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ABSTRACT Energy-efficient hybrid flow shop scheduling problem has attracted much attention in deter-
ministic case; however, uncertainty is seldom considered in previous works. In this paper, energy-efficient
interval hybrid flow shop scheduling problem (EIHFSP) is investigated, and a new imperialist competitive
algorithm with empire grouping (EGICA) is proposed to minimize total energy consumption and makespan
simultaneously. Groups of empires are obtained by defining normalized cost and normalized total cost in
interval case, constructing initial empires, and grouping all empires. Assimilation is implemented in a new
way, and an adaptive revolution is adopted in each group. Two-phase imperialist competition is newly pro-
posed, and an adaptive search of member from archive is adopted. A number of computational experiments
are conducted. The computational results demonstrate that the EGICA has promising advantages on solving
the EIHFSP.

INDEX TERMS Hybrid flow shop scheduling problem, imperialist competitive algorithm, energy-efficient
scheduling, interval processing time.

I. INTRODUCTION
As a classical production scheduling problem, hybrid flow
shop scheduling problem (HFSP) extensively exists in many
real-life manufacturing industries such as electronics, paper,
textile, petrochemical, airplane engine and semiconduc-
tor [1], [2]. Hybrid flow shop possesses some advantages
including flexibility, the increasing capacities and avoidance
of bottleneck because of the redundance of machines at some
stages. In the past decades, a number of results on various
HFSP such as multi-objective hybrid flow shop scheduling
problem (MOHFSP) and energy-efficient hybrid flow shop
scheduling problem (EHFSP) have been obtained.

MOHFSP has been considered extensively.
Jungwattanakit et al. [3] proposed some heuristics and a
genetic algorithm (GA) for the problem with unrelated
machines, setup times and dual criteria. Naderi et al. [4]
solved MOHFSP with sequence-dependent setup times,
transportation times and two objectives using an improved
simulated annealing. Mousavi et al. [5] presented a
bi-objective local search algorithm with three phases.

The associate editor coordinating the review of this manuscript and
approving it for publication was Shih-Wei Lin.

Rashidi et al. [6] proposed an improved hybrid paral-
lel GA. Cho et al. [7] reported a parallel GA with four
different versions of local search strategies for reentrant
HFSP. Karimi et al. [8] developed a multi-phase GA for
bi-objective hybrid flexible flow shop group scheduling prob-
lem. Tran and Ng [9] applied a hybrid water flow algorithm
for MOHFSP with limited buffers. Various practical con-
straints such as preventive maintenance [10], family setup
times [11] and assembly [12] are investigated on MOHFSP.
Other meta-heuristics are also applied, which include tabu
search [10], [13], colonial competitive algorithm (CCA [14]),
neighborhood search [12], [15], shuffled frog-leaping algo-
rithm [16] and firefly algorithm [17] etc.

EHFSP often can be treated as a special MOHFSP
because of the inclusion of energy-related objective and
has attracted much attention in recent years. Dai et al. [18]
developed a genetic-simulated annealing algorithm to mini-
mize makespan and total energy consumption. Luo et al. [19]
presented a novel ant colony optimization for EHFSP with
electricity consumption cost. Tang et al. [20] introduced an
improved particle swarm optimization for energy-efficient
dynamic scheduling in flexible flow shop. Lin et al. [21] pro-
posed teaching-learning-based optimization (TLBO) for the

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ 85029

https://orcid.org/0000-0002-8572-1952
https://orcid.org/0000-0002-3388-950X


R. Zhou et al.: Multi-Objective Energy-Efficient Interval Scheduling in Hybrid Flow Shop Using Imperialist Competitive Algorithm

integration of processing parameter optimization and EHFSP
with the minimization of makespan and carbon footprint.
Lei et al. [22] developed a novel TLBO to minimize total
tardiness treated as key objective and total energy consump-
tion. Li et al. [23] presented an energy-aware multi-objective
optimization algorithm for HFSP with setup energy con-
sumptions. Zeng et al. [24] applied a hybrid non-dominated
sorting genetic algorithm-II (NSGA-II) for flexible flow shop
scheduling with total electricity consumption and material
wastage. Meng et al. [25] proposed an improved GA with a
new energy-conscious decoding method.

In the previous works on MOHFSP and EHFSP, pro-
cessing conditions and data are fixed and deterministic and
there are very few considerations on uncertainty.Take EHFSP
as an example, uncertainty is just investigated in a special
EHFSP [26], which is fuzzy flow shop scheduling problem
with total energy consumption and tardiness penalty; on the
other hand, scheduling problems with uncertainty have been
extensively discussed in the past decades [26]–[36]; however,
energy-related objective is seldom adopted. Lei and Guo [27]
presented a dynamical neighborhood search for minimiz-
ing interval carbon footprint and makespan in dual-resource
constrained interval job shop scheduling. Wang et al. [28]
proposed a non-dominated GA for batch scheduling with
uncertainties, energy consumption and tardiness. Uncer-
tainty always exists in the real-life manufacturing process,
the obtained schedule may be valid if uncertainty is neglected
in scheduling problems and energy consumption itself is
uncertain, so it is necessary to focus on energy-efficient
scheduling problem with uncertainties.

Generally, uncertainties are modeled by using fuzzy the-
ory, stochastic theory and interval number theory. There are
some advantages for the usage of interval number. The lower
bound and upper bound of interval are only required to indi-
cate uncertain processing conditions, decision-maker prefers
using interval number to indicate his expected performance
and the obtained interval results can be understood easily,
so it is a good choice to apply interval number for uncertainty.
In the past decade, there are some works related to interval
scheduling in parallel machines [30], flow shop [37] and job
shop [27], [38], [39].

As stated above, meta-heuristics such as GA and TLBO
have been applied to solve EHFSP; however, as an algorithm
inspired by the sociopolitical behaviors, imperialist competi-
tive algorithm (ICA) [40] is seldom used to deal with EHFSP.
ICA possesses some new features such as good neighbor-
hood search ability, effective global search property and
good convergence rate [41] and also has the extensive appli-
cations to many production scheduling problems in single
machine [42], parallel machines [43], flow shop [44], [45],
job shop [46], [47] and open shop [48] etc, so it is necessary
to investigate the advantages of ICA on solving EHFSP.

In this study, we investigate energy-efficient interval
hybrid flow shop scheduling problem (EIHFSP) with interval
processing time. A novel imperialist competitive algorithm
with empire grouping (EGICA) is proposed to minimize

TABLE 1. Notations and descriptions.

interval total energy consumption and interval makespan.
In EGICA, normalized cost and normalized total cost are
defined in interval case, initial empires are constructed and
all empires are divided into several groups, then each group
is evolved independently, in which assimilation of colony
can be done by moving toward imperialist of other empire,
an adaptive revolution is adopted and an adaptive search of
member of archive is added into a newly defined two-phase
imperialist competition. Many computational experiments
are conducted. The computational results demonstrate that
the new strategies of EGICA are effective and EGICA has
promising advantages on solving EIHFSP.

The remainder of the paper is organized as follows. Oper-
ators for interval scheduling in Section II and EIHFSP is
described in Section III. The detailed steps of EGICA for
EIHFSP are shown in Section IV. The computational exper-
iments are depicted in Section V and the conclusions are
concluded in the last Section. We also discuss the future
research topics in the final Section.

II. OPERATORS FOR INTERVAL SCHEDULING
An interval number A =

[
AL ,AR

]
represents a bounded set

of real numbers between AL and AR.
For interval scheduling problem, interval number is used

to indicate the range of processing time or completion time
of job.Lei [38], [39] defined three operators to build interval
schedule.

For two intervals A =
[
AL ,AR

]
and B =

[
BL ,BR

]
,

operators A+ B and A ∨ B are defined by

A+ B =
[
AL + BL ,AR + BR

]
(1)
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When A is the beginning time of a job and B denotes
the interval processing time of the job, then A + B is the
completion time of the job, so addition operator is used to
calculate interval completion time.

A ∨ B =
[
max

{
AL ,BL

}
,max

{
AR,BR

}]
(2)

where A ∨ B indicates the max operator of A and B.
Max operator is applied to compute the beginning time of

job when interval schedule is built.
Interval numbers are often compared according to possibil-

ity degree, which represents certain degree that one interval
number is larger or smaller than another. Jiang et al. [49]
provided a possibility degree-method given by

P (A ≤ B)

=



0 AL ≥ BR

0.5 ·
BR − AL

AR − AL
·
BR − AL

BR − BL
BL≤AL<BR≤AR

BL − AL

AR − AL
+ 0.5 ·

BR − BL

AR − AL
AL<BL<BR≤AR

BL − AL

AR − AL
+
AR − BL

AR − AL
·
BR − AR

BR − BL

+0.5 ·
AR − BL

AR − AL
·
AR − BL

BR − BL
AL<BL≤AR<BR

BR − AR

BR − BL
+ 0.5 ·

AR − AL

BR − BL
BL≤AL<AR<BR

1 AR≤BL

(3)

Lei [39] defined the following relations based the above
formula.

1. A <pd B if P (A ≤ B) > 0.5 or P (B ≤ A) < 0.5.
2. A >pd B if P (A ≤ B) < 0.5 or P (B ≤ A) > 0.5.
3. A =pd B if P (A ≤ B) = 0.5.

where A < (>)pdB indicates that A is less (greater)than B
according to possibility degree, A =pd B denotes that A is
equal to B.

Ranking operator is used to compare result of interval
scheduling.

III. PROBLEM DESCRIPTION
EIHFSP is described as follows. There are n jobs
J1, J2, · · · , Jn and m stages, each of which consists of some
unrelated parallel machines. There is a set V of d different
processing speeds for each machine. Each job Ji is processed
in terms of the same production flow: stage 1, stage 2, · · · ,
stage m, as shown in Figure 1.
When a job is processed at a stage, its processing must be

executed on an assigned machine at a selected speed. The
speed of a machine cannot be changed during the execution
of a job.

Unlike EHFSP, EIHFSP has the interval processing

requirement ηikj of job Ji on Mkj, ηikj =
[
ηLikj, η

R
ikj

]
, so when

job Ji is processed on a machine Mkj ∈ Sk at speed
vl , the interval processing time pikjl is defined as ηikj

/
vl .

FIGURE 1. Schematic diagram of EIHFSP.

The processing of a job can skip some stages; however, it must
be processed at one stage at least.

It is often assumed that energy consumption increases
and processing time decreases when a job is processed on
a machine at a higher speed [50]. Lei et al. [22] gave the
detailed description on this assumption for EHFSP. This
assumption is also adopted in EIHFSP.

The constraints of EIHFSP are the following. All machines
and jobs are available from time zero. Each job can only be
processed on one machine at a time. Each machine cannot
process more than one job at a time. Preemption is not
allowed and buffer size is not limited etc.

EIHFSP is composed of three sub-problems: speed selec-
tion which decides an appropriate processing speed of
machine for each job; machine assignment which selects a
parallel machine at each stage for job; and scheduling.

The goal of EIHFSP is to minimize simultaneously the
following two objectives under the condition that constraints
are all met and sub-problems are solved.

f1 = Cmax = C1 ∨ C2 ∨ . . . ∨ Cn (4)

f2 = TEC =
n∑
i=1

m∑
k=1

Sk∑
j=1

d∑
l=1

Ekjlpikjlyikjl

+

m∑
k=1

Sk∑
j=1

SEkjIkj (5)

where Cmax =
[
CL
max,C

R
max
]
, CL

max and C
R
max indicate the left

and right limit of makespan.
Max operation of intervals is also used to compute interval

makespan. A machine Mkj may runs at speed vl or be idle
at any time. To calculate TEC , let TEC = [0, 0], then for
each machine Mkj, decide all jobs processed on this machine
at the corresponding speeds and all idle periods, start with
[0, 0], compute TEC = TEC + Ekjl × pikjl for each job Ji
processed on this machine at speed vl , and calculate TEC =
TEC + SEkj × Ikj for all idle periods of Mkj.
Table 2 shows an illustrative example of EIHFSP. There

are six jobs, two stages, three machines at stage 1 and two
machines at stage 2. v1 = 1.0, v2 = 1.5 and v3 = 2.0,
E1jl = 4 × v2l , E2jl = 3 × v2l , SE1j = 1, SE2j = 1.5.
Interval in Table 2 is processing requirement of job on its
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FIGURE 2. A schedule of the example.

TABLE 2. An illustrative example of the problem.

processing machine. For example, job J1 is processed onM12
at speed v2, its interval processing time p1122 is [3], [4], that
is, the actual value of p1122 may any ones in [3], [4] and is not
fixed.

Table 2 also gives the velocities in parentheses for the
chosen machines of jobs at each stage and Figure 2 describes
a schedule of the example. In Figure 2, segment under the
line is the beginning time and the segment above the line
represents the completion time for an operation. This kind
of graphical description is proposed by Lei [39]. On each
segment, operation and its beginning time or completion
time are listed, for example, o22[1, 3] indicates the beginning
time [1,3] of o22. oik indicates the operation of job Ji at
stage k .

For machineM21, three jobs are processed sequentially, for
operation o32, its last operation o31 is completed at [2, 3],
the earliest available time of M21 is [0,0], so the beginning
time of o32 is [2,3] (= [2, 3] ∨ [0, 0]) and the completion
time of o32 is obtained by addition operation of [2, 3]+[2, 5].
To calculate makespan, the completion times of J4 and J6 are
[8,15] and [7,17] and makespan is obtained by max operator
of two completion times, so interval makespan is f1 = [8, 17].
For machineM21, one idle period exists, the length of period
is [2,3], the interval energy consumption on idle period is
[3,4.5], energy consumptions for processing three jobs are
[6,15], [9,15] and [12,24], respectively and total energy of

M21 is [30, 58.5]. f2 is the sum of energy consumption of all
machines. f2 = [167, 300].
For themulti-objective optimization problemwith themin-

imization of f1, f2, Pareto dominance is often used. For solu-
tions x and y, if fi(x) ≤ fi(y) for i = 1, 2 and fi(x) < fi(y) for
i = 1 or 2, then x � y, which means that x dominates y or y
is dominated by x. For EIHFSP, ranking operator is used to
decide the domination relation between solutions.

IV. EGICA FOR EIHFSP
In this section, the basic principle of ICA is first introduced
and then EGICA is applied to solve EIHFSP.

A. INTRODUCTION TO ICA
In ICA, a country represents a solution of the problem and
solutions in population P are categorized into two parts:
imperialists and colonies, the former are some best solutions
in P and the latter are all solutions of P except imperialists.
The search of ICA starts with initial empires, then empires are
often evolved independently by assimilation and revolution,
and imperialist competition is done among all empires. The
detailed steps are shown in Algorithm 1. rk is random number
following uniform distribution in [0, 1].

With respect to cost, the smaller the cost of a solution is,
the better the solution is. c̄k , NCk , TCk , TCk and PEk are
defined by Hosseini and Khaled [41].

B. DESCRIPTIONS ON EGICA
In the previous works on ICAs [26]–[36], empires are evolved
independently and empire grouping is seldom considered.
If all empires are divided into several groups, more relations
can be occur among empires and high diversity of population
can be kept, for example, assimilation of colony can be
done by moving toward imperialist of other empire; on the
other hand, two-phase imperialist competition is introduced
to avoid falling local optima, in which empires of each group
first compete each other and then competition among groups
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Algorithm 1 ICA
1: Randomly produce an initial population P and calculate

the cost of each solution in P.
2: Choose Nim solutions with smallest cost as imperialists,

calculate the normalized cost c̄k and NCk and randomly
allocate NCk colonies for each imperialist k .

3: while termination condition is not met do
4: Assimilation. In each empire, each colony moves

toward its imperialist and is replaced with the newly
generated solution if possible.

5: Revolution. Perform revolution according to revolu-
tion probability UR.

6: Exchange. In each empire, compare each colony with
its imperialist and replace the imperialist with the
colony with smaller cost than its imperialist.

7: Imperialist competition. Calculate TCk , TCk and
power PEk for each empire k , construct the vec-
tor

[
PE1 − r1,PE2 − r2, · · · ,PENim − rNim

]
, decide

an empire g with the biggest PEg− rg and allocate the
weakest colony of the weakest empire into empire g.

8: end while

FIGURE 3. Flow chart of EGICA.

is done only when each group has one empire. These features
are hardly adopted in ICA, so EGICA is constructed based on
the above features.

Themain steps of EGICA are shown in Algorithm 2, where
s is the number of groups and Gh indicates the number of

Algorithm 2 EGICA
1: Randomly produce an initial population P and construct

initial archive �, t = 1.
2: Initial empires and empires grouping.
3: while termination condition is not met do
4: for h = 1 to s do
5: Execute new assimilation, revolution and exchange

colony and its imperialist if possible in empires of
group h.

6: if Gh > 1 then
7: Perform imperialist competition in group h.
8: end if
9: end for
10: if at least one group with at least two empires then
11: Divide all empires into s groups again.
12: else
13: Execute competition among groups.
14: end if
15: end while

FIGURE 4. Encoding of EIHFSP.

empires in group h. The termination condition is max_it .
When a new solution is generated, t = t + 1. Figure 3 gives
the flow chart of EGICA.

C. ENCODING AND DECODING OF EIHFSP
EIHFSP is composed of scheduling, machine assignment
and speed selection, so a three-string representation of
EHFSP [22] is directly used, which can be directly applied to
represent the solution of EIHFSP. The decoding procedure of
EHFSP is also utilized to build schedule except that interval
Cmax and interval TEC are obtained according to interval
processing time.

For EIHFSP with n jobs, m stages and d operation speeds
for each machine, Figure 4 shows job permutation, machine
assignment string and speed selection string. In these strings,
πi ∈ {1, 2, . . . , n}, µik ∈ Sk is the unrelated machine at stage
k assigned to process job Ji, qik denotes the speed of machine
µik ∈ Sk , qik ∈ V . The decoding procedure for each solution
is shown in Algorithm 3.

Algorithm 3 Decoding Procedure
1: for i = 1 to n do
2: for k = 1 to m do

Job Jπ i is processed on machine µπik at speed qπik
3: end for
4: end for
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For the example in Table 2, a possible solution consists
of (3, 1, 2, 5, 6, 4), (M12,M21,M13,M22,M11,M21,M13,

M21,M11,M22,M12,M22), (v2, v1, v1, v2, v3, v1, v2, v3, v1,
v1, v3, v1), and the corresponding schedule is given
in Figure 2. Three strings are separate in the optimization
procedure of EGICA, global search and neighborhood search
are used independently to each string.

D. INITIAL EMPIRES AND EMPIRE GROUPING
Initial population PwithN solutions are randomly generated,
then normalized cost c̄i for solution i is calculated by

c̄i = max
l∈P
{rankl} − ranki + 0.1× crowdi (6)

where ranki represents rank value of solution i obtained
by non-dominated sorting [51] and crowdi is the crowding
distance calculated using middle value of interval objectives
f1 and f2.
Suppose that Hl is the set of solutions with rank l. When
|Hl | > 2, for j = 1, 2, all solutions are first sorted in the
ascending order of the middle value of the jth objective, f̃

gj
j is

the gjth value in the obtained order, and for the gjth (1 < gj <
|Hl |), if f̄i,j = f̃

gj
j , then crowdi for solution i is computed by

crowdi =
∑2

j=1

f̃
gj+1
j − f̃

gj−1
j

f̄ max
j − f̄ min

j

(7)

where f̄i,j is the middle value of fj of solution i, f̄
max(min)
j =

max(min)
i∈Hl

{
f̄i,j
}
.

Obviously, crowdi is in [0,2] for solution i with
1 < gj < |Hl |.

For solution i with gj = |Hl | or 1, crowdi ∈ [2 ×
crowdmax , 3× crowdmax], where crowdmax denotes the max-
imum value of crowdi for all solutions with 1 < gi < |Hl |.

When solution i has gj of 1 or |Hl |, it has the biggest or
smallest f̄i,j and is assigned high crowding distance as done
by Deb et al. [51].

The above new definition on c̄i can guarantee that
each imperialist can be allocated the reasonable amount of
colonies.

Algorithm 4 shows the detailed steps for the construction
of initial empires and the grouping of empires, in which
all empires are divided into s groups. POWk and NCk are
defined by

POWk = c̄k
/∑

j∈Q
c̄j (8)

NCk = round (POWk × Ncol) (9)

where round(x) is an integer not exceeding x and being
closest to x and Q is the set of all imperialists.
A new definition on TCk is given, in which the coefficient

2Nim
N−Nim

is not fixed.

TCk = c̄k +
2Nim

N − Nim

∑
j∈2k

c̄j/NCk (10)

where 2k is the set of colonies in empire k .

Algorithm 4 Initial Empires and Initial Groups
1: Perform non-dominated sorting for all solutions in P.
2: Sort all solutions in each Hl in the ascending order of f̄i,j

and then calculate normalized cost for each solution.
3: Choose Nim solutions with the biggest normalized cost

from P as imperialists and other solutions as colonies.
4: Compute the power POWk of each imperialist k and the

number NCk of colonies possessed by imperialist k .
5: Randomly allocate NCk colonies for each imperialist k .
6: Calculate the normalized total cost TCk .
7: Sort all empires in the descending order of TCk , suppose

that TC1 ≥ TC2 ≥ · · · ≥ TCNim .
8: Assign empire 1 to group 1, empire 2 to group 2, empire s

to group s, empire s+ 1 to group 1 and so on.

In EGICA, normalized cost based on interval objectives
is used to decide imperialists and colonies and all empires
are divided into s groups, these two steps seldom exist in the
previous ICAs [27]–[36].

E. ASSIMILATION AND REVOLUTION IN EACH GROUP
Assimilation and revolution are the main operators for pro-
ducing new solutions. Assimilation is often done by moving
colony toward its imperialist and colony seldom learns from
imperialist of other empires. Revolution is often implemented
using the same way as mutation of GA and a fixed revolution
probabilityUR is used to choose colonies. In this study, a new
assimilation based on the number and TCk of empires is
executed in groups 1, 2, · · · , s, respectively, and an adaptive
revolution probability is adopted.

Algorithm 5 shows the steps of assimilation and revolution
in a group, where θ is a real number, β1 is the number of
neighborhood search for each chosen colony and random
number α follows uniform distribution on [0, 1]. Suppose
that empires 1, 2, · · · ,Gh are allocated into group h. TC1 ≥

TC2 ≥ · · · ≥ TCGh .
Three global search operators between colony λ and a

chosen imperialist are used [22], which are described as
follows: for two solutions, if a random number α < β2, then
operator on scheduling is executed; otherwise, two operators
of other two strings are selected in the same probability and
applied, where β2 is a real number. Both β2 and θ are set to
be 0.7 based on experiments.

An adaptive revolution probability is defined by

UR = U0 × e

(
t

max_it−1
)

(11)

where U0 is set to be 0.35, t and max_it are the current num-
ber and maximum number of objective function evaluations.

Obviously, UR increases with t . In the early stage, t is
small, population P is not evolved well and exploration is the
main focus of search.With the increasing of t , solution quality
of P improves continuously and exploitation ability should
be intensified to make good balance between exploration and
exploitation, so a continuously increasing UR is presented.
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Algorithm 5 Assimilation and Revolution in Group h
1: Assimilation is done between each colony of empire

1 and its imperialist by global search operators.
2: if Gh ≥ 3 then
3: for k = 2 to Gh do
4: For each colony λ ∈ 2k , if a random number α <

(k − 1)
/
Gh, then perform global search between λ

and imperialist of empire 1; otherwise, apply global
search between λ and its imperialist, produce a new
solution z and update λ and archive �.

5: end for
6: end if
7: if Gh = 2 then
8: For each colony λ ∈ 22, if a random number α < θ ,

then perform global search between λ and its impe-
rialist; otherwise, apply global search between λ and
imperialist of empire 1, produce a new solution z and
update λ and �.

9: end if
10: for k = 1 to Gh do
11: for each colony λ ∈ 2k do
12: if A random number α < UR then
13: g = 1
14: for j = 1 to β1 do
15: Apply N g on λ, obtain a new solution z, com-

pare z with λ and update λ and �.
16: g = g+ 1, let g = 1 if g = 5.
17: end for
18: end if
19: end for
20: end for

Four neighborhood structuresN1,N2,N3,N4 are applied.
The first one generates solutions by exchanging two ran-
domly chosen jobs in scheduling string and the next three are
insert , change and speed [22], respectively.

When a new solution z is compared with λ, the follow-
ing conditions are tested: if solution z dominates λ or is
non-dominated with λ, then replace λ with z.
External archive � is used to store non-dominated solu-

tions generated by EGICA.� is updated in the followingway.
Solution z is added into �, all members of � are compared
each other and the dominated ones are removed from �.

F. TWO-PHASE IMPERIALIST COMPETITION
In general, all empires compete each other after assimilation
and revolution and the weakest colony of the weakest empire
is directly added into the winning empire. In this study,
two-phase imperialist competition is proposed, in which
empires in each group compete each other and then groups
compete each other when each group has only one empire.
Algorithm 6 gives imperialist competition in each group h,
where ξ is a real number and set to be 0.6 based on
experiments.

Algorithm 6 First Phase of Imperialist Competition in
Group h
1: for k = 1 to Gh do
2: Compute normalized cost c̄i, normalized total cost

TCk and power PEk of empire k .
3: end for
4: Let power of empire as selection probability, apply

roulette selection to choose a winning empire k1 and
choose an empire k2 6= k1 with smallest TCk2 .

5: Randomly select a solution x ∈ � and directly add into
empire k1, delete the weakest colony from empire k2.

6: if t ≤ ξ × max_it then
7: Imperialists of empires k1 and k2 are chosen in the

same probability, global search between x and the
chosen imperialist is done once, a new solution z is
obtained and decide if x and � are updated as done in
Algorithm 5.

8: else
9: N2,N3,N4 acts on x respectively, when a new solu-

tion z is obtained, decide if x and � are renewed.
10: end if

As shown in Algorithm 6, a chosen member of � directly
substitutes for the weakest colony and then an adaptive search
is performed on the chosen member. The choosing of x from
external archive � and the application of adaptive search are
to keep high diversity in winning empire; moreover, no proba-
bility vector is constructed and roulette selection is executed,
the competition of each group is independently, so there are at
least s empires in most of search procedure and competition
can be done fully.

When each group has only one empire, group competition
is done in the same way of Algorithm 6 except that there are
s empires, not Gh empires.

G. FEATURES ON EGICA
As shown above, EGICA has some different features from
the existing ICAs [26]–[36]. (1) After population is divided
into Nim empires, these empires are allocated into s groups.
(2) Assimilation is implemented differently in different cases
and groups to intensify the exploration ability and an adaptive
revolution is adopted in each group to obtain a good exploita-
tion.(3) Two-phase imperialist competition is adopted, which
is first done independently in each group and then executed
among groups when each group has only one empire.

In general, these features are beneficial to keep high
diversity of population and avoid falling local optima, thus,
EGICA is an effective method for EIHFSP.

V. COMPUTATIONAL EXPERIMENTS AND RESULTS
Extensive experiments are conducted on a set of problems to
test the performance of EGICA for EIHFSP. All experiments
are implemented by using Microsoft Visual C++ 2015 and
run on 4.0G RAM 2.00GHz CPU PC.
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A. INSTANCES, METRICS AND COMPARATIVE
ALGORITHMS
44 instances are used, which are the combinations of
n = 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120 and m =
2, 4, 6, 8. The detailed descriptions on their data except ηikj
are shown in paper [22]. For ηikj, ηLikj ∈ [1, 5] and ηRikj =
ηLikj + ε, ε ∈ [1, 4]. ηLikj and ε are real number.

Metric C [52] is applied to compare the approximate Pareto
optimal set respectively obtained by algorithms. C (L,B)
measures the fraction of members of B that are dominated
by members of L.

C (L,B) =
|{b ∈ B : ∃h ∈ L, h � b}|

|B|
(12)

Metric ρ [53] indicates the ratio of number of the elements
in the set {x ∈ �l |x ∈ �∗ } to |�∗|, where The reference set
�∗ is composed of the non-dominated solutions in

⋃
l �l .

The existing metrics for multi-objective optimization are
difficult to be used directly in uncertain case. C and ρ are
often applied for multi-objective scheduling algorithms and
can be directly utilized in the interval case;moreover, they can
be used to reveal the even distribution of non-dominated solu-
tions and the distribution range of solutions and evaluate con-
vergence, for example, ρ = 1 means that all non-dominated
solutions of an algorithm belongs to the reference set, that is,
the algorithm has better convergence than other algorithms.

EIHFSP is seldom considered and it is difficult to
find comparative algorithms. In this study, we choose a
CCA [14] for MOHFSP, the classical multiobjective opti-
mization algorithm named non-dominated sorting genetic
algorithm-II (NSGA-II) and multi-objective tabu search
method (MOTS) [10] that obtains better results for HFSPwith
preventive maintenance as comparative algorithms.

Karimi and Davoudpour [14] proposed a multi-objective
CCA for HFSP with the minimization of makespan and total
weighted tardiness. This CCA has good performance in solv-
ing MOHFSP and can be directly applied to solve EIHFSP
after a speed selection string and neighborhood structure
speed are added.
To apply MOTS to EIHFSP, steps on maintenance are

deleted and a greedy rule in the original MOTS is still applied
to allocate machines for each job. Speed selection string and
speed are also adopted.

We revised NSGA-II for EIHFSP in the following way:
crossovers between two individuals are also executed in terms
of global search in Algorithm 5, one of four neighborhood
structures is randomly chosen as mutation operator when
mutation is for an individual.

The main parameters of EGICA are listed below: N , Nim,
s, β1, max_it . Taguchi method is used to decide the set-
tings for parameters. The levels of each parameter are shown
in Table 3. Table 4 gives the orthogonal array L27(35). EGICA
with each combination runs 20 times for 90×6. We calculate
ρ and the results of ρ and S/N ratio based on ρ are shown
in Figure 5. S/N ratio is defined as−10 log10

[
(1+ ε − ρ)2

]
where ε is a small number and set to be 0.001.

TABLE 3. Parameters and their levels.

TABLE 4. The orthogonal array L27(35).

FIGURE 5. The mean ρ and the mean S/N ratio of ρ.

As shown in Figure 5, the best settings are N = 80,
Nim = 6, s = 2, β1 = 8, max_it = 105.

The parameters of CCA are N = 90, Nim = 9,
max_it = 105.

For MOTS, the size of neighborhood solutions is set to be
350 and max_it is set to be 105 for all instances.
For NSGA-II, population scale N = 100, crossover prob-

ability Pc = 0.8, mutation probability Pm = 0.1 and
maximum generation of max_it/100.
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TABLE 5. Computational results of EGICA and other algorithms on
metric ρ.

The above parameters are obtained based on
experiments.

B. EFFECT OF NEW STRATEGIES IN EGICA
There are two new strategies of EGICA. The first one
is empire grouping. EGICA1 is obtained from EGICA by
removing empire grouping from EGICA. The second one is
two-phase imperialist competition based on adaptive search
of member of archive and roulette selection of winning
empire. EGICA2 is produced, in which imperialist competi-
tion is executed in the way of ICA [41]. There is no adaptive
search in EGICA2.

Table 5 shows the computations results of EGICA and
other algorithms on metric ρ, in which the reference set �∗

consists of the non-dominated solutions in the union set of
archive or non-dominated solutions set of EGICA, EGICA1,
EGICA2, CCA, NSGA-II and MOTS. Each algorithm ran-
domly runs 20 times for each instance. Table 6 describes
the results of three EGICAs on metric C. To make the
results statistically convincing, paired-sample t-test is done

TABLE 6. Computational results of three EGICAs on metric C.

TABLE 7. Results of paired sample t-test.

to compare EGICAwith other algorithms. The p-value results
of paired-sample t-test are shown in Table 7.

The term ‘t-test (A, B)’ means that a paired t-test is con-
ducted to judge whether algorithm A gives a better sample
mean than B. We assume a significance level of 0.05. There
is significant difference between A and B in the statistical
sense if the p-value is less than 0.05.
As shown in Tables 5 and 6, EGICA performs better than

its two variants on most of instances. EGICA generates better
ρ than EGICA1 and EGICA2 on 39 instances, C(E1,E)
is less than C(E,E1) on 42 instances and EGICA has
smaller C(E2,E) than C(E,E2) on 39 instances. The results
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TABLE 8. Computational results of EGICA and its three comparative
algorithms on metric C.

in Table 7 also demonstrate the notable performance differ-
ence between EGICA and its variants.

When population is divided into Nim empires, empires
are evolved independently and solutions in an empire just
exchange information with those in the same empire. Empire
grouping makes empires have frequent communications, as a
result, the performance of EGICA is improved. In the usual
imperialist competition, the weakest colony from the weakest
empire is directly added into the winning empire; in EGICA,
theweakest colony is eliminated from thewinning empire and
directly replaced with a member of archive and then adaptive
search of the member is executed, in this way, the computing
resource waste on the weakest colony is avoided and search
efficiency is improved, so the new imperialist competition
really improves the performance of EGICA.

C. RESULTS AND ANALYSES
Tables 5 and 8 describe the computational results of EGICA
and its three comparative algorithms. Table 9 shows the

TABLE 9. Computational times of EGICA and its three comparative
algorithms.

FIGURE 6. Distributions of non-dominated solutions of four algorithms
for instance 60 × 8.

computational times of four algorithms. Figure 6 gives the
distributions of non-dominated solutions of four algorithms
for instance 60 × 8. Because it is impossible to show the
distribution of solutions in two-dimensional objective space
using interval objectives, each point in Figure 6 is composed
of middle values of f1, f2 of solutions. Figure 7 is the Gantt
chart of a non-dominated solution of EGICA for instance
40 × 2, f1 = [18.9, 37.3], f2 = [835.7, 1692.2]. The serial
number of job is labeled on segment.

As shown in Tables 5 and 8, EGICA can provide better
results than CCA, NSGA-II and MOTS on most of instances.
EGICA has bigger ρ than NSGA-II on 43 instances and
smaller C(N ,E) than C(E,N ) on 43 instances; moreover,
EGICA provides all members of the reference set �∗ on
17 instances. The statistical results in Table 7 also validate
the performance difference between EGICA and NSGA-II.
Figure 6 also shows the performance difference between
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FIGURE 7. A non-dominated solution of EGICA for instance 40 × 2.
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EGICA and NSGA-II. The same conclusion also can be
drawn on EGICA and CCA, MOTS.

In EGICA, all empires are divided into s groups,
the strongest empire of each group guides the search of other
empires in the same group, empires in a group are not fixed
and an empire can be allocated into different groups, these
strategies can effectively keep high diversity, so it can be
concluded that empire or sub-population grouping may be
effective path to improve performance of multi-population
algorithms like ICA; on the other hand, two-phase imperi-
alist competition can effectively avoid premature. The above
features result in the good performance of EGICA on solv-
ing EIHFSP, thus, EGICA is a very competitive method for
EIHFSP.

VI. CONCLUSIONS
Energy-efficient scheduling is the main topic of schedul-
ing research in recent years; however, the main works on
energy-efficient scheduling are done in the deterministic
case and uncertainty is seldom adopted in energy-efficient
scheduling problem. In this study, an energy-efficient inter-
val scheduling problem called EIHFSP is investigated and a
new algorithm named EGICA is proposed to minimize two
interval objectives. EGICA is composed of empire grouping,
assimilation, adaptive revolution and two-phase imperialist
competition. The computational experiments are conducted
and results show that the effectiveness of empire grouping
and two-phase imperialist competition and the promising
advantages of EGICA on EIHFSP.

This paper provides some new strategies to construct a ICA
with good performance. This is the theoretical contribution
of our paper. We will investigate new strategies of EGICA on
the applications of other scheduling problems, such as other
energy-efficient scheduling problem with uncertainty. On the
other hand, we have paid attention to distributed scheduling
with energy related objective and tried to design a powerful
scheduling algorithm, so energy-efficient distributed schedul-
ing is also our future topic.
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