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to detect the real-time traffic information. These adaptive
traffic control systems need real-time traffic data gathering
and monitoring, and recent development of the integrated
architecture such as Vehicular Ad-Hoc Networks (VANETs)
and Internet of Things (IoT) techniques strive to make that
possible.

Enhanced connection with sensing and collection capa-
bilities increase the amount of real-time traffic flow data.
Hence, there needs to be a way to optimize efficiently the
phase timing based on the gathered traffic data. In addition,
existing control strategies need to overcome the long decision
and response latency from data processing. In fact, the traffic
flow may have already changed greatly when the result of
the optimization decision is returned to the traffic signal
controller. As a result, the resulting optimal signal control
strategy on traffic light scheduling cannot be suitable for the
current traffic flow status quo. The challenge for centralized
computation infrastructure lies in the data processing and the
need for an instantaneous response for adaptive signal control
systems.

To overcome this problem, the newly proposed fog com-
puting paradigm, is a potential solution [1], [2]. Fog com-
puting brings computation and storage resources to the edge
of network, enabling highly computationally intensive appli-
cations to run while meeting strict delay requirements. The
road situation (e.g, dry or wet, under construction, traffic
accident), weather situation (e.g., sunny, rainy), vehicle states
(location, speed, acceleration, etc.), and intersection informa-
tion (e.g., the length of queue waiting at the intersection), can
all be collected and processed by fog nodes in real time. Then
the traffic signal controller can receive an instant response
(e.g., extending the green time or starting new phase timing)
to alleviate the traffic congestion and further ensure the driv-
ing safety.

We propose a fog computing based traffic signal control
architecture. The collected traffic data will be mainly pro-
cessed where the traffic data is generated, using efficient and
fast algorithms to make real-time decisions.

The work presented in this paper has extended our previous
work published in the conference [3]. The work in [3] has
only introduced an architecture which is based on the fog
computing to achieve real-time traffic control. It classifies the
architecture into three layers and details the corresponding
functionality of each layer. However, in our previous paper,
neither mathematical formulation nor performance evalua-
tion on this architecture was provided. So in contrasting
fashion, in this paper, we not only provide the mathematical
formulation on the phase timing optimization, but also adopt
a genetic algorithm to solve this problem. The proposed phase
timing strategy is also evaluated by an open-source simulator.

In specific, our main contributions are as follows:
1. We propose a fog computing based smart traffic sig-

nal control architecture, in which the traffic data are
collected by various sensors, processed mainly at the
edges (i.e., fog nodes) instead of remote cloud centers
to reduce the latency as much as possible. The traffic

data can be uploaded to the cloud center to ease the
burden of fog nodes if necessary. Additionally, cloud
computing mainly focuses on coordinating regional
traffic control.

2. We propose a near real-time strategy to schedule the
phase timing for signalized intersection based on the
genetic algorithm.

3. We integrate the phase timing algorithm into existing
traffic simulator and conduct a series of experiments
to investigate the efficiency of our smart traffic control
strategy. The simulation results show great potentials
and prospects.

II. RELATED WORKS
The majority of current literature is dedicated to achieve the
real-time traffic signal control to mitigate the traffic flow.
These works usually focus on the traffic signal configura-
tion optimization, which includes the optimization of the
phase sequences and the phase timing duration. They usually
assume that the length of the traffic light cycle is unchange-
able and the phase sequence in one light cycle is fixed. Most
of existing works evaluate the performance of smart traffic
control algorithms and strategies by means of microscopic
traffic flow simulators (e.g., SUMO and PARAMICS ), and
choose average travel time, average number of stops, and the
waiting queue length at the intersection as their optimization
objectives. But, to design an efficient traffic controlling strat-
egy is complex because there is a number of issues that need
to be addressed. For example, challenges and issues include
the unpredictability of traffic flow, the fusion of traffic data
with IoT (considering the heterogeneity of vehicles and V2X
communication techniques).

Academic research mostly focuses on designing adaptive
and real-time algorithms to achieve the traffic signal con-
trol [4]–[8]. For example, an algorithm presented in [8] com-
bines the genetic algorithm with machine learning algorithm
to improve the performance of traffic control strategy. The
optimization includes two phases. In phase one, it optimizes
the phase timing duration in the traffic light cycle by genetic
algorithm, and in phase two, it predicts the next phase tim-
ing duration by machine learning algorithms. However, this
approach has serious time overheads and hence violates the
principle of timeliness necessary for smart traffic control.

Krajzewicz et al. [9] present an agent based traffic light
control algorithm to solve jams at intersections. They trigger
the optimization depending on the queue length of different
lanes. If the queue length exceeds the specified threshold,
they increase the phase length one by one. The model is
simple without mathematical formulation. It is not qualified
enough to cope with increasingly complicated smart traffic
scenarios. Guo et al. [5] present a scheme for traffic timing
optimization under user equilibrium traffic. They model the
optimization as a multi-dimensional search problem and sim-
ulate it in PARAMICS using a genetic algorithm.

Recently, fog computing has been introduced to smart
transportation and smart cities [10]–[13]. Works [14]
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FIGURE 1. An application of fog computing in traffic signal control.

consider the road side unit (RSU) as a special fog node in
vehicular fog computing. On one hand, RSU communicates
with vehicles for information exchange and data propagation;
On the other hand, it takes charge of data processing and algo-
rithm execution for determining the optimal task scheduling
plan.

Many works use merging V2X communication tech-
niques to achieve a better performance of traffic control
under assumption of certain market penetration. For instance,
Priemer and Friedrich [15] propose to collect speed, accel-
eration and heading of vehicles based on V2I communication
techniques, with the aim to improve the efficiency of the
traffic control strategies at the intersections. Feng et al. [16]
present a real-time and adaptive signal phase scheduling algo-
rithm with V2I/V2V communication techniques to minimize
the total delay minimization and the the queue length at
intersections.

Moreover, Hou et al. in [12] proposed an architecture
called vehicular fog computing (VFC), which takes full
advantage of a collaborative multitude of end-user clients and
nearby edge devices to perform the communication and com-
putation tasks. Specifically, each moving or stopped vehicle
can act as a fog node to collect traffic data and contribute
to VFC. Works [10], [17] combine fog computing with
VANETs, explore possibilities and further discuss the char-
acteristics of fog computing and services in fog computing
platform for VANETs. Challenges, open issues and future
research directions are also put forth and discussed.

However, most of these works mainly focus on resource
sharing among vehicles instead of traffic signal control.
We also notice from the aforementioned works that the signal

control strategies suffer from the running time of highly
computational algorithms for phase timing optimization. The
traffic control strategies fail to achieve expected performance
because of long response latency. Furthermore, traffic control
strategies that use fog computing in the intelligent transporta-
tion system focus on improving the road safety and traffic
efficiency. Less attention has been paid, however, to the traffic
light optimization with the aid of fog computing. Due to low
response latency, location awareness and geographic distri-
bution, fog computing can be considered as one of potential
solutions to traffic phase timing optimization.

As far as we know, this is the first attempt to construct
an architecture for traffic signal optimization based on fog
computing while integrating a genetic algorithm based strat-
egy into SUMO to investigate the performance of our fog
computing based smart traffic control.

III. APPLICATION SCENARIO AND
SYSTEM ARCHITECTURE
In smart transportation, the wide deployment of various sen-
sors enables the real-time monitoring and collection of mas-
sive amount of heterogeneous traffic data. Traffic data helps
intelligent signal control systems design suitable signal con-
trolling strategy and determine optimal phase timing plans.
With the help of either infrastructure-based sensors (e.g., loop
detectors, traffic monitoring cameras or radio) or vehicular
networking technologies (e.g., V2V, V2I), fog nodes are in
charge of traffic flow data retrieval.

A scenario is depicted in Fig.1 where fog computing
drives decision making. Devices are equipped with comput-
ing facilities and located at the edge of the network, and they
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function as fog nodes in fog computing. For instance, RUS
deployed for communicating with connected vehicles can be
augmented to serve as fog node. In the near future, the smart
traffic lights with computing powers can also be used as fog
nodes.

In this scenario, near the traffic signal controller, we use
special computer servers with appropriate computational
abilities to act as fog nodes. This guarantees that the on-site
real-time traffic data can be handled efficiently in real-time.
In addition to applying fog computing to traffic phase timing
optimization, two other common incidents are also exempli-
fied in the scenario: one, car collision, and two, emergency
events.

This scenario demonstrates several handling mechanisms
which different incidents can trigger. For example, as the
number of vehicles at an intersection increases, traffic con-
gestion occurs. The traffic flow information is then collected
by various sensors such as infrastructure-based sensors and
vehicular networking technologies. Based on the traffic data,
the fog node can cooperate with the traffic signal controller
and optimize the phase timing to alleviate the traffic conges-
tion. In addition, fog computing can be enhanced by adding
a remote cloud, functioning as the cloud computing layer.
Cloud computing hasmore powerful computing resources but
at the expense of longer latency.

Besides traffic congestion, other incidents such as car
collisions can also be recorded by nearby traffic-monitoring
cameras or passing connected vehicles. They can forward this
incident to nearby fog nodes in the case of an emergency
and plan adjustments. First, the degree of collision-caused
traffic is investigated, and based on the results of the analysis,
the fog node intelligently decides whether or not to notify
other passing vehicles of the incident with a much wider
communication range compared to the equipped vehicles.
In case of serious car accidents, fog nodes can further seek
help directly from the traffic management center.

Lastly, one of the most common emergency incidents is
to take patients to hospital by ambulance. How to arrive at
hospital in the least amount of time is a life-and-death matter.
In this scenario, the fog computing and cloud computing can
cooperate together to guarantee that the ambulance arrives at
hospital as quickly as possible. For instance, fog computing
can determine temporary phase timing plan to ensure that the
ambulance can pass the current intersection without waiting
for traffic lights. After that, fog computing can restore regular
phase timing. From a global viewpoint, the cloud computing
can calculate the globally optimal driving route while taking
into account green wave, the congestion level of different
road segments, and other factors. The cooperation of fog
computing and cloud computing can to a great extent improve
the running efficiency of ambulances.

According to these descriptions, we can see that the pro-
posed traffic signal control architecture in this paper includes
three layers: cyber physical layer, fog computing layer and
cloud computing layer. The cyber physical layer is to col-
lect traffic flow data while fog computing layer and cloud

computing optimize phase timing and determine the traffic
signal controlling strategies. We will elaborate on these three
layers in the next subsections.

A. CYBER PHYSICAL LAYER
This layer is a densely distributed ecosystem, which consists
of the infrastructure-based loop detectors and various video
surveillance systems. Connected vehicles with mounted com-
munication devices (e.g., On-Board Units, OBUs), and RSUs
can communicate with each other for data collecting and
forwarding.

Huge amounts of traffic data are constantly collected in this
layer and then disseminated to the fog computing layer. How-
ever, the heterogeneity of traffic data from diverse sensors
and actuators poses new issues concerning data extraction,
storage and processing in the fog computing layer. Redundant
information exists in the traffic information flow, since it can
be captured by different sensors at the same time. Useless or
redundant information should be identified and excluded as
much as possible to conserve storage resources and improve
traffic data handling. However, identical structure definitions
for differently captured data (through connected vehicles or
traffic monitoring cameras) may improve data extraction and
processing, but produce more data redundancy and storage
resources waste.

Another concern in this layer is the communication
between different sensors and actuators in addition to 4G,
WiFi,WLAN, ZigBee, Bluetooth, and other short-range com-
munication techniques (DSRC) [18]. All of them can offer
both V2V and V2I communications. Furthermore, DSRC
(802.11p) enables fast data exchange among entities (vehicles
and RUSs) at the same channels with no need for preparation
of association and authentication, thus improving the flexi-
bility of telecommunication service provisioning.

B. FOG COMPUTING LAYER
This layer is composed of computing nodes with powerful
computational and storage resources near the traffic signal
controller. Fog nodes oversee data handling that includes data
storage, analysis, and incident handling such as traffic signal
optimization and emergency call services. The architecture
for data and incident handling in the fog computing layer is
depicted in Fig. 2.

The architecture is made up of several modules that serve
different functions to optimize phase timing and determine
traffic control strategies. Specifically, the model called Traf-
fic Information Database from Fig. 2 stores the traffic data
uploaded to the fog computing layer. The Orchestrator model
is responsible for evaluating the traffic status and trigger
different handling mechanisms. If traffic congestion occurs,
a procedure for local optimization can be started. The mod-
ules surrounded by the dashed line box oversee local opti-
mization. These models retrieve the traffic data from the
Traffic Information Database and use appropriate algorithms
to schedule phase sequence and optimize the phase timing.
The resulting phase sequence and phase timing plans are
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FIGURE 2. Architecture of fog computing layer.

forwarded to themodel called Traffic Signal Controllermodel
which is then responsible for adjusting the traffic lights,
by extending the green time or resetting the phase timing
duration in the next phase. In case of vehicle collisions
or emergency incidents, the Orchestrator model will seek
help directly from human services in the traffic management
center.

The benefits of utilizing fog computing in the intelligent
traffic signal control systems is to reduce the response delay
significantly, compared to other existing controlling strate-
gies. Thus, the traffic flow can be mitigated as much as
possible.

C. CLOUD COMPUTING LAYER
This layer is composed of multiple high-performance servers
with more powerful computation and storage resources, com-
pared to fog computing layer. The cloud computing layer dif-
fers from the fog computing layer in that the cloud computing
layer serves multiple intersections while the fog computing
layer serves only one intersection.

Based on the traffic data offloaded by fog computing lay-
ers, the cloud computing layer concentrates on regional traffic
control coordination which involves multiple intersections.
Comparatively, the fog node only optimizes the phase timing
for the one intersection it serves. The fog computing fails
to account for the upstream and downstream traffic flow
before and after its intersections respectively. Therefore, the
autonomous traffic signal control at fog nodes are not glob-
ally optimal in multiple-intersection scenarios. For example,
the vehicles released at the current intersection may lead to
traffic congestion at the immediate downstream intersection
because the fog node responsible for the current intersection
has no traffic flowdata at the immediate downstream intersec-
tion. Ultimately, there is a need for both global and local opti-
mization and cloud computing performs global optimization
like planning the globally optimal phase timing for multiple
intersections.

According to these descriptions, the proposed multi-layer
signal control system takes into account both signal and

multiple intersections. Some algorithms and strategies are
subsequently adopted to achieve local and global optimiza-
tion of the traffic signal control.

IV. TRAFFIC CONTROL STRATEGY
Fig.1 shows a traffic jam to detail the fog computing based
traffic signal control strategy. If a traffic jam occurs due to
the inappropriate setting of phase timings at the intersection,
optimization can be initiated by fog computing.

Some traffic data can be collected to aid the phase timing
optimization and the periodic beacon messages from vehi-
cles are sent to fog nodes when vehicles are approaching
the intersection. Such beacon messages usually include the
destination, speed, acceleration, timestamp. For clarification,
Fig. 3 shows the corresponding interactions among several
entities (i.e., vehicles, RSUs, fog nodes and cloud node).

FIGURE 3. Interactions among entities (vehicles, RSUs, fog nodes and
cloud nodes).

Through V2V/V2I communication technologies, RSUs
can obtain queue length and the arrival rate of vehicles at the
intersection. An initial communication link between RSUs
and fog node is constructed and then RSUs send traffic mes-
sages to the fog node. The fog node starts the optimization
module to optimize the traffic signal for single intersection
and returns the results to the signal controller in real time.
The controller subsequently extend the green time in current
traffic light cycle or reschedule the phase timing for the next
phases of the same traffic light cycle. On the other hand, cloud
computing takes charge of traffic signal optimization for
multiple signalized intersections, a more complicated process
with extra factors such as the offset between two adjacent
intersections.

V. PROBLEM FORMULATION
To illustrate the application of fog computing to smart traffic
control, we formulate the traffic control problem and further
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present the optimization objective in this section. Due to early
stage of development of V2X techniques, not all vehicles are
mounted with the OBUs but with promising growth in the
foreseeable future. Therefore, we assume that the vehicles
in this paper are OBU-mounted with full market penetra-
tion, which enables the direct communications among several
entities as shown in Fig.3. Several important metrics for
traffic optimization can be obtained via these communication
techniques, such as the arrival speed, the queue length, and
the distance between any vehicle in the queue and the inter-
section. To formulate the traffic optimization problem, we list
key notations in Table 1 to be used through the paper.

TABLE 1. Notations for smart traffic control.

Traffic phases usually refer to different signal states of traf-
fic light at the intersection, which allow different and partially
conflicting traffic flows to pass the intersection without vehi-
cle collision. We adopt a traditional 4-arm intersection with
four phases in the paper. Fig. 4 shows an example of 4-arm
intersection with four phases. For example, in phase 1, only
two traffic flows (e.g., east to south and west to north) are
permitted while the traffic flow from other directions must
wait at the intersection.

Before going further into the problem formulation of smart
traffic control, we make some assumptions as follows.

First, we assume that the length of traffic light cycle is
fixed. Thus, the optimization on traffic control is to adjust
the phase timing residing in each single traffic light cycle.

Second, we assume that each vehicle in the waiting queue
starts with the same acceleration when traffic light turns
green. This assumption neglects the performance differences
found in individual experience and driving habits and would
otherwise complicate evaluating traffic control of the signal-
ized intersections.

FIGURE 4. An example of 4-arm intersection with four traffic phases.

Third, the faster the vehicles pass the intersection, the more
number of vehicles can pass the intersection within the des-
ignated green light time. However, faster speeds correlate
to higher chances of car accidents, especially considering
the pedestrian movement as well. Accordingly, we desig-
nate maximal vehicle acceleration and speed in this paper.
Lastly, we assume that V2X communication techniques can
record the distance between each vehicle in queue and the
intersection.

In our smart traffic signal control scenario based on fog
computing, we use the queue length to denote the perfor-
mance evaluation metric of signalized intersection control.
Given the number of traffic light cycles K , we optimize
the phase timing within each single cycle, to minimize the
queue length of vehicles waiting at the intersection. Then,
a threshold δ is introduced to trigger the optimization process.
When the number of vehicles waiting exceeds the threshold,
the fog node starts to optimize the phase timing, and the new
phase timing plan can be retrieved after the calculation in
the fog computing layer. Then, results are sent to the traffic
signal controller, which then reschedules the phase timing in
the current traffic light cycle. By reducing or extending the
corresponding phase timing, traffic jam can be alleviated at
the intersection.

Based on the descriptions above, the objective function can
be defined as below:

Minimize(Q) :
K∑
k=1

|P|∑
p=1

S∑
s=1

L∑
l=1

max{0,Numpk+ARpk · Gpk

− argmax
i
{Dis(Vehpki )|Dis(Vehpki ) ≤ D0}}

s.t. D0 =
V 2
max

2A
+ Vmax ·max{0,Gpk−

Vmax
A
} (1)

|P|∑
p=1

Gpk = C (2)

Gminpk ≤ Gpk ≤ G
max
pk (3)

Numpk ≤ δ (4)

1 ≤ p ≤ |P| (5)

1 ≤ k ≤ K (6)
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Constraint (1) calculates the maximal driving distance of a
vehicle from stationary without exceeding Vmax in the given
green time based on the principles of physics. Constraint (2)
ensures that the length of traffic light cycle is unchangeable
regardless of the adjustments to phase timing in the cycle.
Usually, the initial phase timings can be planed based on
the historical traffic data. That data is obtained by various
sensors and V2X communication techniques. Constraint (3)
reschedules phase timing so that it falls into a valid range
specified by Gminpk and Gmaxpk . Finally, constraint (4) states that
the optimization process begins to work only if the initial
queue length Numpk exceeds the threshold δ.

VI. PHASE TIMING OPTIMIZATION
In this section, a genetic algorithm is adopted to solve this
optimization problem.We denote the genetic algorithm based
phase timing rescheduling approach by GAPTR. In GAPTR,
we encode the green time of four different phases shown
in Fig.4 into a chromosome. Each gene in the chromosome
is represented by binary variable 0 or 1. Fig. 5 shows an
encoding example that corresponds to the four phases at
an intersection. Each chromosome represents an individual
attempt to schedule the phase timing.

FIGURE 5. An example of chromosome encoding.

The fitness function is used to evaluate best functioning
individuals. Better individuals tend to be reserved with higher
possibilities than that of bad ones. In GAPTR, we aim to
optimize the queue length of waiting vehicles as shown in
the problem Q. Therefore, we choose the objective function
as the fitness function directly in this paper.

For the selection, crossover and mutation operator,
we adopt the conventional ways in genetic algorithms. For
example, a roulette-wheel approach is used to do the selec-
tion operation and multiple point crossover and mutation
are adopted in the crossover and mutation operation, respec-
tively. Fig. 6 shows an example of multiple point crossover
operation.

In Fig. 6, the crossover operation seems to exchange gene
segments in phases, which, however, is not necessary in
practice. We can leverage a random binary vector of the same
length as the chromosome to conduct the crossover opera-
tion.The value of element in the vector denotes which parent
the gene of the corresponding position in the offspring comes
from. For example, if the value is 1 in the current position of
vector, the gene value in the corresponding position of off-
spring comes from parent 1, and otherwise, parent 2. Similar
operation can be applied to mutation operation with random
vector. The only difference is that the value of element in the

vector denoteswhether the gene of the corresponding position
in the offspring mutates or not.

VII. SIMULATION AND RESULTS ANALYSIS
To evaluate the performance of the smart traffic control pro-
posed in this paper, we have conducted extensive experiments
in this section. Specifically, we first introduce the basic exper-
imental setups and the simulation platform called Simulation
of Urban Mobility (SUMO). Then we show the experimental
results, followed by the analysis.

A. EXPERIMENTAL INITIALIZATION
SUMO is an open source, microscopic, space-continuous and
time-discrete traffic flow simulation platform [19]. It gen-
erates the road networks, vehicles and driving routes in the
experiments. To integrate GAPTR into SUMO and realize
on-line interaction and controlling of the traffic lights and
the traffic flow, we use an external application called Traffic
Control Interface (TraCI) [20]. It acts as a client to access
the simulation artifacts and gives instructions to change
the simulation process on demand via a socket connection.
Fig.7 shows the evaluation process which integrates GAPTR
into SUMO and introduces TraCI as a client to instruct the
simulation.

Using the inductive loops and ICT techniques, SUMO
monitors and records the traffic flow information such as
the queue length of vehicles waiting at the intersection to
simulate the traffic flows at the signalized intersection. As a
client, TraCI can retrieve the simulation information after
it establishes a TCP connection with SUMO as shown in
Fig.7. Next, TraCI is responsible for deciding whether the
optimization process is triggered. In other words, when the
queue length exceeds the threshold, the optimization process
is activated. The related traffic data, such as the queue length,
vehicle acceleration, and arrival rate, are sent to the fog node
which oversees traffic signal optimization through GAPTR.
Due to its powerful computation abilities and low latency,
the resulting phase timing plan can be returned nearly in real
time. Then, the resulting scheduling plan is used to change the
traffic signal light settings in SUMO via TraCI. Table 2 lists
the parameters involved in the evaluation, in which the value
ranges as well as the default values are given.

The fitness function as defined in minimization problem Q
is a performance indicator which represents the efficiency of
signalized intersection regulation. There are also other met-
rics which can act as performance indicators to evaluate the
efficiency of intersection regulation. For example, intuitively,
the fewer number of vehicles remains in queue after traffic
light cycles, the less travel time for a vehicle. We use the
average travel time (ATT) as the metric to evaluate GAPTR in
this paper. The travel time denotes the time taken for a vehicle
to travel from the original to the destination. And thus ATT is
themean travel time of all vehicles involved in the simulation,
an important metric to evaluate the overall performance of the
road network.
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FIGURE 6. An example of crossover operation.

FIGURE 7. The evaluation process using SUMO and TraCI.

We choose an intersection with four arms as our smart
traffic control scenario. To simplify the simulation process,
we set the number of lanes in the same direction for one green
phase to one lane and the number of directions for one green
phase to two directions. 658 vehicles with random routes are
generated in the road network. The default value of green
phase is set to 30 seconds.

Two different kinds of calculation for GAPTR are pro-
posed, which leads to two different strategies for smart
traffic control, denoted as Sig_GAPTR and Both_GAPTR.
Sig_GAPTR accounts for the number of vehicles waiting
in queue at only one side, when deciding whether or not
to trigger the optimization process. Usually, Sig_GAPTR
chooses the side with the larger number of waiting vehicles.
Conversely, Both_GAPTR considers the number of vehicles
waiting in queue at both sides. Fig. 8 shows an example

to illustrate this situation by denoting the state of traffic
light at the intersection. In the current state, vehicles on
lines 1 and 3 should be waiting for traffic lights while vehi-
cles on line 0 and 2 are permitted to pass the intersection.
Once the number of vehicles from either line 1 or line
3 exceeds the threshold, Sig_GAPTR starts the optimization
process. Both_GAPTR starts the optimization process, only
if the number of vehicles from both sides exceeds the thresh-
old. We will compare the performance of the two strategies
in the next simulation. In addition, we will introduce two
additional approaches to compare with the two versions of
GAPTR strategies. We denote the two approaches by Base-
line approach and Greedy approach, respectively.
The Baseline approach does not reschedule the phase tim-

ing once the phase duration is determined. In this setting,
the green phase in the corresponding phases is set to the
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TABLE 2. Parameter involved in experiments.

FIGURE 8. An example to trigger optimization in Sig_GAPTR and
Both_GAPTR.

default values. Similar to GAPTR, the Greedy approach can
reschedule the phase timing. When the number of vehicles
from either side exceeds the threshold,Greedy approach starts
the optimization process extending or reducing the green time
duration. The duration of the green time makes sure that
all the vehicles in queue pass the intersection. Considering
the incoming vehicles from time to time, Greedy approach
schedules the current phase to the next one when the time gap
between two consecutive vehicles detected by the loop detec-
tors exceeds the specified time which is set to three seconds
in the simulation.

B. SIMULATION RESULTS AND ANALYSIS
We conducted the first set of experiments to investi-
gate the effectiveness of Sig_GAPTR and Both_GAPTR,
compared to the Baseline and the Greedy approach.

To visualize the outputs from the simulation, we use a tool
named plot_tripinfo_distributions.py provided by SUMO to
read the generated tripinfo-files and plot the selected attribute.
Fig. 9 shows the results where the x-coordinate represents the
travelling time of all vehicles across the simulation and the
y-coordinate represents the corresponding number of vehi-
cles under different travelling times. In the experimental set-
tings, we randomly generate 500 vehicles and corresponding
routes for the four approaches and set the simulation time to
5000 seconds.

From the results, we observe that there are more vehicles
with travelling times less than 250 seconds in the Baseline
and Greedy approaches compared to the Sig_GAPTR and
Both_GAPTR: 175 vehicles travel the whole route in less than
250 seconds for the Baseline and Greedy approaches, versus
140 vehicles travel the whole route in less than 250 seconds
for Sig_GAPTR andBoth_GAPTR. However, the Sig_GAPTR
and Both_GAPTR strive to achieve better performance com-
pared to the Baseline and Greedy approaches by reducing
the travelling time of all vehicles from a global perspective.
What that means is that the number of vehicles with travelling
time less than 1000 seconds is significantly greater than the
Baseline andGreedy approaches. To sumup, theATT for each
strategy is 673, 592, 395 and 432, respectively. Compared
to the Baseline, Sig_GAPTR and Both_GAPTR reduce the
ATT by 41% and 36%, respectively. Compared to Greedy,
Sig_GAPTR and Both_GAPTR reduce the ATT by 33% and
27%, respectively. This makes sense since Sig_GAPTR and
Both_GAPTR find the optimal phase time in each traffic light
cycle. Although the process is time consuming, the phase
time scheduling can almost be achieved in real time using fog
nodes.

The second set of experiments is conducted to evaluate
the efficiency of the four different strategies. Fig. 10 shows
the results. The x-coordinate represents the number of steps,
denoted by N , which is used to generate the vehicles in a
randomway. Since there are twelve lanes for one intersection.
Each value of N corresponds to at most 12∗N vehicles.
In doing this, we add the randomness and unpredictability
to the simulation. For the result, the ATT is used as the
evaluation metric in the simulation. We can observe that
the Baseline approach has the largest values of ATT while
Sig_GAPTR has the smallest values of ATT in most cases.
The GAPRT strategies ( Sig_GAPTR and Both_GAPTR) have
the better performance compared to Baseline and Greedy
strategies. Greedy and Baseline had the largest ATT values
of 1000 and 1200, respectively. In each case, both the vehicles
and corresponding routes are generated randomly and hence
some extreme situations can be generated which lead to this
result. For instance, if the number of vehicles in one direction
is tremendously large, Baseline traffic control strategy with
fixed phase time may handle the situation efficiently.

Table 3 denotes the performance comparison compared
to Baseline and Greedy approach. For example, when the
number of steps is 1000, the ATT for Sig_GAPTR and
Both_GAPTR is 565 and 659, respectively. Compared with
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FIGURE 9. The number of vehicles distribution according to travelling time with four different approaches.

FIGURE 10. The average travel time comparison under number of steps.

Baseline and Greedy, Sig_GAPTR reduces the ATTs by
29.3% and 15.2%, respectively. Similarly, Both_GAPTR
reduces the ATTs by 17.5% and 1.2%, respectively. From
the table, we can observe that in general Sig_GAPTR
has relatively better performance than Both_GAPTR. Both
Sig_GAPTR and Both_GAPTR have better performance than
Baseline and Greedy. When the number of steps is 1100,
Both_GAPTR increases the ATT by 1.3% compared to

Greedy approach. The reason is similar to the case in Fig. 10.
The random generation of vehicles and routes can occasion-
ally result in an extreme situation with this result.

Genetic algorithm searches the best individual over the
huge population space by generating new population itera-
tively. But they brings large time overheads and hence vio-
lates the principle of timeliness necessary for smart traffic
control. Accordingly, fog computing is introduced to reduce
the response latency. In addition to the large population size,
the number of generations also has great affects on the time
overheads. Generally, the probability to find the best solution
with regards to the fitness value is becoming increasingly
greater as the number of generations increases. However,
if an overall optimization is achieved, it makes no sense to
continue increasing the number of generations.

To investigate the relationships between best individuals
and the number of generations, we have conducted another set
of experiments, shown in Fig. 11. The x-coordinate represents
the number of generations and y-coordinate the correspond-
ing fitness values. The optimization process of smart traffic
control is triggered by the number of waiting vehicles in their
own lanes. Four cases, which can trigger the optimization
process, are generated randomly, denoted by C1, C2, C3 and
C4, respectively. Each case in the simulation is actually a
vector in which each element denotes the number of waiting
vehicles in its own lane.
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TABLE 3. Performance comparison compared to baseline and greedy.

FIGURE 11. Fitness values with different number of generations.

We observe that the best individual in regards to fitness
values can be found within five hundred generations in
most cases. We use the roulette-wheel approach to select
the offspring to generate the new population. The individ-
uals, that violate the constraints in current population, are
filtered out in the next generation. Thus, there is a greater
probability that better individuals that satisfy the constraints
are generated in the next generation. For instance, the best
individual for C3 are found at about 250 generations, while
the best individual for C1 is found at about 400 generations.
Totally speaking, in our case, it suffices to set the number of
generations within five hundred generations.

VIII. CONCLUSIONS
With the help of advanced ICTs (such as V2X techniques),
huge amount of heterogeneous traffic data can be gathered.
To process these information and realize traffic signal control
usually requires the employment of efficient control strate-
gies and algorithms. However, existing traffic signal control
strategies have serious response-time overheads. To achieve a
smart traffic light control, we have proposed a fog computing
based traffic signal control strategy in this paper, as well
as a traffic signal control architecture. In the architecture,
the phase timing task for a single intersection can be handled
by a local fog node in real time, and regional optimization task
will be left for the centralized cloud. Testing our proposition,
we integrate our GA based traffic signal control approach

into SUMO via TraCI. The experimental results have shown
that the control strategies are more efficient than Baseline and
Greedy strategies.
To realize a fog-upgraded traffic light control, effective

transportation specified software entities running in fog nodes
are critical. The software entities include application software
as well as a few middleware that could support dedicated
software design with several APIs or functions. Therefore,
in the future works, we are planning designing and realiz-
ing software entities which can support flexible update and
upgrade to adapt to new control policies.
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