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ABSTRACT Presented is a physics-based compact model for a silicon-nanopillar single-electron tran-
sistor (SET). Tunneling currents are calculated using a master equation approach with rates obtained
via the transfer Hamiltonian formalism. The quantum confinement of electrons on the quantum dot is
taken into consideration by a suitable approximation as required for a nanometer-sized device. Device
geometry and material properties enter the model directly as model parameters. Thus, this model enables the
investigation of circuits and application scenarios for specific SET technologies in dependence on geometry
and material variations. The model was implemented in HSPICE and used to simulate an inverter and a
ring oscillator to evaluate the performance of the model. Specific device characteristics for a SET with
a semiconducting quantum dot like the gate voltage threshold for the onset of current oscillations are
reproduced. Therefore, simulations with the presented model will allow the testing of the SET circuits with
more realistic assumptions concerning the device behavior compared to themuchmore abstract SET compact
models available up to now.

INDEX TERMS Circuit simulation, compact model, single electron transistors, SPICE.

I. INTRODUCTION
The miniaturization of conventional silicon CMOS electron-
ics is approaching physical limits that make it increasingly
difficult to follow the so-called More-Moore pathway. This
has increased the need to explore different device types that
offer additional advantages compared to standard CMOS
technology in terms of performance, power consumption,
or area requirements (More-Than-Moore) [1], [2]. Among
others, the single-electron transistor (SET) is considered as
a candidate for future electronics due to expected benefits for
low-power applications and for its low-area requirements.

SETs make use of a quantum dot (QD) coupled by tun-
neling contacts to source and drain electrodes. More than
one QD can be utilized as well, but this case will not be
addressed in this work. The most prominent SET feature is
the Coulomb blockade which is caused by the electrostatic
repulsion of electrons on the QD towards charge carriers on
the electrodes. Application scenarios investigated by means
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of circuit simulation include all-SET logic circuits, hybrid
SET-FET logic circuits, as well as single or few-electron
memories [3].

Due to the fundamentally different mode of operation of a
SET compared to a classical transistor like a MOSFET when
making use of the Coulomb blockade effect, the applicability
of SETs in electronic circuits must be thoroughly tested by
simulation. This requires the availability of suitable compact
models that allow fast evaluation of the current-voltage (IV)
behavior and usage in a circuit simulator for the coupling
with other circuit elements. For this purpose, various SET
compact models have been proposed [4]–[8]. Basis for most
SET compact models is the orthodox theory (reviewed e.g.
in [9]). A common assumption of all these models is the
use of a metallic quantum dot without band gap that results
in a perfectly periodic IV characteristic with respect to the
gate voltage. Quantum confinement on the QD is typically
neglected.

Experimental works on SETs with metallic QDs demon-
strate very regular oscillations for gate voltages around
VGS = 0 V [10]–[13]. This case is well covered by the
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orthodox theory and existing compact models. However,
SETs employing silicon QDs generally exhibit a threshold
behavior. Typically, gate voltages of few volts are necessary
to switch the device on. Current oscillations are observed only
for gate voltages above this threshold [14]–[17]. Some works
use a second gate with a positive voltage in order to demon-
strate current oscillations around zero gate voltage. Still, this
does not change the device behavior fundamentally but only
shifts the threshold to negative gate voltages [18], [19]. For
measurements on SETs with silicon source and drain con-
tacts, the threshold behavior could originate from depletion of
these contacts. However, the threshold for current oscillations
is also observed for metallic contacts [15] and for a small
gate contact that covers only the QD area [19]. Thus, the QD
bandgap causes a threshold behavior and a theoretical model
for description of a SET with semiconducting QD needs to
implement the off-region at low gate voltages, regardless of
the source/drain material.

Conduction electrons on a QD have discrete energy levels
due to confinement. The energy spacing of these levels on a
QD with size in the nanometer range is in a similar order than
the Coulomb blockade energy. The influence of energy states
above the ground state was observed for silicon SETs mea-
sured at low temperatures as fine structure in the IV charac-
teristics outside the coulomb diamonds [20], [21]. A compact
model completely ignoring the influence of discrete energy
states pretends a more regular behavior of the device as to be
expected experimentally. Furthermore, quantum confinement
and hence the groundstate energy is strongly dependent on the
QD size and must be respected when studying the influence
of the QD size on device and circuit properties.

The calculation of tunneling currents in orthodox theory
relies on an empirical tunneling resistance for each tunnel-
ing junction, while electrostatics is described by a set of
capacitance parameters. These parameters must be obtained
from experiment or from numerical simulations. In order to
perform device optimization or variability studies on SET
circuits, such empirical model parameters are not well suited,
as their dependence on device geometry or on material prop-
erties is unknown (see e.g. [22]). Systematic variation of
SET geometry is experimentally rarely feasible due to lim-
itations of processing technologies. Numerical simulations
of SET characteristics based on three-dimensional device
geometries and using the transfer Hamiltonian method pro-
posed by Bardeen [23] for current calculation have been
reported beforehand [24]–[27]. Such simulations are based
on the actual device geometry and material parameters and
can be used for calibration of compact model parameters.
However, if multiple device variants are to be studied this is
a time-consuming process. Thus, a SET compact model that
features material properties and device geometry directly as
model parameters could greatly improve the time needed for
variability studies and test simulations for SET circuits.

This work uses a simplified version of the transfer
Hamiltonian formalism in order to derive an analytic SET
model that is made available for circuit simulation via

FIGURE 1. Schematic drawing of the SET structure. Left: 3D image,
the front half of the all-around gate is hidden for better view of the QD.
Right: Cross section, the z-axis corresponds to the symmetry axis.

implementation in HSPICE [28]. The SET geometry is based
on a silicon nanopillar as proposed by the European Union’s
H2020 project IONS4SET [29]. Geometrical dimensions and
doping levels are available as model parameters. Quantum
confinement and the influence of energy states above the
groundstate are considered via suitable approximations. The
model and its ability to reproduce the correct trends for geo-
metric variations are demonstrated via numerical simulations
with the framework described in [27].

II. PROBLEM FORMULATION
For this work, we choose a SET geometry based on a silicon
nanopillar with diameter dpil. Embedded in the pillar is an
silicon dioxide layer with thickness hox that contains the
spherical QDwith diameter ddot. The gate contact completely
surrounds the pillar as displayed in Fig. 1. The distance
between pillar and all-around gate is given by tgp. Because
of the symmetry of the structure we will mostly use the
cylindrical coordinates z (direction of SET current flow) and
ρ (radial distance from the pillar axis) as shown in Fig. 1
(right side). For development of this model the QD is assumed
to be centered between source and drain. A more generalized
formulation which allows the asymmetric positioning of the
QDwill be the topic of future work. The distance between the
QD and either electrode is given by

ted =
hox − ddot

2
. (1)

It should be noted that confinement effects in the
pillar-shaped source and drain electrodes are neglected in
this work. If not mentioned otherwise, we use the nominal
parameter values defined in Tab. 1. The table also specifies
the parameter range used for variability studies. QD diam-
eters ddot of around 3 nm are chosen in order to permit
room-temperature operation of the SET which requires a QD
size smaller than 10 nm [30]. Furthermore, the fabrication
of self-aligned silicon QDs in a silicon dioxide layer has
been demonstrated experimentally with ion-beammixing and
subsequent annealing for QD sizes of about 3 nm [31]. For
obtaining measurably large currents, the distance ted should
not exceed 2 nm while dot formation by ion-beam mixing
requires a minimum distance of at least 0.5 nm. This provides
a range of interest for the oxide thickness hox. The pillar
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TABLE 1. SET geometry and material parameters.

diameter dpil should be as small as possible in order to allow
good electrostatic control of the electrostatic potential of a
QD centered within the pillar. Experimentally, fabrication of
silicon nanopillars with diameters down to 15 nm has been
demonstrated [32]. The specific values given in Tab. 1 are
also influenced by the grid used for numerical simulations
in this work.

Numerical simulations of IV characteristics for silicon-
nanopillar SETs have been reported before [27], based on the
commercial 3D Poisson-Schroedinger solver nextnano++
[33] with a self-written implementation of the transfer Hamil-
tonian formalism. Simulations with this framework for the
nominal SET device are presented in Fig. 2. Different oper-
ation regimes can be distinguished and are marked in the
figure: Off-region (A), Coulomb-Blockade regime (B), and
a regime at higher drain voltages where tunneling occurs
through higher energy eigenstates in addition to the ground-
state (C). A HSPICE simulation shown in Fig. 2 using
Inokawa’s SET model [6], with capacitances and tunneling
resistances calibrated to numerical simulation, exhibits good
agreement in the Coulomb-Blockade regime while the other
operation regimes are not well described or not featured at
all. Simulations with theMonte-Carlo simulator SIMON [34]
shown in Fig. 2 exhibit very similar features compared to
numerical simulations when using both semiconducting elec-
trodes and QD and calibrating capacitances, tunneling resis-
tances, and energy levels to the numerical simulations. How-
ever, SIMON does not offer the same flexibility for circuit
simulations compared to SPICE, especially no MOSFET
models are available. Aim of this work is the development
of a SPICE model that agrees reasonable well with numerical
simulations in all operation regimes and features the model
parameters summarized in Tab. 1 instead of more abstract
capacitance or resistance values.

Every SET consists of source and drain electrodes with
tunneling contacts towards the central quantum dot. One or
more gate contacts are located in non-tunneling distance to

FIGURE 2. Simulated current-voltage plots for SETs with silicon QD. Upper
left: Numerical simulation of pillar SET with metallic electrodes at 50 K,
according to [27]. Marked are operating regions: Off-region (A),
Coulomb-Blockade regime (B), Tunneling through higher energy
eigenstates (C). Upper right: SPICE simulation of SET at 50 K using
Inokawa’s SET model [6], calibrated to numerical simulation. Lower left:
Numerical simulation of pillar SET with silicon electrodes at 300 K,
according to [27]. Lower right: Simulation with SIMON at 300 K, calibrated
to numerical simulation.

the QD in order to influence the QD potential Vdot. Due to
charge conservation of the QD charge Qdot, the potential Vdot
in the presence of a single gate is given by (see e.g. [1])

Vdot =
CG,dot

Cdot
VG +

CD,dot

Cdot
VD +

CS,dot

Cdot
VS +

Qdot

Cdot
(2)

Here, Cdot = CG,dot + CD,dot + CS,dot is the total QD
capacitance and CG,dot, CD,dot, CS,dot are the capacitances
between QD and the respective contacts.

In order to calculate current-voltage characteristics of a
SET, the first step is to obtain values for the capacitances
in (2) in order to solve the electrostatics of the system (chap-
ter III). Subsequently, the quantum-mechanical treatment of
the QD within the isolating matrix is necessary in order to
obtain the energy eigenstates and wave functions for charge
carriers on the QD (chapter IV). Finally, this information
can be used in order to calculate tunneling rates between
electrodes and QD (chapter V).

III. ELECTROSTATICS
The QD is the central part of the SET structure. The capac-
itances of the QD towards the electrodes determine the QD
potential as expressed by (2) which in turn controls the current
flow in the SET. The QD capacitances are determined by
the three-dimensional distribution of the electric field in the
structure, however the pillar-SET structure is too complicated
to derive a rigorous analytic solution of the field. Thus,
we split the problem in two parts. First, we formulate an
approximation of the total capacitance Cdot. Then, we deter-
mine the gate capacitance. Under the assumption of a QD
centered between source and drain, we can calculate CS,dot =

CD,dot = (Cdot − CG,dot)/2.
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FIGURE 3. Numerical simulations with Synopsys Sentaurus [35] in
comparison to the analytical model presented in this work. The model for
the isolated QD corresponds to (3) and the model for the QD between
two electrodes is given by (5). The colors for the latter model represent
different ddot values, from 2 nm (left) to 4.4 nm (right).

A. TOTAL QUANTUM DOT CAPACITANCE
In order to obtain absolute capacitance values, an expression
for the total QD capacitance is required. An initial guess
might be taken from the capacitance of a QD in an infinite
matrix of silicon dioxide. For this case, the solution can be
derived simply from Coulomb’s law and is given by

Cdot = 4πεrε0
ddot
2
. (3)

However, comparison to numerical simulations shows that
this solution underestimates the real QD capacitance, which
is modified by the electrodes in vicinity of the dot. The
disagreement compared to numerical simulations can be seen
in Fig 3.

The electric potential of a point charge in vicinity of a
conducting plane can be easily described by the sum of the
potentials of the actual point charge and an image charge of
opposite sign. The combined potential satisfies the boundary
condition of a constant potential on the surface of the plane.
The field of a point charge in between two conducting planes
cannot be described in an exact manner by using point-like
image charges. However, we use the potential of a point
charge and two image charges as an approximation, which
will serve the purpose of an analytical approximation reason-
ably well. The magnitude of the image charges is chosen in
order to get a potential of zero at the electrode interfaces close
to the dot. The electrostatic potential around the dot is then
described by

8(z, ρ) =
Qdot

4πεrε0

(
1√

ρ2 + z2
−

3/4√
ρ2 + (hox − z)2

−
3/4√

ρ2 + (hox + z)2

)
. (4)

The coordinate origin is located at the QD center. For the
purpose of capacitance evaluation, theQDpotential is defined
as the potential in a distance ddot/2 from the dot center

FIGURE 4. Schematic drawings for the derivation of the gate-to-QD
capacitance. Left: Capacitance between QD and pillar edge (dashed line).
Black circles mark the positions where the electrostatic potential is
evaluated. Right: Combination of inner and outer capacitances.

towards the gate electrode, i.e. Vdot = 8(z = 0, ρ = ddot/2).
Then, the total QD capacitance is given by

Cdot =
∂Qdot

∂Vdot
=

4πεrε0 ddot
2− 3√

1+(2hox/ddot)2

≈
4πεrε0 ddot
2− 3ddot

2hox

. (5)

This result is very similar to (3) but includes a geometry
dependent parameter in the denominator that increases the
total capacitance. The expression follows the values obtained
with numerical simulation much more closely than the capac-
itance of an isolated dot (see Fig. 3). The approximation in the
last step of (5) is based on the fact that the QD must always
be smaller than the thickness of the containing oxide layer.

B. GATE-TO-QD CAPACITANCE
The gate-to-QD capacitanceCG,dot describes the electrostatic
coupling between the gate contact and the QD. The analytic
approximation of the gate-to-QD capacitance is separated
into a contribution within the nanopillar, described by CG,in,
and a contribution outside the nanopillar, denoted CG,out.
For a good description of CG,in, we need to understand
how a change of the electrostatic potential at the pillar edge
will influence the potential at the QD located between the
source and drain contacts. As a starting point, the electrostatic
potential between two infinite source/drain contacts at zero
voltage in cylindrical coordinates is considered (see Fig. 4
left). The potential must fulfill the Poisson equation18 = 0
with the boundary condition 8(z = ±hox/2, ρ) = 0. The
ansatz 8(z, ρ) = R(ρ) cos(πz/hox) is sufficient to satisfy
the boundary condition. With the additional condition of a
finite value for the potential at the QD center, the radial
solution is given by the modified Bessel functions In of the
first kind. Here, we consider only the first order function I0,
which can be approximated for large radii by an asymptotic
expression [36]:

8(z, ρ) = I0

(
π

hox
ρ

)
cos

(
π

hox
z
)

≈

√
hox
2π2ρ

exp
(
π

hox
ρ

)
cos

(
π

hox
z
)

(6)
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This expressionmakes it possible to derive a relative capac-
itance between the uncharged quantum dot at potential Vdot
and a gate contact at the pillar edge with potential Vpil when
taking (2) into account:

CG,in

Cdot
=

Vdot
Vpil
=
8(0, ddot/2)
8(0, dpil/2)

=

√
dpil
ddot

exp
(
π

2hox
(ddot − dpil)

)
. (7)

For a gate located at some distance tgp to the pillar, an addi-
tional contribution to the capacitance must be considered (see
Fig. 4 right). The most simple expression would be a that of
a cylindrical capacitor with a height in the order of the oxide
layers’s height. This is given by

CG,out = 2πεrε0
hox

ln(1+ 2tgp/dpil)
. (8)

Ideally one would simply connect CG,in and CG,out as
stated above in series to obtain the total gate-to-dot capaci-
tance. However, there are two further issues to be considered.
First, the electrostatic influence of the source/drain contacts
will extend somewhat over the pillar diameter. An empirical
way to deal with this fact is to define a boundary between
the inner and outer capacitance contributions which is not at
the pillar boundary but an additional distance tgp,in further
towards the gate (see Fig. 4 right). This means that dpil in
CG,in must be replaced by dpil+2tgp,in and tgp in CG,out must
be replaced by tgp − tgp,in. The simplest way to implement
the idea of a shifted boundary between the two capacitance
components is to use a fixed value tgp,in = lgp. However, for
thin gate oxides it must be ensured that tgp,in ≤ tgp. This is
respected by the following empirical formula:

tgp,in =

(
1

t3/2gp

+
1

l3/2gp

)−2/3
. (9)

Here, lgp is a fitting parameter. Good agreement to numer-
ical simulations is obtained for lgp = 2.5 nm which will be
used in the following.

Second, comparison with numerical simulation shows that
the effective height of the outer capacitor is not simply given
by hox as assumed beforehand, but is influenced by pillar
diameter and QD size as well. This coupling is well cap-
tured by modifying the effective height of the capacitor by
an empirical factor CG,in/Cdot. The considerations in this
section lead to the following capacitance contributions which
connected in series give the total gate-to-QD capacitance:

CG,in = Cdot

√
dpil + 2 tgp,in

ddot

× exp
(
π

2hox
(ddot − dpil − 2tgp,in))

)
CG,out = 2πεrε0

hoxCG,in/Cdot

ln(1+ 2(tgp − tgp,in)/dpil)

CG,dot = (1/CG,in + 1/CG,out)−1 (10)

FIGURE 5. Numerical simulations with Synopsys Sentaurus [35] in
comparison to the analytical model presented in this work. The simple
model corresponds to (7) and (8) while the enhanced model is given
by (10).

For validation, analytically calculated capacitance values
were compared to numerical simulations of 800 different
geometry variants for the parameter range presented in Tab. 1.
Fig. 5 demonstrates that the model given by (10) describes
the gate capacitances of all variants reasonably well, given
the wide spread of values over more than two orders of
magnitude.

C. QUANTUM DOT POTENTIAL
TheQD capacitances defined above allow to calculate the QD
potential according to (2). When using the source potential as
reference for all potentials in the system we obtain

Vdot,S =
CD,dot

Cdot
VDS +

CG,dot

Cdot
VGS +

Qbg − eN
Cdot

. (11)

Here, the QD charge Qdot was split into a background
charge Qbg and the charge of N additional electrons located
on the QD. These electrons correspond to the free charge
carriers contributing to the tunneling current and will be
addressed in more detail in chapter V. The energetic position
of the QD conduction band minimum in reference to the
source electrode is then given by

Edot = −eVdot,S. (12)

D. PARASITIC CAPACITANCES
In addition to the capacitances between QD and contacts
treated in the previous sections there are parasitic capaci-
tances CDS, CGS, CGD between the three contacts. These par-
asitics have no influence on the static SET characteristic, but
will strongly affect the dynamic behavior. The drain-source
capacitance is basically a classical plate capacitor with circu-
lar metallic contacts. In order to separate the influence of the
QD from the parasitic capacitance we consider a capacitor
with ring-like electrodes with outer diameter dpil and inner
diameter ddot:

CDS = πεrε0
d2pil − d

2
dot

4hox
. (13)
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FIGURE 6. Analytical model for total contact capacitances in comparison
to numerical simulation with Synopsys Sentaurus [35]. Left: Total drain
capacitance. Right: Total gate capacitance.

The gate-source as well as the gate-drain parasitic capac-
itances are approximated by a cylindrical capacitor similar
to (8):

CGS = CGD = πεbarrε0
hg/2+ tgp

ln(1+ 2tgp/dpil)
. (14)

The numerator would be hg − hox for ideal cylindrical
capacitances, but was adjusted empirically to better fit numer-
ical simulations. The parasitic capacitances are difficult to
evaluate separately from the QD capacitances, but are con-
tained in the total contact capacitances. The total drain capac-
itance obtained when using grounded source and floating gate
contact is given by

CD = CDS +
CD,dot

2
+
CGD

2
(15)

under the conditions CD,dot = CS,dot and CGD = CGS
given by the symmetry of the system. The total gate capac-
itance obtained when both source and drain are grounded is
given by

CG = 2 CGD +

(
1

CG,dot
+

2
CD,dot

)−1
. (16)

Numerical simulations on 800 geometry variants of the
pillar-SET in the parameter ranges described in Tab. 1 were
performed for evaluation of the analytical formulas. The
comparison is displayed in Fig. 6 and demonstrates a good
agreement. Only for large parasitic capacitances the analyt-
ical description overestimates the actual values up to about
25%.

IV. QUANTUM DOT EIGENSTATES
A. ENERGY LEVELS
The quantum dot embedded in an oxidematrix corresponds to
the classical quantum mechanical problem of a 3D quantum
well with finite walls, as sketched in Fig 7. The barrier height
EB is given by the difference between the conduction band
minima of the QD and the barrier material. However, even
in the 1D case of a finite quantum well no analytic solution
exists for the energies En of the bound states. For a 3D
quantum well with infinitely high walls, analytic solutions
exist only for the case of a box-shaped well and not for the

FIGURE 7. Energy landscape around the QD in direction of current flow
(z-direction). Left: Schematic drawing with the conduction band edge
marked in black and the bandgaps indicated blue, QD energy levels are
sketched in red. Right: Numerical simulation with nextnano++ for
ddot = 2 nm, the first three energy eigenstates are shown in red and the
corresponding wave functions in blue (arbitrary units, shifted according
to the respective energy levels).

FIGURE 8. Numerical simulation of the QD groundstate with nextnano++

in comparison to the analytical model presented in this work. The model
for the infinite quantum box corresponds to (17) and the model for finite
quantum box is given by (18).

spherical case. Thus, in order to obtain analytical expressions
for energy eigenstates and wavefunctions we approximate
the spherical quantum dot by a cube with side length ddot
and assume an infinitely high potential barrier around it. The
allowed energies are then given by [37]

En,inf = E0,1d (n2x + n
2
y + n

2
z )

with E0,1d =
π2h̄2

2mdotd2dot
. (17)

mdot is the effective mass of an electron on the QD. E0,1d
denotes the ground-state energy for the one-dimensional case.
The quantum numbers nx , nx , and nx are defined for integer
values larger than zero. The ground-state energy for the cubic
QD, E0,inf, is obtained for nx = ny = nz = 1. Comparison of
the ground-state energy obtained from numerical simulation
for different QD diameters as presented in Fig. 8 shows that
the analytical solution for the cubic QD with infinite energy
barrier underestimates the actual energies slightly for larger
dots, and overestimates the energies significantly for smaller
dots.
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For a cubic QD with a finite energy barrier, no analytical
expressions for energy levels and wave functions exist but
approximations are available in literature. For the eigen-
state energies we use the so-called parabolic approximation
reported in [38] that leads to

En,fin = En,inf
E0,1d
4 EB

(√
4 EB
E0,1d

+ 1− 1

)2

. (18)

Strictly, this approximation is only valid for the ground
state. However, for simplicity and because the Coulomb
blockade regime depends only on the ground state we use this
expression for all energy states. En,fin denotes the energetic
positions of the states above the QD conduction band mini-
mum at energy Edot. Thus, the QD energy levels in reference
to the source electrode are given by

En = En,fin − eVdot,S. (19)

In the following, E0 will denote the ground-state energy
with reference to the source electrode according to (19), while
E0,fin denotes the ground-state energy with reference to the
QD energy according to (18).

Due to the low tunneling currents through an oxide barrier
it can be expected that electrons on the QD thermalize long
before a tunneling event occurs. Thus, for a given number
of N electrons on the QD, the occupation statistics will be
according to the Fermi-Dirac distribution. In silicon, each
energy state is 12-fold degenerate (including spin degener-
acy) when assuming that the degeneracy is not lifted due to
the electric field or other influences. In Fig. 7 on the right it
can be seen that the energy spacing between the first eigen-
states is significantly larger than kBT at room temperature
(≈ 26 meV). Thus, for a low number of electrons on the QD
only the groundstate will be occupied and all higher energy
states have occupation probabilities very close to zero. This
simplifies the model substantially, because it is not necessary
to calculate the QD Fermi level for the given number of
electrons N on the dot. For this model, N is considered to
be lower than the degeneracy gdot of the ground state. Then,
the Fermi-Dirac distribution is approximated by

fdot =
N
gdot

for the ground state

fdot = 0 for higher energy states. (20)

Hence, it must be noted that this model can only describe
the first twelve oscillation periods above the threshold volt-
age.

B. WAVE FUNCTIONS
For the box-like quantum well with infinite walls, the wave
functions consist of separate contributions for each special
dimension, i.e. 9dot = 9x9y9z. Within an energy barrier
with finite height the wave function is expected to decrease
exponentially. Perpendicular to the tunneling current the
exponential tails can be neglected and we use the wave

functions for an infinite potential well as approximation.
These solutions are given by

9x =

√
2
ddot

sin
(
πnxx
ddot

)
for x ∈ [0; ddot]

9y =

√
2
ddot

sin
(
πnyy
ddot

)
for y ∈ [0; ddot]

9x = 9y = 0 otherwise. (21)

The origin of the coordinate system has been placed at a
corner of the QD for simplicity. For the calculation of the
tunneling currents, only integrals over the perpendicular wave
functions will be required. For the x-direction the following
results are obtained (similar for y-direction):∫

+∞

−∞

9xdx =
2
√
2ddot
πnx

for odd nx∫
+∞

−∞

9xdx = 0 for even nx (22)

In direction of current flow the extension of the wave
function into the barrier is decisive, as it enters Bardeen’s
formula for calculation of the transfer matrix element [23].
Thus, the solution for the infinite well is not sufficient in
z-direction, because it drops to zero at the QD interface.
We adapt the solution derived by Sée et al. [25] based on the
WKB approximation of the wave function within a quantum
well barrier of finite height:

9z =

√
2
ddot

√√√√√ k2dot

k2dot +
m2
dot

m2
ox
k2ox

exp(−koxz) for z > 0

kdot =

√
2mdot

h̄2
(En − Edot)

kox =

√
2mox

h̄2
(Ebarr − En) (23)

Here, we assume that the electric field along the z-direction
is low enough to treat the barrier as rectangular, in contrast to
the cited work of SÃľe et al. that presents the more general
form of a trapezoidal barrier. The QD interface is located
at z = 0 and positive values of z extend into the barrier.
For calculation of the tunneling currents in the Coulomb
blockade regime, only the lower energy levels are relevant.
This justifies the approximation that the tunneling barrier
Ebarr − En is large compared to the QD eigenstate energies
En − Edot. The QD wave function within the oxide barrier in
direction of current flow is then simplified to

9z ≈

√
2 mox(En − Edot)

ddotmdot(Ebarr − En)
exp(−koxz). (24)

V. TUNNELING CURRENT CALCULATION
The tunneling-current calculationwill follow the original idea
of Bardeen [23] to determine wave functions for both sides
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of the tunneling junction independently and to use them to
calculate a matrix element that characterizes the coupling
between the two sides of the barrier. This approach has been
adapted in the past to the SET problem [24]–[27] and will
be described here only as far as necessary in order to follow
the procedure to the simplified equations implemented in the
compact model.

A. SOURCE/DRAIN ELECTRODES
The electrodes are considered to consist of a metal or a
highly doped semiconductor with a partly filled parabolic
conduction band. The energetic position of the conduction
band minimum is given by Eelec and the fermi energy by Ef.
The effective electron mass in the electrode is given by melec.
Within the framework of the transfer Hamiltonian formalism,
the tunneling of electrons between electrode and the QD
depends on the extension of the electron wave functions
within the barrier. We apply a similar description for the
electrode wave functions in the barrier as already described
in (24) for the QD in direction of current flow. The major
difference is that the prefactor contains the electrode volume
Velec which accounts for the nominally infinite extension of
the electrodes in x- and y-directions (see the 3D case in [25]).
Also, we consider the electrode to fill the volume z > ted.
This changes the exponential factor accordingly:

9elec(E) ≈

√
2 mox(E − Eelec)

melecVelec(Ebarr − E)
× exp(kox(z− ted)). (25)

The density of states for the electrode conduction band
is obtained from the description of a volume material with
gelec conduction band minima in the Brillouin zone and an
additional spin degeneracity of 2 [37]:

ρelec(E) = gelec
Velec
2π2

(
2melec

h̄2

)3/2√
E . (26)

We can use this definition to remove the explicit depen-
dence of the wave function on the electrode volume. Further-
more, we note that EB ≈ Ebarr − E for a sufficiently high
energy barrier and low tunneling energy. Then,

9elec(E) ≈
√

gelecmox

π2ρelecmelecEB

×

(
2 melec(E − Eelec)

h̄2

)3/4

exp(kox(z− ted))

with kox ≈

√
2 moxEB

h̄2
. (27)

The electrode Fermi energy Ef with respect to the
conduction-band edge is determined by the doping level of
the electrode. For sufficiently high doping, the electric field
within the electrode is negligible. Then, the electron density
in the electrode is constant and given by [37]

n = NCF1/2

(
Ef
kBT

)

with NC = 2
(
meleckBT

2π h̄2

)3/2

(28)

where F1/2(x) is the Fermi-Dirac integral and NC is the
conduction-band-edge density of states. For very high dop-
ing, i.e. a degenerate semiconductor, the doping density ND
can be assumed to be equal to the number of charge carriers
n. There are several approximations available for calculation
of the Fermi-Dirac integral or its reverse function. Here,
an approximation presented by Nilsson [39] is used because
of its comparably simple analytical form:

Ef
kBT
=

ln(ND/NC)
1− ND/NC

+

(
3
√
πND

4NC

)2/3

+
8
√
πND/NC

3(4+
√
πND/NC)2

(29)

The energy distribution of the electrode charge carriers is
then given straightforwardly by the Fermi-Dirac distribution:

felec(E) =
1

1+ exp
(
E−Ef
kBT

) . (30)

B. TUNNELING RATES
We apply Bardeen’s equation [23] in the following form to
combine wave functions of the QD with the wave function of
a single electrode:

M (E) =
h̄2

2 mox

∫∫
S
(9∗dot∇9elec −∇9

∗

dot9elec)
−→
dS . (31)

The integral is over a surface within the barrier with con-
stant potential. In our derivation of the wave function we
assumed the barrier to be at constant potential which means
that we can place the surface arbitrarily. We choose S to be a
plane perpendicular to the z-direction, halfway between elec-
trode and quantum dot. The wave function derivatives in (31)
are then simply derivatives in z. The complex conjugation of
the dot wave function (denoted 9∗dot) can be ignored as all
wave function expressions derived earlier are real functions.
Thus, we can write the matrix element as

M (E) =
h̄2

2 mox

∫∫
S
(9dotkox9elec

− (−kox)9dot9elec)
−→
dS

=
h̄2kox
mox

∫∫
S
9x9y9z9elec

−→
dS

=
h̄2kox
mox

(9z9elec)|z= ted
2

∫
9xdx

∫
9ydy. (32)

Using equations (22) (24) (27) we can determine the
squared matrix element for tunneling between an electrode
and a QD eigenstate with energy En to be

|M (En)|2 =
512 gelec

√
2melecmoxddot

π6h̄ρelecmdotEB
exp(−2 koxted)

×
(En − Eelec)3/2(En − Edot)

n2xn2y
. (33)
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Note, that according to (22) the matrix element is only
non-zero for both odd nx and odd ny. Only the last term of (33)
depends on the eigenstate properties and voltages, the first
terms depend merely on material properties and the SET
geometry. The unusual numerical prefactor of 512 results
from multiplying the prefactors of the wave function com-
ponents when evaluating (32).

According to [25] the tunneling rates between the QD
charged with N electrons and an electrode are given by

0Nelec→dot =
∑
n

(1− fdot(En))felec(En)0Nn

0Ndot→elec =
∑
n

fdot(En)(1− felec(En))0Nn

0Nn =
2π
h̄
|M (En)|2ρelecgdot. (34)

All quantities in these equations have been defined previ-
ously and allow an analytic evaluation of the tunneling rates.
Note, that the QD electron charge state N is not explicitly
stated in (34) but enters the rate calculation via the definitions
of Edot, En, and fdot.

C. TUNNELING CURRENTS
In the previous subsection the tunneling rates were calculated
in dependence on the QD charge state. In principle, there
can be an arbitrary number of electrons on the quantum dot
which fluctuates over time during current flow. The proba-
bility to find N electrons on the QD at any given time und
specific bias conditions is denoted PN . Under steady-state
conditions, the QD occupation probabilities and the tunneling
rates between the QD and the source (src) and drain (drn)
electrodes must satisfy the following equation system: [25]

PN (0Nsrc→dot + 0
N
dot→src + 0

N
drn→dot + 0

N
dot→drn)

= PN−1(0
N−1
src→dot + 0

N−1
drn→dot)

+PN+1(0
N+1
dot→src + 0

N+1
dot→drn)∑

N

PN = 1 (35)

After solving this equation system, the tunneling current
from drain to source can be obtained via

ISET = −e
∑
N

PN (0Nsrc→dot − 0
N
dot→src). (36)

An exact solution to (35) and (36) would have to treat all
charge states N ≥ 0. However, if the groundstate energy
of the QD is below the conduction band energies of both
electrodes, electrons occupying this state are trappend and
cannot tunnel to the electrodes. This means that a charge
state N0 with E0 ≈ −eVDS represents the lowest charge state
that can contribute to the tunneling current for given bias
conditions. Using (19) and (11) this condition leads to

N0(VGS,VDS) = nint
(
Qbg

e
+
CG,dot

e
VGS

−
Cdot − CD,dot

e
VDS −

Cdot

e2
E0,fin

)
. (37)

FIGURE 9. Left: Equivalent circuit of the compact model presented in this
work. Right: Numerical simulation (dots) in comparison to HSPICE
simulations for varied tunneling oxide thickness. Dashed lines denote the
basic compact model, solid lines the improved and calibrated model
including corrections for the QD capacitance and the dot shape as
described in Appendices B and C.

The nint() function rounds to the nearest integer.
In case (37) evaluates to a negative number, N must be set to
zero. Due to the bandgap of the QD, holes can only appear on
the QD for very low gate voltages. This case is not included
in the present work.

Equation (37) defines a lower limit for N in dependence on
the bias voltages. An approximate upper limit can be obtained
by calculating for which Nmax the dot energy is similar to the
source electrode energy. It can be assumed that a higher N
would lift the dot energy too high above the source electrode
energy in order to contribute to the current. The ansatzE0 ≈ 0
leads to

Nmax(VGS,VDS) = N0 + nint
(
Cdot − CD,dot

e
VDS

)
. (38)

In order to implement the compact model in SPICE syntax
and to ensure a low evaluation time for circuit simulations it
is mandatory to limit the number of charge states used in the
current calculation. For that purpose, a fixed number of four
charge states is used in the compact model. The analytical
solution to (35) and (36) for the case of four charge states
is somewhat lengthy and given in Appendix A. The validity
range of this solution can be estimated by solving (38) forVDS
and setting Nmax − N0 ≤ 4. The valid drain voltage range is
then given by

VDS ≤
4e

Cdot − CD,dot
. (39)

In principle, simulations with the model will work for
higher VDS as well, but discontinuities will occur as the drain
voltage increases above the threshold given by (39).

VI. SPICE MODEL
A. DESCRIPTION OF THE BASIC MODEL
The compact model is based on six capacitances and one
voltage-controlled current source (G-element in SPICE syn-
tax). The equivalent circuit is displayed in Fig. 9. The QD
capacitances are defined by (5), (9), and (10), the parasitic
capacitances by (13) and (14). The current is given by (40) in
Appendix A with the tunneling rates defined by (34). Here,
we consider the first five QD energy states that provide a
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FIGURE 10. Simulated current-voltage plots for SETs with silicon QD. Left:
Numerical simulation of pillar SET with silicon electrodes at 300 K,
according to [27]. Right: Simulation with HSPICE at 300 K using the
calibrated model described in this work.

non-zero contribution to the tunneling rates. In the calculation
of tunneling rates enter the calculation of the matrix elements
via (33), of the minimum QD charge state via (37), of the
QD potential and energy levels via (11), (18), and (19), and
the electrode fermi distribution via (29) and (30). This basic
form of the model contains only a single empirical parameter,
lgp, that was used to divide inner and outer contributions to
the gate capacitance. The resulting transfer characteristics
for varied tunneling oxide thickness is shown in Fig. 9 on
the right side (dashed lines) in comparison to numerical
simulations (dots). It can be seen that there is good qualita-
tive agreement between the two simulation approaches. Off-
region, current oscillations, and the shift of the characteristics
with changing hox are well reproduced by the SPICE simula-
tions. However, the currents are somewhat too high, and the
subthreshold slope as well as the oscillation period are not
perfectly matching the numerical simulations. Furthermore,
the first oscillation period obtained from numerical simula-
tions is always shorter than the following ones. This has been
attributed to different shapes of the electrostatic potential for
empty and charged QDs [27], but is not reproduced by the
basic compact model.

B. EXTENDED AND CALIBRATED MODEL
In order to allow a proper calibration of the compact model to
numerical simulations, few additional corrections and addi-
tional empirical parameters were introduced:

The total QD capacitance is considered to be c0Cdot for
the first oscillation period after the gate voltage threshold
and c1Cdot for the following oscillation periods, where c0
and c1 are constants and Cdot the total QD capacitance as
defined beforehand. The resulting modifications to the model
equations are summarized in Appendix B and allow adjust-
ment of the total capacitance as well as shortening of the first
oscillation period as observed in numerical simulations.

When varying the QD diameter ddot or the pillar oxide
thickness hox, the tunneling current changes exponentially
due to the change of the tunneling distance. With the basic
model the exponential variation of the current is approxi-
mately reproduced (as shown in Fig. 9), but exhibits some
deviation that cannot be corrected by simply scaling the

TABLE 2. Model parameters.

current. This deviation can be traced to the approximation of
the spherical QD in numerical simulation by a cubic QD in
the compact model. The cubic QD has a full face in tunneling
distance ted of the electrode, while only a single point of the
spherical QD has a tunneling distance ted. The remaining
surface curves away from the electrode, which creates an
additional sensitivity of the tunneling current on tunneling
distance and dot diameter. A correction factor for the current
is derived in Appendix C that catches this effect and leads to
a better scaling behavior in comparison to numerical simula-
tion when varying ddot and hox. A proportionality factor A is
introduced for the current in order to allow adjustment of the
current magnitude.

An additional scaling factor cen was introduced for the QD
energy levels. This can be justified as well by the use of a
cubic QD in the model, which has a larger volume and hence
somewhat lower energy levels compared to the spherical QD.

The solid lines in Fig. 9 show the improvement of the
extended model compared to the basic one. The agreement of
the compact model to numerical simulations is also illustrated
by the IV characteristics in Fig. 10. All operation regimes are
well captured with particular focus on the Coulomb blockade
regime. For higher drain voltages, the model does at least not
pretend periodic behavior where no oscillations are expected
physically.

The five empirical model parameters are listed in Tab. 2.
The values used within this work are all close to the nom-
inal values, which is a confirmation that the physics of the
problem is well reproduced by the compact model. The good
agreement of the calibrated model compared to numerical
simulations is demonstrated in Fig. 11 with variations in
ddot, dpil, Qbg, and T . For all simulations, the same set of
model parameters was used with the exception of the varied
parameter.

For this work, the empirical model parameters were
extracted by hand, focusing foremost on a good fit for the
nominal device as defined in Tab. 1 and then on proper
behavior under variations as shown in Fig. 11. A better fit
between SPICE model and 3D simulations could certainly be
obtained using optimization algorithms like the Rosenbrock
method or genetic algorithms. However, when using such
methods the calibration strategy must certainly depend on
the application, especially concerning the question whether
calibration should be performedwith equal priority for a large
number of device variants or whether a nominal device is
fitted with higher priority. Hence, the development of suitable
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FIGURE 11. Simulated current-voltage plots for SETs with silicon QD,
showing numerical simulations according to [27] (dots) in comparison to
HSPICE simulations using the calibrated model described in this work
(solid). Shown are variations of QD diameter ddot, pillar diameterdpil,
positive background charge Qbg, and temperature T .

FIGURE 12. Test circuits simulated with HSPICE. Left: Inverter
characteristic, the inset shows the circuit consisting of a SET and a
resistor. Right: Ringoscillator using five inverters as shown on the left
side. Simulation conditions for both examples were: Qbg = 4e, T = 10 K.

calibration strategies is considered out of the scope of this
work which focuses on model development.

C. CIRCUIT SIMULATIONS
The usability of the model in SPICE simulations has been
tested with various circuits containing SETs and other ele-
ments like FETs or resistors. Although simulation times are
certainly somewhat longer compared to simpler SET models,
the full analytical description presented in this work shows
reasonable convergence and allows to investigate the typical
application scenarios presented in literature. It must be noted
that not all circuits demonstrated with more ideal models
will work with the silicon-based SETs addressed here. This
is no shortcoming of the model but reveals the difficulties
one must expect when attempting to build such circuits with
real devices. An example is the inverter displayed in Fig. 12
on the left side. Around VGS = 0 V the SET operates in
the off-region when no background charge is considered.
Thus, the Coulomb blockade effect cannot be used to real-
ize the low-voltage inverter. Only when a positive back-
ground charge Qbg of a few e is assumed to exist, the device

characteristics presented in the figure can be realized. For the
simulations shown in Fig. 12, a positive background charge
of Qbg = 4e was used. Whether such a device could be fabri-
cated reproducibly remains open and is beyond the scope of
this work. However, the inverter simulation demonstrates that
logic gates can be characterized by the model. A ring oscilla-
tor consisting of five such inverters was used to demonstrate
the dynamic capabilities of the model. Here, the parasitic gate
capacitances are the dominant cause of delay in the circuit.

VII. CONCLUSION
A compact model for the physical description of a SET
with silicon QD is derived from basic principles and
tested against numerical simulations. Qualitative agreement
between SPICE simulation and numerical simulation with a
3D quantum-mechanics based model is reached even without
calibration.With a small number of five fitting parameters we
obtain very good quantitative agreement not only for the nom-
inal device but also for variations in geometry, background
charge, and temperature. Simulated characteristics of two test
circuits are presented to confirm the usability of the model in
a SPICE simulation environment.

There are several effects not included in the model that
might affect the device characteristics. Examples are confine-
ment effects in the source and drain contacts, scattering by
interface traps at the silicon/oxide boundaries, or depletion in
low-doped source/drain contacts. However, only experiments
on SETs with systematic variations in geometry and doping
can give a solid answer on the question what contributions
would be really needed for describing real devices. So far,
the technological challenges in fabricating working SETs
result in low reproducibility and usually allow to realize
singular devices only. Thus, no systematic experimental stud-
ies on SET characteristics in dependence on geometry or
doping exist. The model presented in this work can fill this
knowledge gap to a certain extent, as it allows to study effects
of geometry and doping variations in a silicon based SET on
proposed application scenarios. The model equations might
also serve as basis to develop compact models for other SET
geometries than the silicon-nanopillar devices presented here.

APPENDIX A
SOLUTION OF THE MASTER EQUATION FOR FOUR
CHARGE STATES
For the case of four charge states, denoted N0, N1 = N0 + 1,
N2 = N0 + 2, N3 = N0 + 3 in the following, the solution
to (35) and (36) is given by

ISET = e[(0N2
dot→src + 0

N2
dot→drn)(0

N3
dot→src + 0

N3
dot→drn)

× (0N0
src→dot0

N1
dot→drn − 0

N0
drn→dot0

N1
dot→src)

+ (0N0
src→dot + 0

N0
drn→dot)(0

N3
dot→src + 0

N3
dot→drn)

× (0N1
src→dot0

N2
dot→drn − 0

N1
drn→dot0

N2
dot→src)

+ (0N0
src→dot + 0

N0
drn→dot)(0

N1
src→dot + 0

N1
drn→dot)

× (0N2
src→dot0

N3
dot→drn − 0

N2
drn→dot0

N3
dot→src)]
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/[(0N0
src→dot + 0

N0
drn→dot)((0

N1
src→dot + 0

N1
drn→dot)

× (0N2
src→dot + 0

N2
drn→dot + 0

N3
dot→src + 0

N3
dot→drn)

+ (0N2
dot→src + 0

N2
dot→drn)(0

N3
dot→src + 0

N3
dot→drn))

+ (0N1
dot→src + 0

N1
dot→drn)(0

N2
dot→src + 0

N2
dot→drn)

× (0N3
dot→src + 0

N3
dot→drn)] (40)

APPENDIX B
SHORTENING OF FIRST OSCILLATION PERIOD
The electrostatic field within an uncharged QD is approxi-
mately constant in absence of an external electric field. The
charge density in a charged QD has maximum in the QD
center and drops close to zero towards the QD boundary due
to the shape of the respective wave functions in the quan-
tum mechanical description. This leads to a curved potential
within the QD for the case of the charged QD. The changing
shape of the potential in the transition from the uncharged
state to the charged state with a single electron leads to a
larger shift of the groundstate energy compared to charging
with additional electrons. This effect has been illustrated
in [27]. For the compact model, the influence on the IV char-
acteristic can be included by using a value Cdot,0 = c0Cdot
for the total capacitance of the uncharged QD in comparison
for the value Cdot,1 = c1Cdot for the charged QD. This leads
to a modified version of (11) for the calculation of the QD
potential:

Vdot,S =
CD,dot

Cdot,1
VDS +

CG,dot

Cdot,1
VGS +

Qbg

Cdot,1

− e
[
(N > 0)

1
Cdot,0

+ (N > 1)
N − 1
Cdot,1

]
(41)

Furthermore, the minimum number of electrons on the QD
for given operation conditions, previously defined in (37),
is given by

N0(VGS,VDS)=nint
(
Qbg

e
+
CG,dot

e
VGS−

Cdot,1−CD,dot

e
VDS

−
Cdot,1

e2
E0,fin + 1−

Cdot,1

Cdot,0

)
. (42)

APPENDIX C
CORRECTION FACTOR FOR QD ROUNDING
Using the wave functions for a cubic QD for calculation
of currents leads to some difference in the absolute current
levels compared to 3D numerical simulations. Especially
when varying oxide thickness hox and quantum dot diameter
ddot the trends in the absolute current levels are not correctly
reproduced. This can be attributed mostly to the spherical
QD shape in numerical simulations. For the cubic QD wave
function as described above, we integrate the wave function
over a plane S in the oxide barrier in order to obtain the matrix
elements. The distance of the integration plane from the QD
was ted/2. Following (33), the explicit dependence of |M |2

on geometrical properties obtained via the QD wave function

are given by

|M |2cube ∝

∣∣∣∣∫∫
S
9x9y9z

−→
dS

∣∣∣∣2
∝

128 ddot
π4 exp(−koxted). (43)

The prefactor consists of the contributions of the lateral
wave functions 9x and 9y as well as the normalization
constant of 9z. The expression is linearly dependent on ddot,
which will be compared to the case of a spherical dot in the
following.

For a spherical quantum dot with finite potential bound-
aries, the wave function in the boundary drops with
exp(−koxr) [37]. The normalization constant is not exactly
known, but should be proportional to 1/d3/2dot similar to the
cubic QD. Then, the matrix element square is proportional
to:

|M |2sph ∝

∣∣∣∣∫∫
S
9sph
−→
dS

∣∣∣∣2
∝

1

d3dot

∣∣∣∣∫∫
S
exp(−koxr)

−→
dS

∣∣∣∣2
=

1

d3dot

∣∣∣∣2π ∫ ∞
0

ρ exp(−kox

×

√ρ2 + ( ted + ddot
2

)2

−
ddot
2

)dρ

∣∣∣∣∣∣
2

≈
4π2

d3dot

∣∣∣∣∫ ∞
0

ρ exp
(
−kox

(
ted
2
+

ρ2

ted+ddot

))
dρ

∣∣∣∣2
≈

2π2 h2ox
d3dot k

2
ox

exp(−koxted). (44)

Taylor expansion in ρ was used in order to approximate
the square root term within the exponential function. Fur-
thermore, definition (1) for ted was used in the prefactor.
Comparison of |M |2 for cubic and spherical QD reveals a
correction factor for the tunneling currents:

|M |2sph
|M |2cube

≈
π6

64
h2ox

d4dot k
2
ox
. (45)

The corrected equation for the current is then given by

I corrSET = A
π6

64
h2ox

d4dot k
2
ox
ISET. (46)

Indeed, this equation reproduces variations of ddot and hox
much better when compared to numerical simulations with a
spherical dot. An empirical constant A is introduced to enable
calibration of the absolute current. The value of A should be
in the order of one.
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