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ABSTRACT High-definition display technology for underwater images is of great significance for many
applications, such as marine animal observation, seabed mining, and marine fishery production. The tradi-
tional underwater visual display systems have problems, such as low visibility, poor real-time performance,
and low resolution, and cannot meet the needs of real-time high-definition displays in extreme environments.
To solve these issues, we propose an underwater image enhancement method and a corresponding image
super-resolution algorithm. To improve the quality of underwater images, we modify the Retinex algorithm
and combine it with a neural network. The Retinex algorithm is used to defog the underwater image, and
then, the image brightness is improved by applying gamma correction. Then, by combining with the dark
channel prior and multilayer perceptron, the transmission map is further refined to improve the dynamic
range of the image. In the super-resolution process, the current convolutional neural network reconstruction
algorithm is only trained on the Y channel, which will lead to problems due to the insufficient acquisition
of the color feature. Therefore, an image super-resolution reconstruction algorithm that is based on color
features is proposed. The experimental results show that the proposed method improves the reconstruction
effect of the image edges and texture details, increases the image clarity, and enhances the image color
recovery.

INDEX TERMS Image enhancement, superresolution, convolutional neural networks, underwater imaging.

I. INTRODUCTION

In the process of image formation, due to the influence
of severe weather and the limitation of the equipment,
the details of the images are often lost in the process of
image transmission and storage, which reduces the image
resolution. In recent years, as the most direct way to obtain
information, images are used in important applications such
as facial recognition, medical imaging, video monitoring,
remote sensing imaging, computer vision and other fields.
In the current research field, the methods for image superres-
olution mainly include interpolation [1]-[5], reconstruction
constraint [6], [7] and learning [8]-[10].

The associate editor coordinating the review of this manuscript and
approving it for publication was Huimin Lu.

VOLUME 7, 2019

For example, in terms of the reconstruction-based methods,
Stark and Oskoui [14], Wernick and Chen [15], and Stark
and Olsen [16] were the first to propose a convex set projec-
tion method to solve the problem of image superresolution.
In this method, the intersection of the solution space of a high-
resolution image and a constraint set representing the high-
resolution image is obtained iteratively to determine a smaller
solution space to complete the reconstruction of the high-
resolution image. A point is selected from the high-resolution
image space as the starting point, and the next point satisfying
all the constraint convex sets is obtained by many continuous
iterative projections to obtain the high-resolution image. The
convex set projection method provides a simple way to solve
the problems of superresolution images and makes full use of
the prior knowledge, which can better guarantee the quality
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of the edges and details in high-resolution images. However,
the method largely depends on the random selection of the ini-
tial point (leading to unstable and not unique solutions), and it
has slow convergence, large computational requirements and
low convergence stability. Later, Rasti et al. [17] proposed
adding a Bicubic interpolation and Bicubic sampling to each
Iterative Back Projection (IBP) iteration, which could reduce
the mean square error in each iteration and thus improve the
effect of the image reconstruction. However, the series of
methods mentioned above only apply to the IBP algorithm
to improve the quality of the reconstructed high-resolution
image but do not replace the traditional interpolation algo-
rithm to estimate the initial image, so there will still be jagged
edges. In the IBP recovery of superresolution images, the
possible sawtooth effects in the edge position, considering
the original image, are often nonlocal redundancies. Kai and
Shifei [18] believe that in the process of iterative projection,
the full use of the similarity of the nonlocal information
can reduce the reconstruction error, the initial value of the
fixed IBP estimates and the error accumulation to solve the
above problems. Irani and Peleg [19] proposed the iterative
back-projection method and used it to solve the problem of
superresolution images. This method first obtains the initial
estimation of the high-resolution image through interpola-
tion. If the image obtained by the initial estimation is equal
to the original high-resolution image, then the low-resolution
image obtained by the initial estimation is equal to the actual
low-resolution image. Otherwise, the error is back-projected
and corrected. The iterative process is terminated when the
error is acceptable. This method is simple and intuitive, with
a small computational load and fast convergence. However,
it is difficult to select the inverse projection operator, and
the solution is usually not unique. In addition, the errors
of each iteration are uniformly added to the reconstructed
image, so there are jagged edges in the image. Based on
the learning methods, Fan er al. [10], Jobson et al. [9],
and Huang er al. [20] proposed the neighborhood embed-
ding method, first for the low resolution image block set
selection and the input image of the closest k neighbors, and
again for a constrained least square solution value to obtain
the appropriate weights to use for the reconstruction of the
high resolution image block. The neighborhood embedding
method is simple and direct, and its dependence on the sample
set is greatly reduced. However, the number of neighbors is
fixed and controlled by the user, which will cause overfitting
or under-fitting and result in blurring in the final image recon-
struction. Yang et al. [12] proposed a basic method based on
sparse coding (ScSR) to reconstruct high-resolution images,
where the ScSR method places the sparse constraint between
the low resolution and high resolution image blocks in the
process of jointly training the dictionary, and so they can use
the same sparse representation low resolution images and the
corresponding high resolution image blocks. Reconstructing
the superresolution image sparse representation requires only
two concise learning dictionaries rather than a huge image
block training library; so this method is highly efficient and
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has good scalability and good noise resistance. However,
the regularization effect of the coefficient representation in
the reconstruction algorithm is not obvious. The dictionary
is not sufficiently complete (resulting in the image super-
resolution being limited to a specific field), and the quality
of the edge details in the reconstructed images is not high.
Glasner et al. [13] proposed the anchoring field regression
(anchored neighborhood regression, A+) method to study a
sparse dictionary and return a fixed number of fast superreso-
lution dictionary atoms. This method calculates the dictionary
in the neighborhood of the atom rather than using a direct
calculation in a low resolution image block in the neighbor-
hood, which can reduce the complexity and operation time.
However, there is an extreme case where, instead of looking
for the atom’s nearest neighbor, all the atoms use the same
mapping matrix, leading to a significant reduction in the com-
putational load. In practice, however, this extreme approach
fails to adapt to specific input characteristics, resulting in
reduced flexibility.

Considering the learning methods based on neural net-
works, Dong et al. obtained inspiration from the sparse
coding method in [1], and they were the first to put forward
a kind of classic (LR) method for the end of the (HR)
SRCNN super-resolution convolutional neural network
algorithm. The traditional SR method is integrated into a
convolutional neural network learning model, which greatly
simplifies the SR workflow. The image was amplified to the
target size through interpolation, and then feature extraction,
nonlinear mapping and feature reconstruction were carried
out through the three-layer convolutional neural network
to achieve end-to-end image reconstruction. The SRCNN
has a simple structure, easy convergence and low com-
putational complexity. Compared with the traditional SR
algorithm, the SRCNN has been greatly improved. How-
ever, the SRCNN’s single-channel training cannot meet the
requirements of higher color and precision. According to
the characteristics of the convolutional neural network, the
single-channel input can only obtain part of the texture
information and color features of the image, and only multi-
channel input can be used for network training to obtain more
information and color features. To solve the above problems,
this paper proposes a convolutional neural network algorithm
based on color features. The algorithm improves the input
channel based on the SRCNN. The original Y channel input
was improved to RGB multichannel input training, and then
the output images were fused to extract more color features
and high-frequency information to achieve better reconstruc-
tion of high-resolution images.

The structure of this paper is as follows: Section 1 briefly
introduces the research methods, the advantages and disad-
vantages of image superresolution technology and the algo-
rithm in this paper. Section 2 introduces some methods
and techniques used in this paper. Section 3 describes the
improved algorithm in detail. Section 4 presents the exper-
iments and an analysis of the improved algorithm. Finally,
the conclusion is given.
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Il. RELATED WORK

To the best of our knowledge, there are no researchers
focused on studying underwater image high definition dis-
plays. We discuss the background of the related works in the
following sections.

A. MULTILAYER PERCEPTION

The multilayer perceptron [21]-[24] (MLP) is also known as

an ANN (artificial neural network). In addition to input and

output layers, it can have multiple hidden layers in the middle.
The obtained result is processed by a predefined activation

function, f, which can be described as follows:

Yy =f_ Wy Xi + b)) (1

The most common activation function used in a perceptron
is the hyperbolic tangent function, tanh, which is expressed as
¢4 — o4
tanh (@) = —— 2)
et e 4
The training of the ANN adjusts the weight and bias values
to obtain the desired output according to the input combina-
tions.

B. THE SRCNN
The combination of image superresolution and convolutional
neural networks and the integration of traditional SR methods
into a deep learning model can effectively simplify the neural
network and reduce the number of parameters for the neu-
ral network. The convolutional neural network is applied to
the superresolution image. By learning the feature mapping
relationship between the input and output, the neural network
realizes the image reconstruction process from the low reso-
lution to high resolution. The SRCNN network structure is
constructed by a three-layer convolutional neural network,
which is composed of image block feature extraction and rep-
resentation, and also nonlinear mapping and reconstruction of
high-resolution images.

In the first layer, feature extraction and representation is
applied to the image blocks from the original image, and the
image blocks extracted by convolution can be expressed as:

F1(Y) = max(0, W,*Y + By) A3)

where Y represents the original high-resolution image after
interpolation amplification, W; and B; represent the convo-
lution kernel and deviation, respectively and * represents the
convolution operation. The size of Wy is n; x ¢ X fi x f1, {1
is the size of the filter in the first layer; c is the number of
channels contained in the input image; and n; is the number
of convolution kernels in the first layer. The convolution
kernel, W1, is convolved with the original image, Y, and then
the deviation, By, is added. Then, the characteristic graph
obtained by the convolution is processed by the activation
function, RELU. The RELU activation function takes 0 and
the maximum value in the convolution result as the final
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value. This layer outputs the n1 dimensional feature mapping
as the input of the second layer.

The second layer of nonlinear mapping is as follows: the
output n; dimensional feature mapping of the first layer is
the nonlinear mapping into an ny dimensional feature space,
that is, it is a mapping from low-resolution space to high-
resolution space, which can be expressed as:

F>(Y) = max(0, W,*F((Y) + By) 4)

where W, and B, represent the convolution kernel and devi-
ation, respectively. The size of W, is n1 x ny X o X fo; f>
is the size of the second layer filter; and n; is the number of
convolution kernels in the second layer. This layer outputs an
ny dimensional feature mapping as an input to the third layer.

For the reconstruction of high-resolution images in the
third layer, a convolution is conducted on the output high-
resolution image blocks of the second layer to generate
images that are close to the original high-resolution images,
which can be expressed as:

F(Y) = max(0, W3 x Fo(Y) + B3) 4)

where W3 and B3 represent the convolution kernel and devi-
ation, respectively. The size of W3 is ¢ X ny X f3 X f3, and f3
represents the size of the filter in the third layer.

The whole training process of the SRCNN involves the
estimation and optimization of the parameters. The mean
square error between the generated image and the original
high-resolution image is calculated to minimize the error and
obtain the optimal solution. The mean square is expressed as:

1 n
L) = ;2||F<Yi;e>—xi||2 ©)
=
where 7 is the number of training samples. The SRCNN uses
the standard back-propagation stochastic gradient descent
method to minimize the loss function.

Ill. THE PROPOSED METHOD

To improve upon the abovementioned method, we propose a
multilayer perceptron-based underwater image enhancement
method, followed by a color feature-based superresolution
method.

A. MULTILAYER PERCEPTRON-BASED ENHANCEMENT
This paper proposes an improved scheme for underwater
image enhancement, which is divided into two steps. The first
step is image defogging. The second step enhances the image
details and improves the dynamic range.

First, the Retinex algorithm is used to initially defog the
image. The formulas are shown in Eqgs. (4) and (5). Second,
due to the low contrast of underwater images, the image
brightness was adjusted by a gamma correction to make the
image more natural.

The preprocessed image can be obtained from the follow-
ing equation:

r () =1, )Y (N
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FIGURE 1. Flowchart of the SRCNN.

FIGURE 2. Flowchart of the proposed method.

where r(x, y) is the image enhanced with the Retinex algo-
rithm and ’ (x, y) is the Gamma corrected map.

Finally, a dark channel prior is used, and the contrast stretch
technique is applied to improve the dynamic range of the
image.

Ix,y) = M +A ®)
’ max(’ (x, ) , fo)

where t (x,y) = MLP[t (x,y)],t(x,y) is the transmission
map of the dark channel of r (x, y).

B. COLOR FEATURE-BASED SUPERRESOLUTION

Youm et al. [11] proposed that training that increases the
number of input channels can extract more image features,
obtain more high-frequency information and reconstruct
high-resolution images better. The method in this paper is
based on an SRCNN composed of three convolution layers to
improve the input image. The method in this paper is divided
into three steps. The first step is to divide the low-resolution
image into three separate images with three RGB channels.
In the second step, the three images are trained by a convolu-
tional neural network to obtain three output images. In the
third step, the obtained three images are fused to obtain
the final high-resolution image reconstruction. The SRCNN
flowchart for this paper is shown in Figure 1.

The first step is channel processing. The original image
is divided into R, G and B channels to extract different
information from each channel. The segmentation processing
formula can be expressed as:

F; = image(F;) (i=R,G,B) &)
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In the above formula, i represents the three channels R,
G and B, and F represent the input image of the segmented
original image as the input image of the neural network after
processing.

The second step is the convolutional neural network train-
ing. The images of the three different channels are trained by
a convolutional neural network. The training formula can be
expressed as:

Fi = max(0, W; « Fij_1y + B;) (i=1,2,3) (10)

In the above formula, W; is the convolution kernel of each
layer in the convolutional neural network, B; is the bias of
each layer in the convolutional neural network, and Fj-1) is
the output of the color channel after the fifth convolution.

The third step is image fusion, where the output image of
the second step is fused. The fusion formula can be expressed
as:

F = cat(Fg, Fg, Fp) (11)

To obtain the low-resolution image, Fi, the subimage after
feature extraction of the original image is first sampled after
being blurred by Gaussian filtering, and then bicubic interpo-
lation (BI) is used to enlarge to the image to same size as the
atomic image.

As mentioned above, more color features and high-
frequency information can be obtained by using RGB
multi-channels as the input image, which is more effec-
tive in SR reconstruction. Compared with other algorithms,
the SRCNN has obvious advantages in terms of the evaluation
indexes such as the peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM), and its operating speed is fast.
However, the input image is only a single Y channel image,
and the extracted image features are limited, which leads to
problems such as unclear edges and textures.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. VISUAL ANALYSIS

Superresolution images have a profound importance in the
field of marine ecology since studying the ocean is of great
significance for disaster prevention, marine resource devel-
opment and underwater environment monitoring; thus, it is
important to research the improvement of underwater images.
In obtaining underwater image information, unlike the char-
acteristics of ground images, the underwater optical image
is usually affected by low illumination, high turbidity scat-
tering and wavelength absorption, of which scattering and
color change are the two main sources of underwater image
distortion. Scattering is caused by large suspended parti-
cles, such as when turbid water contains a large number of
particles. The color change or color distortion corresponds
to the different degrees of light attenuation from different
wavelengths when they propagate in water, which makes
the underwater environment appear bluish. Many scholars
have made numerous contributions in this field. For example,
Serikawa and Lu [26] and Lu et al. [27], [28] proposed an
optical field imaging method to solve the underwater imaging
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Zhang et al. [28] Ours

FIGURE 3. Comparisons of underwater images enhancement results of different methods.

problem under the influence of low illumination, high tur-
bidity scattering and wavelength absorption for underwater
optical images and used a deep convolutional neural network
for depth estimation to solve the descattering problem of
optical field images. In addition, a color correction method
based on spectral features is proposed for color restoration.
A new underwater model is proposed to compensate for the
attenuation error along the propagation path, and a fast joint
triangulation filter algorithm is proposed for the study of
image defogging and underwater image enhancement. The
enhanced images exhibit a reduced noise level, better expo-
sure to dark areas, improved overall contrast, and signifi-
cantly enhanced details and edges. At the same time, the cog-
nitive ocean network (CONet) architecture and an important
and useful demonstration of applying CONet were proposed
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and described in detail in terms of the integration of the ocean
network and artificial intelligence, and the development trend
of CONet research in the future was prospected. Therefore,
to verify the universality of the method in this paper, some
underwater images are selected for the test with an upsam-
pling factor of 3.

In the first stage, to test the superiority of the improved
method, it is compared with the methods in [24] and [25].
As shown in Figure 3, the method in [24] does not realize
image defogging, and there is a large amount of haze in the
image. The method in [25] has a good effect in defogging, but
the details around the characters are blurred and the details are
lost.

From Figure 3, the contrast of the original image is lower
than that of the other images. The method in [24] improved

83725



IEEE Access

Y. Li et al.: Underwater Image High Definition Display Using the Multilayer Perceptron and Color Feature-Based SRCNN

Original Input Bilinear Interpolation
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SRCNN[1] Ours

(©)

FIGURE 4. Comparisons of underwater images super resolution results (3x) of different methods.

the image brightness, but the details are fuzzy. For exam-
ple, the darker area in Figure 3 cannot show the fish, and
the position of [24] in Figure 3 is fuzzier than that in this
paper. From the perspective of images 4 and 5, the defogging
effect of [24] is relatively uniform, and the object cannot
be highlighted. The image enhanced in [25] has a certain
color difference, and some areas are lighter in color, which
is almost the same as the surrounding color and leads to the
loss of details. From the position of the red box in the picture,
the face of the Buddha becomes gradually clear, and the color
has been restored.

Figure 4 shows the visual test results of the underwater
image. As shown in Figure 4, compared with the bilin-
ear interpolation (BI) technique, the image reconstructed
by our method is clearer and produces more color features
and high-frequency information. This is because our method
learns more about the high frequency component from the
input of multiple different channels than from the input of a
single channel.

B. IMAGE QUALITY EVALUATION
To measure the performance of the different methods,
the underwater image quality measure, UIQM, in the
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literature [29] has been adopted. The method comprises
three attribute measures, namely, the underwater image col-
orfulness measure (UICM), the underwater image sharpness
measure (UISM), and the underwater image contrast measure
(UIConM).

UICM =—0.0268,/ 13 pg+1Z y5+0.5186,/02 no+02 v

(12)

where RG =R — G, YB =¥—B. The asymmetric alpha-
. K—Ty .

trimmed mean, (y,RG = m Zi:TaLI—ei-l Intensitygg ;-

The first-order statistic mean value, i, represents the chromi-
nance intensity. A mean value that is closer to zero in
the RG — YB opponent color component implies a better

white balance. The second-order statistic variance, 051 RG =

% ;V:l (Intensitygg , — ua,RG)z, demonstrates the pixel

activity within each color component.

3
UISM = Z)»CEME(gmyscale edge,) (13)
c=1
2 L& Imax k.1
EME = —— log( 24020 (14)
kikz ZZ ¢ Tin k1

=1 k=1

VOLUME 7, 2019



Y. Li et al.: Underwater Image High Definition Display Using the Multilayer Perceptron and Color Feature-Based SRCNN

IEEE Access

(a) Input image (b) Enhanced result

FIGURE 5. Whole processing of the proposed underwater image high

definition display system.

TABLE 1. UIQM values of figure 3.

(c) Super resolved result

No. Salazer [24] | Zhang [25] Ours

Fig. 3 (a) 6.3313 8.6330 11.7191
Fig. 3 (b) 5.0291 7.3710 10.8330
Fig. 3 (c) 4.1688 8.7299 10.2491
Fig. 3 (d) 9.5657 10.7509 14.3061
Fig. 3 (e) 12.3144 10.4878 13.9797

TABLE 2. PSNR/SSIM values of figure 4.

No. BI SRCNN[1] | Ours

Fig. 4 (a) 32.38/0.846 | 33.08/0.911 | 33.10/0.912
Fig. 4 (b) 34.83/0.896 | 35.73/0.945 | 35.82/0.946
Fig. 4 (c) 26.01/0.697 | 26.65/0.840 | 26.70/0.842

Tmax k.1

where the image is divided into kjk> blocks, Ay indi-
cates the relative contrast ratio within each block, and the
EME measures in each RGB color component are combined
linearly with coefficients A., where Ag = 0.299, A =
0.587 and Ap = 0.114 are used according to the relative
visual responses of the red, green, and blue channels.

UIConM = logAMEE(Intensity) (15)
The logAMEE is
ki k
1 I, L
IogAMEE = — @ Y ) Jnevkd O inkt

kika = = Imax.k.1 © Dnin k.1

Imax,k,l S Imin,k,l

xlog( ) (16)

Imax,k,l ® Imin,k,l

where an image is divided into kjk> blocks, and®, ® and
are the PLIP operation, introduces the entropy-like oper-
ation to the traditional Agaian measure of enhancement
by entropy(AMEE), which is formulated as the average
Michaelson contrast in image local regions [29].

The overall underwater image quality measure is then
given by

UIQM =c1 x UICM +cy x UISM + c3 x UIConM  (17)

where, ¢, ¢, c3 are application-dependent parameters.

As seen from Table 1, the improved algorithm proposed
in this paper is better than that of Salazar-Colores [24] and
Zhanget al. [25] in the measurement of image color, sharp-
ness and contrast. However, for some images, the results were
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not as good as those of the two comparison methods. For
example, the sharpness of Figure 3(b) is not as good as that of
Salazar’s method, and the contrast of Figure 3(c) is lower than
that of Zhang’s method. Our improved method has advan-
tages in restoring the color loss. The color restoration effect
of all the images is better than that of the other two methods.
The color restoration is more natural and conforms to human
vision. Table 2 shows the data test results of the underwater
images in terms of PSNR and SSIM. From the results of
Table 2, we can see that the method in this paper has better
performance than the BI and SRCNN approaches in terms
of PSNR and SSIM, and the reconstructed high-resolution
image details and edges have better relative effects.

V. CONCLUSION

This paper presented an improved image enhancement
method and an image superresolution method. The proposed
enhancement method employed a combination of the Retinex
algorithm and a neural network to enhance the details of
the image and restore the image color. According to the
underwater image quality measure (UIQM), the improved
algorithm enhances the local details and contrast of the
underwater image and restores the image color. We also
presented an improved color feature-based image superres-
olution algorithm. Referring to the network structure of an
SRCNN, a convolutional neural network model that is trained
on the R, G and B channels of an image is adopted, and the
output images are fused to obtain clear textures and edge
effects under the premise of ensuring the PSNR indexes.
Although the algorithm proposed in this paper has a good
reconstruction effect on most images, its advantages are not
obvious for images with nonobvious edges and irregular tex-
tures. Simultaneously, a simple cat-operation was used for the
three-channel image fusion. The next step is to try to classify
and reconstruct the edges and textures to generate images
with clear edges and rich textures and further study image
fusion.
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