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ABSTRACT In recent years, various deep learning-based methods have been applied in hyperspectral
image (HSI) classification. Among them, spectral-spatial approaches have demonstrated their power to yield
high accuracies. However, these methods tend to be computationally expensive. Specifically, two classic
ways to develop spectral-spatial approaches both suffer from significant limitations in cost reduction: multi-
channel networks need a large parameter scale, and 3-D filters are inherent of computational complexity.
To establish a cost-effective architecture for both training cost and parameter scale, while maintaining the
high accuracy of spectral-spatial techniques, an end-to-end spectral-spatial dual-channel dense network
(SSDC-DenseNet) is proposed. To explore high-level features, the densely connected structure is introduced
to enable deeper network. Furthermore, a 2-D deep dual channel network is applied to replace the expensive
3-D filters to reduce the model scale. The experiments were conducted on three popular datasets: the Indian
Pines dataset, University of Pavia dataset, and Salinas dataset. The results demonstrate the competitive
performance of the proposed SSDC-DenseNet with respect to classification performance and computational
cost compared with other state-of-the-art DL-based methods while obtaining a remarkable reduction of
computational cost.

INDEX TERMS Deep learning, densely connected convolutional neural network, feature extraction,
hyperspectral image classification, multi-scale filter bank.

I. INTRODUCTION
Hyperspectral images (HSIs) are characterized by hundreds
of narrow bands, spanning from the visible to infrared spec-
trum. The detailed spectral information increases the likeli-
hood of discriminating ground objects of interest.

As hyperspectral remote sensors become increasingly
powerful, the dimension of remote sensing data continually
increases. Simultaneously, the number of publicly available
HSI datasets continues to grow. The above improvements
make the analysis of HSI data a critical technique in practi-
cal applications, such as precision agriculture, environmental
monitoring [1], [2] and ocean research [3], [4]

However, because of the growing complexity of spectral
information and the scarcity of labeled training samples,
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HSI classification, which refers to pixel-wise labeling of the
spectrum, becomes more meaningful and challenging.

Favuel et al. [5] concluded that there are two major chal-
lenges in HSI classification: spectral dimensionality and the
need for spectral-spatial classifiers. Extensive efforts have
been made in this area, including feature selection [6], [7]
and extraction techniques, such as Bayesian models [8], prin-
cipal component analysis (PCA) [9], independent component
analysis [10] and manifold learning [11], in addition to clas-
sifiers, such as support vector machines [12] and decision
trees [13]. However, inappropriate dimensionality reduction
in the spectral domain may fail to fully exploit the discrimi-
native features, and conventional classifiers, which typically
consider HSI as a list of wavelength measurements without
spatial organization, cannot make the classification accuracy
acceptable. Therefore, more effectivemethods to characterize
spectral-spatial signatures should be developed.
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In recent decades, deep learning (DL) methods have
become popular in the field of machine learning to solve
the image classification problem [14], [15], and have out-
performed many traditional classification models. DL pro-
vides an end-to-end approach that can extract features and
classify simultaneously without a handcrafted feature extrac-
tor. Additionally, DL makes it possible to learn parameters
automatically and hierarchically to extract discriminative and
robust features. This breakthrough regarding DL has encour-
aged researchers to adopt it into HSI classification. Stacked
autoencoders (SAEs) [16], deep belief networks [17], [18]
and convolutional neural networks (CNNs) [19]–[21] have
been used in this field. However, some limitations have
been demonstrated for parts of these methods. For example,
the stacked autoencoders with logistic regression (SAE-LR)
[22] based method requires PCA, which is quite time-
consuming, to extract features before classification. Because
CNNs use fewer parameters than fully connected (FC) net-
works to exploit the nonlinear features of HSI, they can
efficiently alleviate the overfitting problem caused by limited
training samples.

As mentioned by Favuel et al. [5], the first challenge
is the large number of spectral bands. Recently, multiple
CNN-based methods have been focusing on deepening the
network to extract high-level features, which aggravates the
need for alleviating the overfitting problem. For instance,
inspired by the deep residual network (ResNet) [23], which
proposed skip connections to facilitate the propagation of
gradients. Zhong et al. [24] introduced ResNet for HSI clas-
sification. Compared with traditional CNN models with the
same number of layers, ResNet achieved better performance
for HSI classification. However, it should be noted that
Zhong et al.’s model still suffers from performance degra-
dation when it goes deeper. Moreover, transferring features
strongly depends on the network design, particularly where
and how to insert the skip connections.

In the meantime, attention was paid on the second chal-
lenge: the design of effective spectral-spatial classifiers. For
the CNN-based methods, in the early stage, efforts were
mainly made in the spectral domain. For examples, in 2015,
Hu et al. [19] applied a CNN to extract spectral features, and
the results outperformed those of an SVM. Soon, attention
was drawn to the spatial domain. Slavkovikj et al. [20] con-
structed a CNN architecture that took neighboring pixels into
consideration. Their work demonstrated that spatial features
are great complements to spectral features. In fact, by training
the network with high-order data (three-order tensor), a CNN
has the inherent potential to simultaneously learn spatial
and spectral features. To further use detailed spectral-spatial
information, numerous types of CNN-based classification
models have been proposed. For example, Yang et al. [25]
proposed a two-channel deep CNN (two-CNN). Similarly,
Chen et al. [26] presented a regularized three-dimensional
(3D) CNN-based feature extraction model. In 2017, contex-
tual CNN [27] with a multi-scale filter bank was proposed
to use spectral-spatial information. Moreover, attempts have

been made in designing effective 3D spectral-spatial mod-
els. Wang et al. [28] proposed a fast dense spectral-spatial
convolution (FDSSC) framework with a dense structure [29].
In [28], the concatenations of the feature-maps fully take
advantage of the extracted features from the previous layers
and efficiently avoid gradient vanishing. In spite of high
accuracy, FDSSC is of a large scale and requires high com-
putational resources. Although these spectral-spatial models
have demonstrated great powers for HSI classification, espe-
cially for deep networks which extract high-level features
from a great number of bands, the model scale is huge and
will significantly extend the training time. To circumvent this
obstacle while maintaining the high accuracy, in this paper,
we aim at designing a cost-effective deep model for HSI
classification.

There are two popular ways to exploit spectral-spatial fea-
tures: multi-channel networks and 3D filters. However, both
methods could suffer from inevitable limitations of computa-
tional cost. Many of the multi-channel networks [27], [30]
work on widening and deepening the network to exploit
high-level features, which leads to a large parameter scale
that may cause the overfitting problem and preventing the
network from further accuracy improvement. For 3D net-
works, the inherent computational complexity of 3D filters
will heavily enlarge the number of parameters and lead to a
huge model scale with considerable training cost.

To deal with problems mentioned above, in this paper,
we propose a spectral-spatial dual-channel dense network
(SSDC-DenseNet). Our attempts are mainly made in two
aspects: (1) dense connections are adopted in both dual-
channel part and fusion part, which facilitates the information
flow to effectively learn high-level features, as well as allevi-
ate the overfitting problem; and (2) 2D filters are utilized to
replace 3D ones for model scale reduction.

The remainder of this paper is organized as follows: In
Section II, we provide a description of the proposed frame-
work. In Section III, we present the experiments and anal-
ysis. We first conduct and discuss extensive experiments to
compare it with several state-of-the-art methods on three real-
world HSI datasets. We further analyze the effectiveness on
the cost of 2D dense modules compared to 3D ones. Finally,
we draw conclusions in Section IV.

II. PROPOSED FRAMEWORK
In this section, we first provide an overview of the proposed
SSDC-DenseNet architecture, and then elaborate on the data
preprocessing strategy and the structure of each block. The
input data size of the network is p × p × N , where p is the
patch size of the input image and N is its number of channels.
The output is a 1×C vector, whereC is the number of classes.
With the help of the softmax classifier, the network performs
pixel-wise classification in an end-to-end manner.

A. OVERVIEW OF THE ARCHITECTURE
The network structure of SSDC-DenseNet is illustrated
in Fig. 1. It is composed of three cascaded blocks: a spectral
feature extraction block, joint spectral-spatial feature learning
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FIGURE 1. Overall structure of the proposed SSDC-DenseNet.

block using amulti-scale filter bank, and feature fusion block.
Here we take the input as IN dataset with 7×7 patch to illus-
trate the size of feature maps. Note that the kernel numbers
per layer in Block 2 vary for different datasets, which will be
further illustrated in Section III.C and Section III.E.

B. DATA PREPROCESSING
To take advantage of both spectral and spatial information,
we feed the network with a window containing a small neigh-
borhood of pixels. The desired label for the network is the
class of the centered pixel. To do this, we first split the input
image into n patches of size, where p is the width and height
of the input vector and N is the total number of bands in
the original hyperspectral image. If the pixels on the border
cannot be attributed to any neighborhood, the p/2 pixels
on the border are mirrored outward to create corresponding
patches.

C. BLOCK 1: SPECTRAL FEATURE EXTRACTION
Due to the importance of spectral information for HSIs, spec-
tral and spectral-spatial information are extracted jointly in
two blocks in the proposed network.

In Block 1, a convolution layer is used, followed by a
rectified linear unit (ReLU) [30]. This configuration serves
to limit the number of feature maps sent to Block 2 in a
reasonable range through the setting of kernel number, as well
as retain the spatial information of HSIs while exploiting the
spectral information.

Let N k be the number of filters in layer k and Xk
j denote

the jth input feature tensor; ∗ is the convolution operator;
and Hk+1

i and bk+1i are the ith filter and bias in layer k + 1,
respectively. Output Xk+1

i of the convolution operation is

Xk+1
i =

N k∑
j=1

Xk
j ∗H

k+1
i + bk+1i (1)

The ReLU function is defined as

Z̃ = max {0,Z} , (2)

where Z is the input tensor.
The filter size in this layer is set to 1 × 1 × N , and

the 1 × 1 spatial size is set to exploit spectral information.
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After Block 1, the number of the output channels (spectral
bands) will be changed according to the number of kernels,
while the value of each channels is generated from all the
input channels as follows

Xk+1
i =

N k∑
j=1

Xk
j w

k+1
i + bk+1i (3)

Equation (3) explains the spectral feature extraction operation
of 1× 1 spatial convolution. The spectral bands equal to the
input channels. wk+1i is the coefficient of the corresponding
1× 1 filter. We can see that the value of each output channel
is generated from all the input channels while the number
of output channels is determined by the number of kernels.
Meanwhile, due to the usage of 1 × 1 filters, the whole
procedure of convolution can achieve the same effect as fully
connected layer [27] and the computation is only along the
spectral dimension (it also can be seen as convolving with a
1×1×N filter andN denotes the number of bands), so Block
1 can extract spectral features.

Then, the network is fed with discriminative spectral fea-
tures and well-preserved spatial features, which makes the
subsequent spectral-spatial feature learning process easier.

After the feature extraction, features are sent to
Block 2, which is a multi-scale dual-channel convolutional
sub-network.

D. BLOCK 2: MULTI-SCALE JOINT SPECTRAL-SPATIAL
FEATURE LEARNING
As mentioned in Section I, to avoid the expensive compu-
tational cost of 3D filters, 2D filters are potential substitu-
tion. However, the performances of 2D networks are often
weaker for jointly spectral-spatial features excavation than
3D ones. Hence, to balance the computational cost and accu-
racy, we construct a 2D dual-channel component to learn the
spectral-spatial features simultaneously. In Block 2, the fea-
ture maps are first sent to a multi-scale dual-channel convo-
lutional sub-network, and then concatenated for Block 3.

Block 2 is inspired by GoogLeNet proposed in [31]. In this
sub-network, the information is parallelly sent to convolu-
tional filters with different scales. Although GoogLeNet is
effective in multiple computer vision tasks, some adaptations
have to be made to achieve desirable performance for HSI
characteristics. Two modifications are committed to the orig-
inal GoogLeNet.

The first modification is the filter size: 1×1 convolutional
filters are adopted to focus on the spectral features while
maintaining the abundant spatial information.

Additionally, 3 × 3 filters are adopted to exploit spatial
features. From (1), we can see that the 3 × 3 convolution
operation can addresses the spatial correlation of neighboring
pixels.

The second modification is the depth of the filter bank.
Deep networks are crucial to extract high-level features of
HSI. However, considering the lack of labeled training data,
dense blocks are used instead of simply stacked convolutional
layers. The general structure of a dense block with three

FIGURE 2. General structure of a dense block with three layers.

layers is shown in Fig. 2. All the feature maps produced by
the preceding (l−1) layers are combined using concatenation
and fed into the lth layer. This procedure can be formulated
as [29]

X l = Hl
([
X0,X1, . . . ,X l−1

])
, l ∈ N+ (4)

where
[
X0,X1, . . . ,X l−1

]
denotes the concatenation of the

output feature maps after layers 0, 1, . . . , l − 1. In the
proposed SSDC-DenseNet, Hl (·) is the composite function
defined as four consecutive operations: batch normalization
(BN) [32], ReLU, convolution and dropout [14].

BN is illustrated as [32]

X̂
k
=
Xk
− E

(
Xk)

VAR
(
Xk) (5)

where Xk denotes the kth layer’s batch feature maps and
E
(
Xk) denotes the expectation of Xk, Similarly, VAR

(
Xk)

is the variance of Xk and X̂
k
is the normalization result of

the input tensor. This strategy enables deep neural networks
to converge more smoothly.

Subsequently, the BN results are convolved with 1 × 1 or
3× 3 after applying ReLU as the activation function.

To further address the overfitting problem, we add a
dropout operation after ReLU. This operation sets the output
maps generated by some neurons to zero with a specific
probability. In this paper, the dropout rate is set to 0.5, which
is commonly used in DL models. Subsequently, an average
pooling layer is used with the kernel size 3 and the stride 2.

In the end, the generated feature maps are concatenated
and fed to Block 3, which finally fuses the extracted spectral-
spatial features.

E. BLOCK 3: FEATURE FUSION
In this block, the results of spectral and spatial learning are
concatenated as input followed by a convolution layer and
dense block, which is the same as the process for Block 2.

At the end of the dense block, global average pooling layers
are inserted. The concept of global average pooling was first
proposed in [33]. It was originally designed to replace the
traditional FC layer in CNN. The average of the feature maps
is calculated in this layer.

The global average pooling layer contains a much smaller
number of parameters than FC layers and can retain
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TABLE 1. Land cover classes with their respective sample numbers for
the IN dataset.

TABLE 2. Land cover classes with their respective sample numbers for
the UP dataset.

TABLE 3. Land cover classes with their respective sample numbers for
the Salinas dataset.

remarkable localization ability for a network. It is efficient
to consider two main problems in HSI classification: the
overfitting phenomenon caused by the large model scale with
limited training data, and the effective extraction for both
spectral and spatial features.

After the FC layer, a softmax layer is used to obtain the
final classification result.

TABLE 4. Classification accuracy (%) and K measure comparison of the
proposed SSDC-DenseNet and other DL methods: (a) IN, (b) UP and (c)
Salinas.

The main differences between the proposed SSDC-
DenseNet and FDSSC are as follows:

1. FDSSC uses two different dense blocks (a spectral
block followed by a spatial block) to extract features
and spectral features sequentially, which makes the
network require a specific depth for two-stage learning.
This part may fail to extract features effectively, partic-
ularly for the second block, where the original infor-
mation may have been altered by previous operations.
To circumvent this obstacle, a dual-channel architec-
ture is adopted to learn spectral and spatial features
jointly.

2. FDSSC directly sends the feature maps generated by
its second block to an average pooling layer and per-
forms the softmax regression. Before the regression
layer, a dense block is inserted to further extract the fea-
tures from the results of joint learning in the proposed
SSDC-DenseNet.

3. To reduce the network complexity and amount of com-
putational resources of FDSSC, 3D filters are replaced
by two-dimensional filters in SSDC-DenseNet. Appro-
priate operations are applied for the kernel sizes of
filters to implement our strategy.

III. EXPERIMENTS AND ANALYSIS
In this section, we provide a detailed description of the
datasets and configurations of the experiments. To validate
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TABLE 5. Classification accuracy (%) of each class: (a) IN, (b) UP and (c) Salinas.
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TABLE 6. Time consumption of different DL methods for the three
datasets: (a) IN, (b) UP and (c) Salinas.

the performance of the proposed SSDC-DenseNet model,
several state-of-the-art DL-based methods, SAE-LR [22],
Conv-4 [24], ResNet-4 [24], contextual CNN [27] and an
FDSSC framework [28], are compared. The code of SAE-LR
was offered by its original contributors and other methods
were carefully developed by the authors according to the
original papers. We also discuss the influence of different
network architectures.

A. DATASET DESCRIPTION
We evaluated the performance of the proposed network on
three publicly available HSI datasets: the Indian Pines (IN)
dataset, University of Pavia (UP) dataset and Salinas dataset.
The numbers of samples of each class in each dataset are
shown in Table 1, Table 2 and Table 3, respectively. By testing
the aforementioned methods with various datasets, we were
able to explore the generalization ability of these models and
provide convincing results.

The IN dataset was gathered by the airborne visible/
infrared imaging spectrometer (AVIRIS) in 1992 fromNorth-
west Indiana, and includes 16 vegetation classes. It has
145 × 145 pixels, with a resolution of 20 m by pixel. It orig-
inally had 220 bands, but 20 bands that were corrupted by
water absorption effects were discarded. Hence, we used the
remaining 200 bands ranging from 400 to 2500 nm to test the
aforementioned methods.

TABLE 7. Number of parameters of different methods based on CNN.

The UP dataset contains nine classes and consists of
610 × 340 pixels, with 103 spectral bands ranging from
0.43 to 0.86 µm. It has a spatial resolution of 1.3 m.

The Salinas dataset is characterized by a high spatial reso-
lution of 3.7 m, and has 512 × 217 pixels with 224 spectral
bands. Similar to the IN dataset, 20 water absorption bands
were discarded. The dataset contains 16 classes.

B. EXPERIMENTAL SETUP
We tested our network with patch sizes {5 × 5, 7 × 7,
9 × 9, 11 × 11} and found that the patch size of 7 × 7 was
the most suitable to yield satisfactory performance. In the
training process, with the batch size of 32, we adopted the
Adam [34] optimizer tominimize the cross-entropy loss func-
tion. The initial learning rate was set to 0.0003, and reduced
to 1/10 after 200 epochs. After another 100 epochs, it was
reduced to 1/100 of the original learning rate.

All the training and testing results were obtained on the
same computer, with the configuration of 16 GB of memory,
NVIDIA GeForce GTX 1060 3GB and Intel i7 7700.

In our experiments, overall accuracy (OA), average
accuracy (AA) and the Kappa coefficient (K) were chosen
to evaluate the classification performance of the methods.
To provide a statistical evaluation, each experiment was
repeated 10 times, and the mean and standard deviation were
reported.

We used two different ratios for ours and other com-
pared methods. Each time, the training, validation and testing
data was divided randomly according to the predetermined
ratio. The splitting ratios for the training, validation and
testing datasets were 15%:10%:75% for the IN dataset and
5%:15%:80% for both the UP and Salinas datasets, to demon-
strate the classification performance.

C. COMPARISON WITH OTHER METHODS
To make sure every method could show its best perfor-
mance, a suitable input data size should be carefully selected.
We tested our model with different input spatial size and
find that 7 × 7 could be the best for all datasets. Detailed
information could be seen in Section III.D. For FDSSC,
the experimental results show that the performance reached
the peak when the patch size was 7 × 7, and then began to
fall, which agrees with the trends illustrated in [28]. Hence,
the input data for all the experiments on the three datasets
were 7× 7× b volumes, where b is the number of bands. For
all methods, except SAE-LR, the division of training, valida-
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FIGURE 3. IN dataset: (a) false-color image, (b) ground truth image, and classification maps of (c) SAE-LR, (d) Conv-4,
(e) ResNet-4, (f) contextual CNN, (g) FDSSC and (h) SSDC-DenseNet.

FIGURE 4. UP dataset: (a) false-color image, (b) ground truth image, and classification maps of (c) SAE-LR, (d) Conv-4, (e) ResNet-4,
(f) contextual CNN, (g) FDSSC and (h) SSDC-DenseNet.

tion and testing data was same as that for SSDC-DenseNet.
SAE-LR was constructed and trained according to the rec-
ommendation in [22] using the splitting ratio of 6:2:2 for all
three datasets.

For the IN dataset, we found that SAE-LR trained for the
KSC dataset in [22] was the most suitable, whereas SAE-LR
trained for the UP dataset in [22] was the best for the UP
and Salinas datasets in our experiments. Hence, we set the
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FIGURE 5. Salinas dataset: (a) false-color image, (b) ground truth image, and classification maps of (c)
SAE-LR, (d) Conv-4, (e) ResNet-4, (f) contextual CNN, (g) FDSSC and (h) SSDC-DenseNet.

best configuration of SAE-LR for each dataset. Moreover,
for all the models proposed in [24], Conv-4 and ResNet-4
achieved the best performance for the three datasets. Sim-
ilarly, to obtain better performance, contextual CNN with
128 kernels in each layer was chosen for the IN dataset, and
192 kernels for the UP and Salinas datasets. After testing
different configurations of SSDC-DenseNet in Section III.E,
we finally chose three layers in each dense block with 48,
32 and 16 kernels per layer for the IN, UP and Salinas
datasets, respectively.

In each experiment, the training data was selected ran-
domly to demonstrate convincing results. For all methods,
except SAE-LR, which is not CNN-based, we set the same
batch size and learning rate for all the experiments for a fair
comparison.

Table 4 and Fig. 3 show the results of the classification
accuracies and visualized classification maps of the methods.
The best performance in each set of experiments is indicated
in bold font. Table 5 shows corresponding accuracies of the
classification maps for each class in each dataset. We can
see the superiority of our method in almost each category,
which could be well reflected in the amount of noises in the
classification maps. For the IN dataset, our network outper-
formed the other methods for OA, AA and K. Note that the

proposed SSDC-DenseNet yielded 99.47% for OA, which
was 5.35% higher than that of the SAE-LR method. For the
other state-of-the-art techniques, our model obtained 5.75%
and 0.84% higher results than 93.72% produced by CNN-4
and 98.63% by ResNet-4, respectively. It also demonstrated
a slight improvement over other methods for all the metrics.
It is worth noting that for large datasets, such as the UP
and Salinas datasets, more recognizable improvements of
our SSDC-DenseNet over FDSSC were demonstrated; the
accuracies all reached 99%. Furthermore, SSDC-DenseNet
had lower standard deviation, particularly in the case of the
larger datasets.

Regarding the computational cost, the numbers of param-
eters and the training times required by the different methods
are listed in Tables 6 and 7. Clearly, SAE-LR required the
longest time for training. Although ResNet-4 consumed less
computational cost, its test accuracies were below average.
Contextual CNN required a large number of parameters to
achieve its best performance, whereas the accuracy was also
not the best. For the 3D network FDSSC, both the number
of parameters, and times for training and testing were much
higher than those of SSDC-DenseNet, which achieved better
classification accuracy. The proposed SSDC-DenseNet had
similar training and testing times to contextual CNN, and the
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FIGURE 6. Structures of Block 2 (a)3D Spectral DenseNet (b)3D Spatial DenseNet (c)3D Spectral-Spatial DenseNet.

number of parameters was only 1/3 of those of contextual
CNN.

D. COMPARISON ON THE COST BETWEEN THE 2D AND
3D DENSE MODULES
In this section, we replaced Block 2 with a spectral fea-
tures learning dense module with 1 × 1 × 7 filters (3D
Spectral DenseNet), a spatial features learning dense module

with 3 × 3 × 1 filters (3D Spatial DenseNet) and a dual
channel spectral-spatial features learning 3D dense mod-
ule (3D Spectral-Spatial DenseNet) respectively. The details
of the structures are given in Fig. 6. The flops, training
time and OAs of different structures are given in Table 8.
These experiments were conducted on the IN datasets with
15%:10%:75% splitting ratio. It can be noticed that although
the 3D modules need more computational cost, the accuracy
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TABLE 8. Comparison on the cost between the 2D and 3D dense modules.

TABLE 9. Training time(s) of SSDC-DenseNets with different kernel
numbers per layer in Block 2.

FIGURE 7. OA(%) of SSDC-DenseNets with different kernel numbers per
layer in Block 2.

improvement is quite limited. For example, the 3D Spectral
DenseNet has twenty times larger parameter size and
flops than that of the SSDC-DenseNet, but it only yields
99.24% OA.

It can be seen that networks with 3D dense modules need
greater flops, computation power and concatenate memory
requirement than our proposed SSDC-DenseNet to achieve
competing HSI classification accuracy. We believe the cost
effectiveness of the 2D dense modules lies in the simplicity
of 2D convolution process.

E. DISCUSSION ON THE FRAMEWORK SETTINGS
In this section, we present the results of the proposed SSDC-
DenseNet for a set of configurations. The experiments were
designed mainly for two purposes: first, to search the optimal
scale of the network, and second, to observe how the network
reacts to changes of input information by adjusting the divi-
sion of training, validation set and testing set, in addition to
the size of input patches.

For the first purpose, we explored the effect of kernel
numbers and layers in dense blocks in Block 2. The default
configuration was three layers with 32 kernels per layer.
When varying the framework settings, we kept the remaining
factors unchanged.

TABLE 10. Training time(s) of SSDC-DenseNets with different numbers of
layers per dense block in Block 2.

FIGURE 8. OA(%) of SSDC-DenseNets with different numbers of layers
per dense block in Block 2.

First, we tested the SSDC-DenseNet with kernel numbers
per layer of {16, 32, 48, 64}. Table 9 shows the training times
and Fig. 7 displays the OAs for different configurations. With
the kernel numbers of 16 and 32, the Salinas and UP datasets,
respectively, achieved the best classification accuracy. When
the kernel number was 48, performance peaked for the IN
dataset.

We tested different layer numbers: {3, 4, 5}. The training
time and OAs are shown in Table 10 and Fig. 8, respectively.
We observe that the accuracy for the IN dataset kept growing
as the layer number increased. For the UP dataset, the model
with three layers achieved the highest accuracy. For the Sali-
nas dataset, four layers was the proper choice.

From the results, we observe that the IN dataset tended
to require a large model scale to achieve better accuracy,
whereas the other two datasets were more suitable for fewer
parameters. Moreover, as a trade-off between classification
performance and computational cost, we chose the configura-
tion of three layers with 48 kernels per layer for the IN dataset.
For the UP and Salinas datasets, the models with three layers
and kernel numbers of 32 and 16, respectively, were chosen.
These models were applied in the following experiments to
obtain the best performance for each dataset.
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TABLE 11. Effect of the training fraction for the three datasets: (a) IN, (b) UP and (c) Salinas.

TABLE 12. OA(%) for the three datasets with varying input spatial sizes.

Additionally, we tested the SSDC-DenseNet with different
fractions of training sets. As shown in Table 10, for the IN
dataset, we tested the training fraction {10%, 15%, 20%,
25%, 30%} and testing fraction {80%, 75%, 75%, 70%,
65%}. Considering that the UP and Salinas datasets have
more samples, the splitting ratio that we set for them was
{5%:15%:80%, 10%:15%:75%, 15%:10%:75%, 20%:5%:
75%, 25%:5%:70%}. Clearly, the proposed SSDC-DenseNet
achieved good results with a small training fraction. As the
training fraction increased, the classification accuracy tended
to grow. Additionally, we note that our network demonstrated
good robustness and generalizability with varying testing
fractions.

From Table 11, it is obvious that the accuracy increases as
the training set proportion becomes larger. Note that when
the training fraction was larger than 15%, the classifica-
tion accuracies reached 99% for the IN dataset, whereas
for the other two datasets, the accuracies all reached
99.9%. Clearly, a large training set was not necessary for
our SSDC-DenseNet. Furthermore, to balance the tradeoff
between computational cost and performance, the 15% train-
ing fraction for the IN dataset and 5% for UP and Salinas
datasets were reasonable settings.

With respect to the impact of the input patch size,
SSDC-DenseNet demonstrated robustness toward varying
numbers of input spatial sizes. We chose a set of patch sizes
to assess our network:5 × 5 × b, 7 × 7 × b, 9 × 9 × b,
11 × 11 × b, where b is the spectral number of the original

image. In Table 12, we observe that when the spatial size
became larger in a certain range, the network tended to yield
a higher accuracy, particularly for the Salinas dataset, partly
because the larger spatial size providedmore abundant spatial
information. When the spatial size was too large for the
network, the accuracy began to decrease. We set the spatial
size to 7× 7× b in our experiments.

IV. CONCLUSION
In this paper, to reduce the computational cost in spectral-
spatial approaches while maintaining the high accuracy, we
proposed a novel end-to-end SSDC-DenseNet. Extensive
experiments were conducted based on three publicly avail-
able datasets. In particular, by validating the model with
different framework configurations and varying training sam-
ples, we proved its robustness and generalization ability in
HSI classification. The proposed SSDC-DenseNet demon-
strated competitive performance compared with other DL-
basedmethods: SAE-LR, CNN, ResNet, contextual CNN and
FDSSC.

Furthermore, we observed that our model can exploit high-
level features with the effective introduction of dense blocks.
By jointly using spectral and spatial features with 2D multi-
scale filters, it is possible for SSDC-DenseNet to yield satis-
factory accuracy with fewer parameters, compared with other
methods. Moreover, the reduction of training time could be
clearly observed, particularly for large datasets. At the same
time, the proposed network has much less parameters than
various methods while keeping the high accuracy. The above
advantages enable our network to gain high accuracy with
relatively low computational cost in a spectral-spatial way.
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