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ABSTRACT The conventional robust optimization methods usually focus on problems with unimodal
random variables. In real applications, input random variables may follow multimodal distributions with
multiple peaks in their probability density.Whenmultimodal random variables are involved, the conventional
methods, such as the mean-variance-based methods, will be not accurate. This paper presents an efficient
robust optimization method, which provides a potential computational tool for engineering problems
involving multimodal random variables. A robustness metric is formulated by introducing the concept of
accepting/rejecting the limit to calculate the failure probability of the performance response, which can
directly capture the multimodal characteristics of the performance. A second-order higher moment method
is presented to efficiently conduct the probability calculation in the inner loop of design optimization. The
proposed decoupling strategy drives the probability calculation and the design optimization sequentially
and alternately. This method is applied to the three micromachine design problems, including a sweat-rate
sensor, a piezoelectric sensor, and an image sensing module. The numerical results show that the method has
excellent engineering practicality due to the comprehensive performance in terms of efficiency, accuracy,
and convergence.

INDEX TERMS Probabilistic model, multimodal distribution, robust optimization, micromachine design.

I. INTRODUCTION
In the last several decades, the engineering optimiza-
tion [1], [2] aimed at improving product cost-performance
ratio has made significant progress in theory and method and
has been widely used in practice. The conventional engineer-
ing optimization is usually based on deterministic parameters
and models, and it can be solved by classical determinis-
tic algorithms. In practical engineering problems, however,
there exist various uncertainties in terms of structure sizes,
material properties, and operating conditions. Although these
uncertainties are small in most cases, they may cause product
performance to fluctuate greatly or even fail. Due to the
input uncertainties, the actual performance values fluctuate
around its designed nominal value. Such fluctuation leads to
the quality loss of the product. Robust optimization [3] can
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ensure that the key performance of a product accurately in the
presence of uncertainties. The tasks of the robust optimiza-
tion are to minimize 1) the deviation from the performance
nominal value to the targeted value, and 2) the fluctuation
of the actual performance value. The concept of robust opti-
mization has been rooted in engineering design, and widely
applied to various fields, such as electronic [4], vehicle [5],
aerospace [6], and civil engineering [7]. Before performing
the robust optimization, a method should be select to model
the uncertainties [8], [9]. If sufficient sample data about the
uncertain parameters are available to define their precise
probability distribution, the probabilistic method [10], [11]
is the prior choice. In this case, the input uncertainties are
treated as the random variables; also, the product perfor-
mance becomes a random function. As a result, its expecta-
tion can measure the robustness and should be minimized.
The expectation generally consists of two terms, which are
the square of the deviation of the performance mean value
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from its target and the variance of the performance value [12].
By robust optimization, the mean of the performance value
is brought to its target, and simultaneously, the variation
in the performance is minimized. The probabilistic-model-
based robust optimization has achieved significant progress
in methodology and applications. The different approaches
to perform robust optimization in practice are reviewed in the
lectures [13]–[15].

Most of the robust optimization methods handle prob-
lems with unimodal random variables. This means that the
probability density function (PDF) of each random variable
has only one mode (local maximum). In engineering opti-
mization problems, however, the random variable may fol-
low the distribution with two or more probability density
modes, which is named as the multimodal random variable
in this paper. For example, the long-term monitoring data
verifies that the structural fatigue stress of a steel bridge
carrying both highway and railway traffic follows a bimodal
distribution [16]. The statistical results show that the Knoop
microhardness of nanostructured partially stabilized zirconia
coatings follows a bimodal distribution [17]. The abrupt local
change of voltage in the complex power grid was pronounced
to follow a bimodal distribution [18]. It was reported that the
multimodal distribution exists in the vibratory load of a blade
subject to stochastic dynamic excitation [19]. Similar to gen-
eral problems, the multimodal problems can be solved by the
classical probability methods, such as the first order second
moment (FOSM) method [20], [21] and the most-probable-
point-based (MPP-based) method [22], [23]. However, these
methods suffer from accuracy problems. In these methods,
each multimodal variable usually requires to be transformed
into the standard normal random variable. This transforma-
tion makes the performance function much more nonlin-
ear, and thus, the computational error may increase greatly.
To handle the multimodal distributed problems in a better
way, a few researches have been conducted. He et al. [19]
formulated an asymptotic analysis cycle by establishing the
optimal weighting scheme for the Laplace approximation
of the random variable with the multimodal distribution.
Hu and Du [24] employed the reliability methods based on
first-order saddlepoint approximation to perform the uncer-
tainty analysis for problems following bimodal distribution.

The two aforementioned methods are mainly applicable to
the reliability assessment. However, it is not suitable to intro-
duce them directly into the robust optimization for problems
with multimodal distributions. There are two main reasons,
one of which is still the accuracy problem. For example, when
the PDF is highly unsymmetrical at modes, a large error is
expected for the Laplace approximation [25]. The saddlepoint
approximation method linearizes the performance function,
which may fail to provide satisfying computational accuracy
when the response function is highly nonlinear [26]. In robust
optimization, performance robustness analysis is required at
each design point. Its poor accuracy may result in an invalid
result or even no convergence. On the other hand, even if
the existing methods accurately obtain the mean and variance

of the performance, they may fail to capture the multimodal
feature and be not accurate to measure the performance
robustness. Therefore, the development of an effective robust
optimization method is of vital importance for the product
design problems with multimodal distributions. To the best
of our knowledge, such work has not yet been reported.

In the past two decades, performance optimization for
micromachine systems has been extensively studied in both
academic and engineering practice [27]. Given that uncer-
tainties are inevitable in actual micromachine systems, robust
optimization for uncertain micromachine systems has been
explored [28]. In real applications, some input random vari-
ables may follow multimodal distributions. Conventional
robust optimization method encounters a specific predica-
ment. In this paper, a robust optimization model and an effi-
cient algorithm are proposed, which provides a computational
tool for the robust optimization with multimodal random
variables. The proposed method is applied to the problems of
micromachine design, in which the engineering practicability
is discussed. The contents of this paper are organized as fol-
lows. The uncertainty modeling of input multimodal random
variables is conducted using a Gaussian mixture model in
Section 1. Then, the robust optimization model is formu-
lated in Section 2. The corresponding algorithm is proposed
in Section 3. In Section 4, this method has been validated
through three engineering applications, including a sweat-
rate sensor, a piezoelectric sensor, and an image sensing
module. The conclusions have been shown in Section 5.

II. THE MODELLING OF INPUT MULTIMODAL RANDOM
VARIABLES
The formulation of a probabilistic model for the input uncer-
tainties is the prerequisite of a robust optimization using prob-
ability theory. The probabilistic modeling usually involves
two steps. Firstly, a mathematical structure needs to be
defined to describe uncertainty. The second step is to deter-
mine the parameter values of the mathematical structure. As a
mathematical tool for describing random variables, the Gaus-
sian mixture model (GMM) [29] is flexible enough and has
been applied in various fields, such as machine learning,
pattern recognition, etc. In this paper, the GMM is employed
to formulate the input multimodal random variables of an
uncertain problem. The PDF of amultimodal random variable
can be written as the linear combination of multiple Gaussian
components:

ρZ =

nϕ∑
l=1

αlϕ (Z |µl, σl )

ϕ =
1

√
2πσl

exp

(
−
(Z − µl)2

2σ 2
l

)
(1)

where Z denotes the random variable, ϕ is the i-th Gaus-
sian component, nϕ is the number of the components, and
αl is the weight factor of the component. Each weight factor

satisfies αl > 0 and
nϕ∑
l=1
αl = 1. The parameters to be
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TABLE 1. The PDFs of the random responses in the distribution thpes.

determined in Equation (1) can be collected into the vector
θ =

(
α1, µ1, σ1, α2, µ2, σ2, . . . , αnϕ , µnϕ , σnϕ

)
.

The maximum likelihood estimation method [30] is a com-
mon choice for parameter estimation. Given the observed
samples z =

(
z1, z2, . . . , znS

)
, a set of latent variables

γ =
{
γ 1, γ 2, . . . , γ nS

}
is introduced, which indicates

that the sample zi was produced by the i-th Gaussian
component. Each latent variable is a binary vector γ i =(
γi,1, γi,2, . . . , γi,nϕ

)
, where γi,l = 1 and γi,p = 0 for l 6= p.

Based on this, the log-likelihood function can be established
as

log ρZ (z, γ |θ ) = log
nS∏
i=1

ρZ
(
zi, γ i |θ

)
=

nS∑
i=1

nϕ∑
l

γi,l log (αlϕ (zi |µl, σl )) (2)

The parameter vector θ can be searched by maximizing the
log-likelihood function:

max
θ

log ρZ (z, γ |θ ) (3)

The expectation maximization algorithm [31] is employed to
solve the optimization problem of Equation (3) in this paper.

III. THE MODELLING OF INPUT MULTIMODAL
RANDOM VARIABLES
When an uncertainty problem involves multimodal distri-
bution, the random response will mostly exhibit the multi-
modal feature. The classical robust optimization based on
probabilistic models uses the mean and variance of the ran-
dom response to measure the robustness of product perfor-
mance under certainties. This robustness metric is generally
sufficient for unimodal responses, but it may fail to grasp
the multimodal characteristics of performance response. For
example, FIGURE 1 shows the four random responses with
the same mean

(
µf = 3

)
and variance

(
σ 2
f = 0.32

)
, which

FIGURE 1. Four random responses with the same mean and variance.

respectively follow a normal distribution, a lognormal dis-
tribution, an extreme value distribution, and a bimodal dis-
tribution. The PDFs are detailed in TABLE 1. Under the
mean-variance-based robustness metrics, the four cases of
random responses bring the same level of quality loss. From
the perspective of quality assurance in engineering, however,
the quality loss of these cases is different. For a smaller-the-
better problem with the accept/reject limit (ARL) of v = 3.6,
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the failure probabilities in the four cases are 14.5%, 14.3%,
11.3%, and 25.7%, respectively. The results show that the
failure probability of the fourth case is much more than
that of others. Therefore, the mean-variance-based robustness
metrics seem to be inappropriate in many cases involving
multimodal distributions.

To address this issue, the distribution of performance
response is employed directly to formulate the robust opti-
mization model. That is, the probability of f ≥ v is
minimized, where f denotes the performance function and
v is the ARL. Note that, unless the designer has a clear
picture of the engineering problem, fixing the ARL may
be a problematic decision problem. Thus, v is processed
into a new-added design variable. The robust optimiza-
tion model for a smaller-the-better problem is formulated
as

min
d,µX ,v

v, min Pf

s.t. Pf = Pr (f (d,X,P) ≥ v) ≤ Paf
d l ≤ d ≤ du, µlX ≤ µX ≤ µ

u
X (4)

where d is the nd -dimensional deterministic design vector;
X is the nX -dimensional random design vector; P is the
nP-dimensional random parameter vector; the superscripts
of l, u represent the value range of a design variable;
µ represents the mean vector of random vector; Pr represents
probability calculation; and Paf denotes the allowable reject
ratio which is usually given according to the engineering
experience or quality standards. Note that, the problems of
larger-the-better

(
f L
)
and normal-the-best

(
f N
)
can be con-

verted into the smaller-the-better problem, such as f = −f L

and f =
(
f N
)2.

The proposed model can be viewed as an extension of
classical robust optimization. Minimizing v is to improve
the product performance, and minimizing Pr (f ≥ v) is
to reduce the quality loss caused by uncertainties. Due
to considering the distribution of f instead of its mean
and variance, the proposed robustness metric can directly
reflect the quality loss and results in higher accuracy. Also,
it should be pointed out that determining Pr (f ≥ v) ana-
lytically will almost always be excluded except for some
explicit-function-based problems. Engineering problems are
usually based on the time-consuming simulation model,
such as finite element model [32] or multi-body dynam-
ics model [33]. Calculating Pr (f ≥ v) numerically will be
computationally expensive because of a large number of
simulation model calculations. Since Pr (f ≥ v) is to be
optimized, the probability calculation is in the inner loop
of the optimization process. That is, the overall compu-
tational complexity increases considerably in the robust
optimization.

IV. THE PROPOSED ALGORITHM
A decoupling algorithm is developed to solve the robust opti-
mization as Equation (4) to improve the efficiency. Its basic
idea is to decouple the probability calculation from the inner

loop of the optimization and convert the robust optimization
into a sequence iteration process. The probability calculation
and the design optimization are performed alternately until
convergence. The proposed algorithms are given below to
illustrate in details.

A. PROBABILITY CALCULATION
During the optimization process, the probability cal-
culation is used to evaluate the performance robust-
ness at each design point. At a certain design point
(d,µX , v), Pr (f ≥ v) can be written in the following integral
form:

Pr (f ≥ v) =
∫
+∞

v
ρf (f (Z)) df (5)

where Z = (X, P), and ρf represents the PDF of the
performance response. Equation (5) is a multidimensional
integral problem which can hardly be solved analytically
unless the analytical formula of ρf is obtained. Monte-Carlo
simulation [34] usually is computationally expensive to solve
it numerically due to the time-consuming calculations of
the performance function. Although the first-order methods
(e.g., FOSM [35]) are efficient, the accuracy of them may be
insufficient when the input certainties involving multimodal
distributions.

To enhance the efficiency and accuracy, the second-order
higher moment (SOHM) method is proposed to determine
Pr (f ≥ v). Firstly, the central moments are obtained accord-
ing to the PDF of each input random variable, which can be
expressed as

M j (Zi) = E
(
Zi − µZi

)j
=

∫
+∞

−∞

(
Zi − µZi

)j
ρiZ (Zi) dZi (6)

where is the j-th order moment of the random variable Zi,
E represents mean calculation, ρiZ denotes the PDF of Zi
which has been formulated by the GMM illustrated
in Section 1, and the mean µZi can be calculated as

µZi = E (Zi) =
∫
+∞

−∞

ZiρiZ (Zi) dZi (7)

Secondly, the second-order Taylor approximation for f (Z)
is established at the mean point of µZ:

f ≈ H = f (µZ)+ (Z− µZ)
T
∇f (µZ)

+
1
2
(Z− µZ)

T
∇

2f (µZ) (Z− µZ) (8)

For most engineering problems, the uncertainty for a vari-
able behaves as the small perturbation around its nominal
value. Thus, the second-order approximation method [35]
generally can guarantee accuracy. Thirdly, the central
moments of the performance response are calculated
based on the moments of Zi. Combining Equation (8),
the first-fourth order moments of f (Z) can be calculated
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analytically [36]:

M1 (f ) = f (µZ)+
1
2

nZ∑
i=1

∂2f (µZ)

∂Z2
i

M2 (Zi)

M2 (f ) =
nZ∑
i=1

(
∂f (µZ)
∂Zi

)2

M2 (Zi)

+

nZ∑
i=1

∂f (µZ)
∂Zi

∂2f (µZ)

∂Z2
i

M3 (Zi)

+
1
4

nZ∑
i=1

(
∂2f (µZ)

∂Z2
i

)2 (
M4 (Zi)− 3

(
M2 (Zi)

)2)

+
1
2

nZ∑
i=1

nZ∑
j=1

(
∂2f (µZ)
∂Zi∂Zj

)2

M2 (Zi)M2 (Zj) (9)

M3 (f ) =
nZ∑
i=1

(
∂f (µZ)
∂Zi

)3

M3 (Zi)

+
3
2

nZ∑
i=1

(
∂2f (µZ)

∂Z2
i

)2
∂2f (µZ)

∂Z2
i

×

(
M4 (Zi)− 3

(
M2 (Zi)

)2)
+ 3

nZ∑
i=1

nZ∑
j=1

∂f (µZ)
∂Zi

∂f (µZ)
∂Zj

∂2f (µZ)
∂Zi∂Zj

M2 (Zi)

×

(
M2 (Zj))2

M4 (f ) =
nZ∑
i=1

(
∂f (µZ)
∂Zi

)4 (
M4 (Zi)− 3

(
M2 (Zi)

)2)

+ 3
nZ∑
i=1

nZ∑
j=1

(
∂f (µZ)
∂Zi

)2 (
∂f (µZ)
∂Zj

)2

×M2 (Zi)M2 (Zj)
The higher order moments can be obtained by the recursive

formula as

M j
= −

j
1+ (j+ 1) c2

(
c0M j−2

+ c1M j−1
)

(10)

where

c0 =
1
A
M2

(
4M2M4

− 3
(
M3
)2)

c1 =
1
A
M3

(
3
(
M2
)2
−M4

)
c2 =

1
A

(
2M2M4

− 3
(
M3
)2
− 6

(
M2
)3)

A = 18
(
M2
)3
− 10M2M4

+ 12
(
M3
)2

(11)

Here, for convenience of expression,M j (f ) is abbreviated
as M j.

After determining M j (f ) , j = 1, 2, . . . , nm, the maxi-
mum entropy method [37] is used to formulate the PDF of

the response performance. The mathematical models can be
written as

max S = −c ·
∫
ρf log

(
ρf
)
df

s.t.
∫
+∞

−∞

(
f − µf

)j
ρf df = M j (f ) , j = 1, 2, . . . , nm

(12)

where ρf represents the PDF of f , c is a positive constant,
and S denotes the Shannon entropy of ρf . The mathematical
structure of ρf is established by Lagrangian multipliers:

ρf = exp

(
−

nλ∑
i=0

λif i
)

(13)

where λi, i = 1, 2, . . . , nλ are the undetermined distribution
parameters.

From the above analysis, it can be observed that
Equation (12) is a multivariate optimization problem with
nm number of constraints, in which the entropy is opti-
mized about λi. However, determining nm remains an unre-
solved but essential issue. On the one hand, more high-order
moments are required for modeling themultimodal character-
istic of the performance response. On the other hand, includ-
ing more constraints, mean higher complexity for solving
Equation (12), which will lead to non-convergence. Fortu-
nately, Equation (11) does not involve performance function
evaluation. That is, the computational cost can be ignored.
The exhaustive search strategy is a natural choice. In this
way, Equation (12) is solved on the given nm with starting
from four, one by one until the optimum of entropy achieves
convergence. By substituting the analytic expression of ρf
into Equation (5), Pr (f ≥ v) can be eventually determined.

B. DECOUPLING STRATEGY
In the previous section, each of the probability calculation
is realized efficiently. However, it is still the inner loop of
the robust optimization, and a large number of probability
calculations is required. To reduce the solving complexity,
the weight factor of w is used to aggregate the two objectives
in a single objective, and Equation (4) can be rewritten as

min
µX ,v

(1− w) ·
v

µ
(0)
f

+ w ·
Pf
Paf

s.t. Pf = Pr (f (d,X,P) ≥ v) ≤ Paf
µlX ≤ µX ≤ µ

u
X (14)

where 1
/
µ
(0)
f and 1

/
Paf are used as the normalizing factors

to eliminate the difference in magnitude between the two
objective function values, and µ(0)f = f

(
µ
(0)
X ,µP

)
is the

performance function value at the initial point. For ease of
representation, the deterministic design variables are treated
as the random variable with zero-variance and are collected
into X.

To further improve efficiency, a decoupling strategy is
developed to convert the original double-loop process into
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a sequence iterative one with conducting the probabilistic
calculation and the design optimization alternately. For fast
convergence, the initial point µ(0)X is obtained by solving the
deterministic optimization problem as

min
µX

f (µX ,µP)

s.t. µlX ≤ µX ≤ µ
u
X (15)

where the uncertainties in X,P being neglected. Then,
the first iteration begins, i.e., k = 1. Firstly, the optimization
problem without performance function evaluation is formu-
lated as

min
µX ,v

(1− w) ·
v

µ
(0)
f

+ w ·
Pf
Paf

s.t. Pf = Pr
(
H (k)
≥ v

)
+ e(k−1) ≤ Paf

µlX ≤ µX ≤ µ
u
X (16)

where H (k) is the updated second-order Taylor approx-
imation, as Equation (8), for the performance function

at
(
µ
(k−1)
X ,µP

)
. Equation (16) is modified based on

Equation (14), which is solved to obtain the updated solu-
tion µ(k)X ,v(k), and P(k)f = Pr

(
H (k) ≥ v(k)

)
. Because of the

approximation of H (k) is employed, an error is inevitably
introduced into the probability calculation. In Equation (16),
e(k) is used to correct P(k)f , namely e(k) = P̂(k)f − P(k)f
where P̂(k)f denotes the relatively accurate result of probability
calculation.

Here, the proposed SOHM is still being used for the calcu-
lation of P̂(k)f , but the accuracy needs to be further improved.
One of the ways is to optimize the position of the Taylor
expansion point in Equation (8). For the current point ofµ(k)X ,
the most probability point (MPP) is the point with the most
joint PDF on the limit-state boundary of f = v(k). Compared
to other points on the boundary, the Taylor approximation at
the MPP can achieve the minimal error of reliability analy-
sis [38]. The searching process of the MPP can be formulated
as

max
Z

ρZ

(
Z|µ(k)X

)
s.t. f (Z) = v(k) (17)

where Z = (X,P). The MPP of Z(k)MPP can be obtained
by solving Equation (17). Next, P̂(k)f is obtained by the

SOHM method based on the Z(k)MPP.
Due to the lack of information from the previous step,

e(0) = 0 is set in the first iteration step (k = 1). The design
optimization as Equation (16) and the uncertainty analysis as
Equation (17) is performed alternatively until the following
convergence criteria are satisfied:

∣∣∣∣∣Pf (k) − Pf (k−1)Pf (k)j

∣∣∣∣∣ ≤ εr∣∣∣∣∣e(k)v(k)j

∣∣∣∣∣ ≤ εr
(18)

FIGURE 2. The flowchart of the proposed method.

The flowchart of the proposed method is summarized
in FIGURE 2.

V. APPLICATION DISCUSSION
The purpose of this study is to provide a potential tool of the
robust optimization for similar products or systems. In this
section, the engineering practicability of the proposedmethod
is discussed through three applications: a sweat-rate sensor,
a piezoelectric sensor, and an image sensing module. The
features of the proposed method are investigated in terms
of efficiency and accuracy by accounting the performance
function evaluations and comparing the reference solution.
The reference solution is obtained by the double-loop method
(DLM), where the sequential quadratic programming [39]
is employed for the design optimization in the outer loop,
and Monte-Carlo simulation [34] is used for the probabilistic
calculation in the inner loop.

A. A SWEAT-RATE SENSOR
Sweat-rate sensors [40] can monitor the human thermal status
and has been required for many wearable devices to check
the user’s physiological conditions. FIGURE 3 shows the
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FIGURE 3. The structure of a sweat-rate sensor.

structure of a wearable sweat rate sensor. It is composed
of a sweat rate detector and a thermopneumatic actuator.
In the actuator, the heater controls the temperature of the
expansion fluid. The temperature-dependent vapor pressure
of the expansion fluid deforms the membrane, thus moving
the detector upward or downward directions.When the detec-
tor is close to the skin, it starts measuring the sweat rate. After
each measurement, the detector is separated from the skin to
ventilate the collected humidity.

The time response of each measurement is generally con-
sidered as the critical performance for the sweat-rate sensors.
It is formulated as [40]

t = m · C · Rt · log
(
1−

(Tb − Ta) · R
V 2 · Rt

)
(19)

where m, C and Tb denote the mass, heat capacity and boiling
temperature of the expansion fluid, R is the thermal resis-
tance between the expansion fluid and the surrounding air,
Ta denotes the surrounding temperature, and R, V represent
the electrical resistance and input voltage of the heater. Here,
m can be written as m = ρ · v where the volume v = π · r2 · h
and the density ρ = 1.68× 10−3g

/
mm3. The material prop-

erties of C, Tb are the constants: C = 1.05 × 103J
/
(g ·◦ C),

Tb = 56 ◦C. The height of the fluid cavity is given as the
fixed value: h = 1 mm. Ta = 25 ◦C refers to the standard
test environment in the standard test. RE , V and r are the
design variables. Due to the requirement of compact sizes,
the input power is limited. The design variable V and the
parameterR are uncertain and are treated as random variables.
Their probability distributions are shown in FIGURE 4. After
giving the weight factor of w = 0.5 for the two objectives in
Equation (4), the robust optimization problem is modeled as

min
r,RE ,µV ,vt

(1− w) ·
v
t(0)
+ w ·

Pf
Paf

s.t. Pf = Pr (t (r,RE ,V ,R) ≥ v) ≥ Paf = 95%
5 mm ≤ r ≤ 10 mm
30 � ≤ RE ≤ 90 �
3 V ≤ µV ≤ 12V (20)

FIGURE 4. The random distribution of V and Rt .

Next, the proposed method is applied to solve
Equation (20). The random variables of V , R are described
as the multimodal distributions through Equation (1) and are
expressed as

ρV = 0.6 · ϕ (V |0.98 · µV , 0.28 )
+ 0.4 · ϕ (V |1.03 · µV , 0.28 )

ρR = 0.1 · ϕ (R |37.91, 1.78 )
+ 0.3 · ϕ (R |42.37, 1.34 )

+ 0.6 · ϕ (R |46.83, 2.01 ) (21)

Through combined Equation (7) and (21), µR =

44.6 ◦C
/
W is obtained. The initial point

(
r (0),R(0)E , µ

(0)
V

)
=

(7.07 mm, 60.0 �, 7.74 V) is obtained by solving the
deterministic optimization: min

r,RE ,µV
t (r,RE , µV , µR).

Correspondingly, t(0) = t
(
r (0),R(0)E , µ

(0)
V , µR

)
= 12.8S

can be determined. Then, the first iteration step starts with
setting k = 1 and e(0) = 0. The second-order Tay-
lor approximation H (k) is established for the performance
function t (r,RE ,V ,R) at the point

(
r (0),R(0)E ,V (0), µR

)
.

The design optimization as Equation (16) is performed
to obtain the updated solution, i.e.,

(
r (k),R(k)E , µ

(k)
V

)
=

(7.46 mm, 65.6 �, 8.54 V), v(k) = 17.3 S, and Pf (k) =
0.77%. To correct the error introduced by H (k), the position
of the Taylor expansion point is optimized to the MPP, which
is obtained by solving the following optimization problem:

max
V ,R

ρZ

(
Z|µ(k)V

)
s.t. f

(
V ,R| r (k),R(k)E , µ

(k)
V

)
= v(k) (22)
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TABLE 2. The results of the sweat-rate sensor problem.

Then, P̂(k)f is calculated by using the SOHM method, and

e(k) = P̂(k)f − P
(k)
f = 1.12% can be obtained. It provides the

necessary information to formulate the design optimization at
the next iteration step (k = 2):

min
µX ,v

(1− w) ·
v

µ
(0)
f

+ w ·
Pf
Paf

s.t. Pf = Pr (t (r,RE ,V ,R) ≥ v)+ e(k−1) ≤ Paf
5 mm ≤ r ≤ 10 mm

30 � ≤ RE ≤ 90 �

3 V ≤ µV ≤ 12V (23)

After four iteration steps, the solving process achieves
convergence, and the performance function is calculated
321 times. All results are listed in TABLE 2. For this applica-
tion, the proposed method exhibits excellent comprehensive
performance in terms of convergence and efficiency. In terms
of accuracy, the solutions of the proposed method are very
close to the reference solutions, and the differences at the
mean response and the ARL are 0.7% and 1.3%, respectively.
Furthermore, the random distributions of t (V ,R) at the opti-
mal solution and the initial solution are shown in FIGURE 5.
The performance response at the two solutions presents the
multimodal characteristic with the same number (nm = 8)
of peaks in their PDFs. It indicates, nm only needs to be
determined at the initial solution, and the result can directly
be used during the subsequent solving process.

B. A PIEZOELECTRIC MICRO-FORCE SENSOR
A piezoelectric sensor has many advantages, including a reli-
able structure, fast response, and pure driving circuits. It has
been extensively applied in the fields of precision position-
ing, ultrasonic devices, micro-force measurement, etc. The
piezoelectric bimorph beam, as in FIGURE 6, is a typical
sensing structure of the piezoelectric sensor. It is composed of
a piezoelectric film, a silicon-based layer, and two electrodes.
The force at the free end bends the beam and then causes
the piezoelectric film output polarization charges. Finally, the
charges are converted into a voltage signal. The process can

FIGURE 5. The random distributions of the performance response.

FIGURE 6. A piezoelectric cantilever beam.

be formulated as [42]

U =
3 · dP31 · S

Si
11 · S

P
11 · h · h

P
·
(
h+ hP

)
· L · F

K · εP33 · w
(24)

where

K = 4 · SSi11 · S
P
11 · h ·

(
hP
)3
+ 4 · SSi11 · S

P
11 · h

3
· hP

+

(
SP11
)2
· h4 +

(
SSi11
)2
·

(
hP
)4

+ 4 · SSi11 · S
P
11 ·

(
SSi11
)2
·

(
hP
)2

(25)
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where F is the concentration force; L, w represent the length
and width of the beam; h, hP denote the thickness of the
silicon-base layer and piezoelectric film; SSi11,S

P
11 are the com-

pliance coefficient of the silicon-based layer and piezoelec-
tric film; and dP31, ε

P
33 is the piezoelectric coefficient and

dielectric constant of the piezoelectric film. The constants in
Equation (24) include hP = 5 × 10−4 mm, SP11 = 18.97 ×
10−12m2

/
N, and SSi11 = 7.70× 10−12m2

/
N. Here, the mate-

rial parameter of dP31 ε
P
33 are treated as random variables.

Their PDFs can be obtained using Equation (1) based on
statistical data in practical engineering, while in this example
they are directly given as

ρd = 0.30 · ϕ
(
dP31 |1.62, 0.072

)
+ 0.70 · ϕ

(
dP31 |1.88, 0.090

)
ρε = 0.65 · ϕ

(
εP33 |1.70, 0.080

)
+ 0.35 · ϕ

(
εP33 |1.41, 0.080

)
(26)

Generally, sensitivity is the fundamental performance of
the piezoelectric sensor, which is dependent on the output
voltage under a particular load. Thus, U is viewed as the
objective function. The design variables are L, b, and h. The
constraints of the shape, stiffness, and strength are consid-
ered, which are expressed as η = b

/
h ≥ 0.83, δ ≤ 2.5 µm,

and σ ≤ 32.0 MPa. Here, δ denotes the displacement at the
free end of the beam, and σ denotes the maximum stress of
the beam. δ and σ can be written as [42]

σ =
6 · F · L · SSi11 ·

(
SP11 · h+ S

Si
11 · h

P
)
·
(
h+ hP

)
K · b

δ =
4 · F · L3 · SSi11 · S

P
11 ·

(
SP11 · h+ S

Si
11 · h

P
)

K · b
(27)

Note that this is a larger-the-better problem. After a simple
conversion, the robust optimization is formulated as

min
L,b,h,v

− (1− w) ·
v

µ
(0)
U

+ w ·
Pf
Paf

s.t. Pf = Pr
(
U
(
L, b, h, dP31, ε

P
33

)
≤ v

)
≤ Paf

b/
h ≤ 0.83, δ (L, b, h) ≤ 2.5µm,

σ (L, b, h) ≤ 32.0MPa

0.40mm ≤ L ≤ 1.20mm

0.06mm ≤ b ≤ 0.10mm

0.04mm ≤ h ≤ 0.10mm (28)

To demonstrate the practicality of the proposed method,
the three cases with different w are considered: 0.2, 0.5, 0.8.
The higher w indicates that the designer pays more attention
to the performance robustness. The proposed methods and
the DLM are used to solve Equation (28) in these cases.
The solving processes start with the same initial point of
(0.788 mm, 0.081mm, 0.068mm) calculated by the deter-
ministic optimization: min

L,w,h
U . Moreover, the results are

shown in TABLE 3. It can be observed that the results of the

TABLE 3. The results of the micro-force senor problem.

two methods in each case are very close, which verifies the
accuracy of the proposed method. The results also show,
the mean response decreases as the weight of robustness
increases. µ∗U = 36.27 mV in Case 1 is 20.9% more than
µ∗U = 28.68 mV in Case 3. That is, if a higher weight factor
is defined for the robustness, the optimal design will exhibit
relatively poor performance. In addition, the solutions under
various weights can help designers create a relatively clear
picture of the design problem without excessive computa-
tional cost. In this application, the three solving processes cal-
culate the performance function for 915 times. This provides
an alternative to directly call time-consuming simulation
models for improving the accuracy of robust optimization.

C. AN IMAGE SENSING MODULE
Recently, low light imaging [43] is being researched inten-
sively. The applications of ultra-low-noise image sensing
modules expand to security, biomedicine, and exploration.
In the image sensing module as FIGURE 7, the ultra-low-
noise image sensor and other components are assembled on
the printed circuit board (PCB). Due to the mismatch in
the thermal expansion coefficient of the various materials,
thermal deformation occurs on the PCB under the effects of
self-heating and changing ambient temperature. This leads
to a loss of image quality. Especially for the large format
sensors, its performance is more sensitive to the deformation.

In order to analyze the thermal deformation of the module
under the changing temperature (20◦C ∼ 45◦C), the finite
element model (FEM) is created as shown in FIGURE 8, in
which the structural size of the PCB is 42mm × 42mm ×
1.6mm, and the power dissipation of the codec chip and the
converter is given as µP1 = 1.5W, µP1 = 0.3W according to
the test data. It can be observed that the deformation appears
on the sensor die, and the peak-peak value (PPV) of the dis-
placement response is about 0.109 mm. To reduce the image
quality loss of the module, the PPV needs to be optimized.
Adjusting the relative position of the module-fixed points is
a low-cost way to reduce the PPV, and thus, the positions
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FIGURE 7. The image sensing module with an ultra-low-noise sensor.

δ = (δ1, δ2, δ3, δ4) are set as the design variables. Given that
manufacturing errors are unavoidable, each component of δ
is treated as the random variable with the same variance of
σ 2
i = 0.0003mm, i = 1, 2, 3, 4. The robust optimization is

formulated as

min
δ,v

(1− w) ·
v

µ
(0)
PPV

+ w ·
Pf
Pf0

s.t. Pf = Pr (PPV (δ) ≤ v) ≤ Pf0 (29)

where µ(0)PPV = PPV
(
µ
(0)
δ

)
, Pf0 = 95%, and w = 0.5.

As mentioned above, the performance function of PPV is
implicit and based on the time-consuming FEM, which
consists of 30,108 eight-node thermally coupled hexahedron
elements. The computational time for solving the FEM is
about 0.3 hours if using a computer with the i7-4710HQ CPU
and 8 G of RAM. To realize the parameterization and reduce
the computational cost of obtaining reference solutions, a
second-order polynomial response surface is created for the
performance function by sampling 200 times on the FEM.

PPV = 0.109− 0.718δ1 + 1.023δ2 + 0.286δ3
− 0.634δ4 + 3.756δ21 + 3.611δ22 + 2.328δ23
+ 2.254δ24 − 3.035δ1δ2 − 6.312δ1δ3 + 1.542δ1δ4
− 1.857δ2δ3 − 4.938δ2δ4 + 0.741δ3δ4 (30)

To investigate the necessity of considering multimodal dis-
tributions for the robust optimization, three cases for solving
Equation (29) are considered. Each variable of δ follows:
Case_1) the normal distribution, Case_2) the extreme value
(EV) distribution, Case_3) the bimodal distribution. Their
PDFs are listed in TABLE 4. They are solved by the proposed
method and the DLM. The same initial design option is
selected as µ(0)δ = (0 mm, 0 mm, 0 mm, 0 mm), at which

FIGURE 8. The FEM of the image-sensor-mounted PCB.

TABLE 4. The pdf of δi in the three cases.

TABLE 5. The results of the image sensing module problem.

µ
(0)
PPV = 0.109mm. All results are listed in TABLE 5. Firstly;

the results of the proposed method are almost identical with
the reference solutions in each case. This indicates that the
results of the proposed method are valid. In the and three
cases, the values of µPPV are greatly optimized. Compared
to µ(0)PPV , they are reduced by 88.9%, 91.0%, and 98.2%,
respectively, and therefore the thermal deformation of the
module at µ∗δ is improved significantly. Secondly, the result(
µ∗PPV

)
of Case 1 is close to that of Case 2, while it is very

different from that of Case 3. It shows that the multimodal
distribution has a negligible effect on the optimal results
for this example. Thus, it is necessary to establish accurate
multimodal distributions for the input uncertain variables
in the robust optimization. Thirdly, in terms of efficiency,
the performance function evaluations of the three cases are
298, 302, and 352, respectively. Even if the proposed method
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calls the FEM directly, NF = 352, the maximum of the three
cases, means the computational time of only about 100 hours.
The efficiency is acceptable in practice.

VI. CONCLUSION
In engineering designs, uncertainties from various sources
are inevitable; thus, the robust optimization is developed
to improve the performance by minimizing the effects of
uncertainties without eliminating these causes. The exiting
researches focus on the problems with unimodal random vari-
ables. In real applications, however, the random variable may
follow a multimodal distribution. In such cases, the classical
robustness metrics based on mean and variance seem to be
inappropriate. In this paper, an robust optimization model
and the corresponding algorithm are proposed, which pro-
vide a potential tool for uncertain problems with multimodal
distributions. The contribution of this study is summarized
as follows. Firstly, the improved robust optimization model
is formulated by introducing the concept of ARL to calcu-
late the failure probability of the performance response. The
probability calculation can directly capture the multimodal
characteristics of the performance response. Secondly, the
SOHM is presented to efficiently perform the probability
calculation in the inner loop of design optimization. Thirdly,
a decoupling strategy is proposed to separate the probability
calculation from the design optimization and drive the two
processes sequentially and alternately. The proposed method
is applied to the three micromachine design problems, includ-
ing a sweat-rate sensor, a piezoelectric sensor, and an image
sensing module. In the applications, the proposed method
exhibits excellent comprehensive performance in terms of
accuracy and convergence. More importantly, this method
provides an alternative to directly call time-consuming sim-
ulation models during the solving process, which can fur-
ther improve the accuracy of the robust optimization. Also,
the targeted engineering examples for peers to develop novel
methods, which is beneficial to extend the application of
robust optimization in micromachine systems. In the future,
it will be our important research direction to develop effi-
cient robust optimization methods for complex microma-
chine systems involving dynamic characteristics and coupled
multiphysics.
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