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ABSTRACT Clustering algorithms have attracted a lot of attentions recently in real-world applications.
However, the traditional clustering algorithms still have plenty of defects which are not yet resolved.
In this paper, a kernel-based intuitionistic fuzzy C-means clustering using improved multi-objective artificial
immune algorithm (KIFCM-IMOIA) is proposed. In our algorithm, the kernel trick and the intuitionistic
fuzzy entropy (IFE) are introduced into the objective functions, which improves the robustness to noises.
In addition, an improved multi-objective optimization immune algorithm (IMOIA), which simultaneously
optimizes the intra-cluster compactness and inter-cluster separation, is proposed to prevent the algorithm
from falling into local optimum. The proposed IMOIA uses a novel active antibody selection strategy,
a hybrid differential evolution strategy, and an adaptive mutation operator to maintain better distribution
of the solutions with better convergence. Finally, we performed experiments using 14 UCI datasets and
compared our algorithm with six clustering methods on three performance metrics. The experimental results
show that our algorithm performs better than other algorithms.

INDEX TERMS Intuitionistic fuzzy C-means, kernel function, artificial immune algorithm, multi-objective
optimization.

I. INTRODUCTION
As an unsupervised classification method, clustering
algorithm is a research hotspot in recent decades and is
widely used in pattern recognition [1], data mining [2], [3],
image segmentation [4]–[6] and so on. Clustering methods
are mainly divided into hard clustering [7]–[10] and soft
clustering [11]–[14]. Among the soft clustering methods,
fuzzy C-means (FCM) clustering algorithm [11] is the most
flexible and widely used one. FCM proposes the membership
degree that is used to indicate the extent to which each data
point belongs to each cluster. In order to further improve
the performance of the algorithm, the intuitionistic fuzzy
C-means (IFCM) clustering algorithm was proposed in [12].
In addition to considering the membership degree of fuzzy
sets, the introduction of non-membership degree and hesi-
tation degree is an important extension of fuzzy set theory.
Although the IFCM algorithm exhibits an absolute advantage
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over FCM, the performance of IFCM is still hampered by two
noticeable problems, i.e., being prone to local optimum and
sensitivity to noises.

In recent years, the application of multi-objective evolu-
tionary algorithm (MOEA) in fuzzy clustering has become
popular. The multi-objective clustering algorithms consider
two or more clustering objectives, which prevents the
algorithm from falling into local optimum andmakes the clus-
tering results more robust. In [15], the multi-objective cluster-
ing algorithm with automatic k-determination (MOCK) was
proposed. This algorithm is built from original PESA-II [16].
The objectives used in MOCK are the overall deviation Dev
and connectivity Conn. In [17], a multi-objective genetic
algorithm with fuzzy C-means, denoted as FCM-NSGA,
was presented. In FCM-NSGA, the non-dominated sort-
ing genetic algorithm (NSGA-II) [18] is used to control
the multi-objective optimization considering two objectives:
the well-known FCM objective function JFCM and the
overlap-separation measure OS. The non-dominated sort-
ing genetic algorithm using fuzzy membership chromosome
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(NSGA-FMC) was proposed in [19]. In NSGA-FMC, two
completely independent fuzzy objective functions, i.e., the
fuzzy compactness π and separation S, are utilized. The
algorithm is also built from the original NSGA-II [18].

Although the above FCM algorithms have achieved some
promising results, they are sensitive to noises and outliers
seeing that the Euclidean distance is used as the similar-
ity measurement. Aiming at this problem, various improved
methods have been proposed, in which the kernel-based
clustering method has attracted extensive attention. In [20],
a kernel-based fuzzy C-means (KFCM) algorithm was pro-
posed. Experimental results show that the algorithm is robust
to noises and outliers. In [21], a multiple kernel fuzzy
C-means (MKFC) algorithm was proposed, which extends
the FCM with a multiple kernel-learning setting. In [22],
a novel multi-objective kernel clustering algorithm with
automatic attribute weighting (MOKCW) was proposed.
In MOKCW, two kernel-based objective functions Jc and Fs,
which consider the compactness within the cluster and the
separation between clusters respectively, are optimized by
original NSGA-II [18].

Generally, conventional multi-objective clustering
algorithms are built from the original MOEAs, such as
PESA-II [16] and NSGA-II [18]. In order to effectively find
the Pareto-optimal solutions in the solution space, many state-
of-the-art MOEAs [23]–[26] have been proposed. Among
them, artificial immune system (AIS) [27], an evolution-
ary algorithm based on the information processing mecha-
nism of biological immune system, has been successfully
used in multi-objective optimization problems (MOPs) and
has a good application prospect. In recent years, many
multi-objective immune algorithms (MOIAs) [26]–[29] have
been proposed. For example, the non-dominated neighbor
immune algorithm (NNIA) [26], a well-known multi-
objective immune algorithm, uses non-dominated neighbor-
based selection and proportional cloning method to enhance
the local search ability in the less-crowded regions of the
current front.

In this paper, by incorporating the intuitionistic fuzzy
set and the kernel trick, two completely independent fuzzy
objective functions JKIFCM and SKIFCM , which consider the
intra-cluster compactness and the inter-cluster separation
respectively, are proposed. This is done to improve the
robustness to noises. Then, we present an improved multi-
objective optimization immune algorithm as an underlying
multi-objective optimization framework to prevent the algo-
rithm from falling into local optimum. The IMOIA uses
a center-based string encoding which is suitable for the
clustering problem. In addition, a novel grid-based active
antibody selection strategy, a hybrid differential evolution
strategy and an adaptive mutation operator are presented
to search through the solution space for optimal solutions.
Finally, we compared our algorithm with a kernel-based intu-
itionistic fuzzy C-means clustering using NNIA (KIFCM-
NNIA) and five state-of-the-art clustering algorithms by
using 14 UCI datasets. Preliminary results show that our

algorithm is superior to compared algorithms in terms of three
clustering metrics, i.e., the clustering accuracy (ACC) [30],
adjusted rand index (ARI) [31] and normalized mutual
index (NMI) [32].
In the remainder of this paper, several basic concepts

such as FCM, IFE and MOIA are presented in Section 2.
Section 3 gives objective functions of the kernel-based intu-
itionistic fuzzy C-means problem. In Section 4, we present
our algorithm. In Section 5, we present the experimental
results. Section 6 concludes the paper.

II. RELATED CONCEPTS
In this section, we briefly review basic concepts of FCM [11],
IFE [33] and MOIA [26].

A. FUZZY C-MEANS
Given a dataset containing n data samples, X = {x1,
x2, . . . , xn}, FCM algorithm outputs the membership
degree uik , which represents the probability that the data sam-
ple xk belongs to the i-th cluster. The membership degree can
be obtained by finding the minimum value of the objective
function JFCM :

JFCM =
c∑
i=1

n∑
k=1

(uik )m ‖xk − vi‖2

s.t.
c∑
i=1

uik = 1, ∀k

0 <
n∑

k=1

uik < n, ∀i (1)

When the objective function JFCM takes the minimum
value, the corresponding membership uik and cluster center
vi can be calculated as:

uik =
1

c∑
j=1

[
‖xk − vi‖

/∥∥xk − vj
∥∥] 2

m−1

vi =

n∑
k=1

umikxk

n∑
k=1

umik

(2)

where V = {v1, v2, . . . , vc}, vi(i = 1, 2, . . . , c) represents
the i-th cluster center, c represents the number of cluster cen-
ters, ‖xk − vi‖ is the Euclidean distance between data point
xk and cluster center vi, m is a parameter used to determine
the amount of fuzziness.

B. INTUITIONISTIC FUZZY ENTROPY
It is generally believed that the IFE gives the degree of
blurring of a fuzzy set. In the intuitionistic fuzzy set
A = {uA(xk ), γA(xk ), πA(xk )| xk ∈ X}, uA(xk ), γA(xk ), and
πA(xk ) are the membership degree, non-membership degree,
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and hesitation degree of xk with respect to A, respectively.
IFE can be defined as:

IFE(A) =
n∑

k=1

πA(xk )e[1−πA(xk )] (3)

where hesitation degree πA(xk ) is expressed as:

πA(xk ) = 1− uA(xk )− γA(xk ) (4)

where the formula for non-membership degree γA(xk ) is
defined as:

γA(xk ) = (1− uA(xk )α)1/α (5)

where the value of α is discussed in section 5. Notice
that if A is a normal fuzzy set, then IFE(A) = 0, i.e.,
πA(xk ) = 0,∀xk ; if uA(xk ) = γA(xk ) = 0,∀xk , then
IFE(A) = n; if the membership and non-membership of
each element are reduced, then their sum is also reduced, the
ambiguity is reduced, the hesitation degree is increased, and
the IFE is increased.

C. MULTI-OBJECTIVE IMMUNE ALGORITHM
MOPs are aimed at optimizing multiple, possibly conflict-
ing objectives, simultaneously. The general definition of a
MOP [34] is shown below:

minF(s) = (f1(s), f2(s), . . . , fk (s))
subject to
s = (s1, s2, . . . , sm) ∈ �

(6)

where s = (s1, s2, . . . , sm) is an m-dimensional candidate
solution, � is the decision space, F(s) is an objective vec-
tor, and fi(s) is the i-th objective function. Considering two
candidate solutions sA ∈ � and sB ∈ �, it is said that sA
dominates sB, i.e., sA � sB, if and only if

∀i = 1, 2, . . . ,m fi (sA) ≤ fi (sB)

and ∃j = 1, 2, . . . ,m fj (sA) < fj (sB) (7)

In MOP, we say a solution is a Pareto-optimal solution
when it is not dominated by any other. The set of non-
dominated solutions is called as Pareto front. The goal of
MOEA is to find a set of Pareto-optimal solutions that approx-
imate the true Pareto front.

MOIA is a new bionic algorithm based on the princi-
ples and processes of biological immune system. NNIA is
the most representative multi-objective immune algorithm.
In NNIA, antigens refer to the multi-objective problems
and the corresponding constraints. The potential solution of
MOP is regarded as an antibody, e.g., the candidate solu-
tion s = (s1, s2, . . . , sm) in Eq.(6). Thus, a no-dominated
solution is regarded as a dominant antibody. Only partial
less-crowded non-dominated individuals are called active
antibodies. An antibody population is composed by a set of
antibodies and a dominant population is the set of dominant
antibodies.

In the biological immune system, when external antigen
is detected by the biological immune system, the B-cell

FIGURE 1. Population evolution process in the t-th generation.

will eliminate invaders by the reactive procedures immedi-
ately, for example, clonal selection and affinity maturation
by hyper-mutation. This is similar with the multi-objective
immune algorithm. InNNIA, the antibodies with better affini-
ties will be selected to reproduce by cloning. After that,
the evolutionary operations are applied on each antibody in
the clone population to realize the affinitymaturation process.
Then antibodies with higher affinity will retain as memory
cells to maintain the population diversity. We show the pop-
ulation evolution process of NNIA in Figure 1, where At
is active population which composed of less-crowded non-
dominated antibodies, Ct is the clone population, C ′t is an
evolved population of Ct , Dt is dominant population.

III. OBJECTIVE FUNCTIONS OF MULTI-OBJECTIVE
CLUSTERING
The performance of the multi-objective clustering algorithm
depends critically on the clustering objectives. In this paper,
we choose the FCM objective function JFCM [11] and fuzzy
separation SFCM [24] as the two clustering objectives. The
definition of JFCM is given in Eq.(1). SFCM is expressed as

SFCM =
c∑

q=1

c∑
p=1,p6=q

(uqp)m
∥∥vq − vp

∥∥2 (8)

where vq and vp represent the q-th and p-th cluster center
respectively,

∥∥vq − vp
∥∥ is the Euclidean distance between

two cluster centers vq and vp, the membership between two
cluster centers uqp is calculated as:

uqp =
1

c∑
k=1,k 6=p

[∥∥vp − vq
∥∥/∥∥vp − vk

∥∥] 2
m−1

(9)

A. INTUITIONISTIC FUZZY C-MEANS CLUSTERING
In IFCM [12], the data points X = {x1, x2, . . . , xn} are
classified into c homogeneous groups or clusters represented
as F = {F1,F2, . . . ,Fc}. uFi(xk ), γFi(xk ) and πFi(xk ) are the
membership degree, non-membership degree, and hesitation
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degree for xk in i-th group Fi, respectively. For simplicity,
uFi(xk ), γFi(xk ), and πFi(xk ) are denoted as uik , γik and
πik , respectively. The objective function of IFCM proposed
in [12] is represented as follows:

JIFCM =
c∑
i=1

n∑
k=1

(u∗ik )
m
‖xk − vi‖2 +

c∑
i=1

π∗i e
1−π∗i (10)

where u∗ik = uik + πik represents the intuitionistic fuzzy
membership of the k-th data point to the i-th cluster center,
π∗i is defined by:

π∗i =
1
n

n∑
k=1

πik (11)

where the definition of hesitation degree πik is consistent
with Eq.(4):

Then, the second clustering objective SIFCM is calculated
as:

SIFCM =
c∑

p=1

c∑
q=1,q 6=p

(u∗qp)
m ∥∥vq − vp

∥∥2 + c∑
p=1

π∗p e
1−π∗p

(12)

where π∗p is calculated as:

π∗p =

c∑
q=1,q 6=p

πqp

c− 1
(13)

B. GAUSSIAN RADIAL BASIS FUNCTION
The IFCM using the Euclidean distance is sensitive to noises
and outliers. An effective way to solve this problem is to use
kernel method to project data into higher dimensional space.
In this paper, Gaussian radial basis function (GRBF) [35] is
used to improve the objective function of IFCM.

K (x, y) = exp

(
−‖x − y‖2

σ

)
(14)

where ‖x − y‖ is the Euclidean distance between two data
points x and y, σ is the bandwidth parameter. However, choos-
ing the appropriate bandwidth value can be very difficult. The
method of bandwidth selection in this study will be detailed
described in the next section.

In KFCM [20], a nonlinear map is defined as 8 : x →
8(x) ∈ F , where x ∈ X . X is the data space. F is the
transformed feature space with higher dimension. In other
word, a nonlinear map8(·) is defined to map the points in the
original space into the high-dimensional feature space. The
Euclidean distance ‖x − y‖2, which measures the similarity
between data points x and y, is replaced by the Euclidean
distance ‖8(x)−8(y)‖2 between mapped points 8(x) and
8(y) in the transformed feature space.

‖8(x)−8(y)‖2 = (8(x)−8(y))T (8(x)−8(y))

= K (x, x)+ K (y, y)− 2K (x, y)

= 2(1− K (x, y))

= 2

(
1− exp

(
−‖x − y‖2

σ

))
(15)

C. OBJECTIVE FUNCTION OF PROPOSED ALGORITHM
According to the definition given in the previous section,
we reconstruct the clustering objectives represented by
Eq.(10) and Eq.(12). The multi-objective clustering problem
can be described as:

minF(v) = (f1(v), f2(v)) (16)

The first clustering objective which represents the intra-
cluster compactness is calculated as

f1(v)=JKIFCM =2
c∑
i=1

n∑
k=1

(u∗ik )
m

(
1−exp

(
−‖xk−vi‖2

σ1

))

+

c∑
i=1

π∗i e
1−π∗i (17)

where u∗ik = uik + πik is the kernel-based intuitionistic fuzzy
membership and uik is calculated as:

uik =
1

c∑
j=1

[
(1− K (xk , vi))

/
(1− K (xk , vj))

] 1
m−1

(18)

The hesitation degree πik is defined as:

πik = 1− uik − (1− uαik )
1/α (19)

The second clustering objective which represents the inter-
cluster separation is as follows:

f2(v)

=
1

SKIFCM

=
1

2
c∑
q=1

c∑
p=1,p6=q

(u∗qp)m
(
1−exp

(
−‖vq−vp‖

2

σ2

))
+

c∑
q=1
π∗q e

1−π∗q

(20)

where u∗qp = uqp + πqp and uqp is calculated as:

uqp =
1

c∑
j=1,j 6=q

[
(1− K (vq, vp))

/
(1− K (vq, vj))

] 1
m−1

(21)

In this paper, the calculation of bandwidth σ depends on
the distance variance of all samples in the given dataset. The
bandwidth parameter σ1 in Eq.(17) is expressed as:

σ1 =

(
1

n− 1

n∑
k=1

(dk − d̄)2
) 1

2

(22)

where dk is the Euclidean distance between data point xk
and x̄, x̄ represents the mean value of all data points,

i.e., x̄ = (
n∑

k=1
xk )/n, d̄ represents the mean value of dk ,

i.e., d̄ = (
n∑

k=1
dk )/n.
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FIGURE 2. An antibody with 5 cluster centers in three dimensions.

The bandwidth parameter σ2 in the second objective func-
tion is calculated by

σ2 =

 1
c− 1

c∑
q=1

(dq − d̄)2

 1
2

(23)

where dq is the Euclidean distance between cluster center vq
and v̄, v̄ represents the mean value of all cluster centers. d̄
represents the mean value of dq.
Notice that our multi-objective clustering algorithm opti-

mizes two different clustering criteria, i.e., JKIFCM and
SKIFCM . JKIFCM represents the intra-cluster compactness,
the smaller its value, the better the clustering result. On the
contrary, SKIFCM is inter-cluster distance which needs to be
maximized.

IV. A KERNEL-BASED INTUITIONISTIC FUZZY C-MEANS
CLUSTERING USING IMPROVED MULTI-OBJECTIVE
IMMUNE ALGORITHM
In this section, we present the basic idea and the general
framework of the proposed algorithm KIFCM-IMOIA.

A. INITIALIZATION OF ANTIBODY POPULATION
In this paper, the antigen refers to the clustering objective,
i.e., minF(v) = (f1(v), f2(v)). An antibody refers to a
candidate solution of the clustering problem, i.e., a set of
clustering centers. In our algorithm, antibodies are encoded
using real numbers. Pt = {s1, s2, . . . , sN } represents the
antibody population of current generation, where N denotes
the size of population, si denotes the i-th antibody. Specif-
ically, si = {s1i , s

2
i , . . . , s

c
i } represents a solution to the

clustering problem, i.e., c cluster centers. One cluster cen-
ter sji is an m- dimensional vector that can be expressed as
sj1 = {s

j1
1 , s

j2
1 , . . . , s

jm
1 }. Then, an antibody can be represented

by si = {s1i , s
2
i , . . . , s

c×m
i }. Figure 2 shows an example of an

antibody si with 5 cluster centers in three dimensions.

B. GRID-BASED SELECTION OF ACTIVE ANTIBODIES
In NNIA, the selection of active antibodies is based on the
crowding distance [28]. However, there are shortcomings of
this method. Considering Figure 3, there are 8 antibodies
at the Pareto front, and they are labeled by s1 through s8.
The corresponding crowding distance values of 8 antibodies
are Inf, 1.0323, 0.6552, 0.5744, 0.1689, 0.4429, 0.8193, Inf.
Supposing that five antibodies need to be selected to partici-
pate in subsequent evolution, antibodies s4 through s6 with

FIGURE 3. Grid-based selection of active antibodies.

lower crowding distances will be discarded. However, this
will result in skewed uniformity of the remaining dominant
antibodies in the Pareto front.

To overcome this problem, we apply grid-based selection
method. Assuming that the 2-dimensional objective space
should be divided into K hyper-boxes, the width widj of a
hyper-box of the j-th objective is calculated as:

widj =
ubj − lbj
√
K

(24)

where ubj and lbj are the upper and lower boundaries of grid
in the j-th objective respectively. ubj and lbj are calculated as:

lbj = min(fj)−
max(fj)−min(fj)

2×
√
K

ubj = max(fj)+
max(fj)−min(fj)

2×
√
K

(25)

where max(fj) and min(fj) are the maximum and minimum
value of the j-th objective in current population, respectively.
To show the details of grid-based selection method, its

pseudo-code is provided in Algorithm 1.
As shown in Figure 3, the 2-dimensional objective space is

divided into 25 hyper-boxes. Then, the grid-based selection
method is used to select active antibodies from dominant
population. According Algorithm 1, two solutions in s4, s5
and s6 are selected randomly to be deleted, and then one
of solutions s2 and s3 will be deleted. Thus, five solutions,
i.e., s1, s2(s3), s4(s5/s6), s7, s8, will be selected as active anti-
bodies. However, the five active antibodies selected by NNIA
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Algorithm 1 Grid-Based Selection of Active Antibodies
Input: K : the number of hyper-boxes

Dt : the dominant population
N : the maximum size of active population

Output: the active population At
1. Divide the objective space into K hyper-boxes based on
Eq.(24) and Eq.(25);

2. nk = the size of population in each hyper-box;
while |Dt | > Ndo

3. Select one hyper-box with the highest nk ;
4. Delete an antibody from the selected hyper-box,

randomly;
5. Update Dt ;
end while

6. At = Dt

are s1, s2, s3, s7, s8. Thus, grid-based selection method of
active antibodies helps to maintain better uniformity of the
solutions.

C. PROPORTIONAL CLONING
Given a set of active antibodies S = (s1, s2, . . . , sN ). Each
antibody si in S needs to be reproduced with qi times. First,
the variant crowding distance (VCD) [24] of each active
antibody is calculated. Then, the active antibody with higher
VCD has a larger qi for enhancing local search around the
active antibody. The value of qi is calculated by

qi =

nC ×
VCD(si)
N∑
j=1

VCD(sj)

 (26)

where nC donates expectant size of the clone population.
It should be noted that the VCD of boundary solutions are
infinity. Thus, when calculating the values of qi for the bound-
ary solutions, the values ofVCD are twice themaximumvalue
of all solutions except the boundary solutions.

D. HYBRID DIFFERENTIAL EVOLUTION STRATEGY
Differential evolution (DE) [28] is a powerful stochastic
searchmethod, which has beenwidely used inmulti-objective
evolutionary algorithms. In this paper, we propose a hybrid
differential evolution strategy consisting of two well-known
DE strategies [36], i.e., rand/1/bin and best/1/bin, denoted
by DE1 and DE2 respectively. DE1 and DE2 have different
advantages: DE1 is conducive to maintaining the diversity of
population, and DE2 is beneficial to accelerating the conver-
gence of algorithm.

Assuming that each antibody in clone population is rep-
resented by si = (s1i , s

2
i , . . . , s

cm
i ), the mutant vector

vi = (v1i , v
2
i , . . . , v

cm
i ) corresponding to si is generated as

vi =

{
sr1 + F × (sr2 − sr3), if randi ≤ 0.5
sbest + F × (sr2 − sr3), otherwise

(27)

where sr1, sr2 and sr3 are randomly selected from the domi-
nant population, sbest is randomly selected from active pop-
ulation, randi is a random number over interval [0, 1], F is
control parameter and its value is 0.5 in this paper.

Then a trial vector yi = (y1i , y
2
i , . . . , y

cm
i ) will be obtained

from its parents si and vi by using the following crossover
rule:

yji =

{
vji, if randi < 0.5 or j = Ii
sji, otherwise

(28)

where sji, v
j
i and yji represent the j-th variable of the clone

antibody si, mutant vector vi and trial vector yi, respectively,
randi is a random number over interval [0, 1], Ii is a random
integer in [1, cm].

E. ADAPTIVE MUTATION OPERATOR
After the differential evolution, adaptive mutation operator
is used to enhance the population diversity. For a trial vec-
tor yi = (y1i , y

2
i , . . . , y

cm
i ), adaptive mutation is defined as

follows:

zji =

{
yji + σj × (ubj − lbj), if randi < pt
yji, otherwise

(29)

where zji is the j-th variable of the antibody after mutation,
randi is a random number over interval [0, 1], ubj and lbj are
the upper and lower limits of the j-th variable of all antibodies
in current population, respectively. σj is defined by

σj =

{
(2× ri)

1
η+1 − 1, if ri < 0.5

1− (2− 2× ri)
1
η+1 , otherwise

(30)

where ri is a random number in [0, 1], η is the mutation
distribution parameter and its value is 20 in this paper.

In addition, the mutation probability pt in the t-th genera-
tion population is defined as follows:

pt =
1+ λ× (1− t

T )

m
(31)

where m is the number of decision variables, λ is pre-defined
parameter in [0, 1] and its value is 0.5 in this paper, T is the
maximum generation.

F. SELECTION OF OPTIMAL SOLUTION
In the last generation of the IMOIA, the approximate Pareto-
optimal set AT is reported. As shown in Figure 4, all the
solutions in this front are considered to be equally important.
But in practical problems, we must choose a single solution
from the Pareto set.

In this paper, we use a semi-supervised method proposed
in [17] to select the optimal solution in the obtained Pareto set.
Assuming that 10% of the class labels for the entire data set
are known, we refer to the data set consisting of data samples
with known class labels as the test set. For each solution
in Figure 4, the clustering labels of test set are assigned based
on membership matrixes.
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FIGURE 4. A set of solutions obtained in the last generation of KIFCM-
IMOIA.

Let G and L represent the clustering label set obtained by
our algorithm and the true classification label set, respec-
tively. Then, we select the best solution with the minimum
Minkowski score ( MS) [17].

MS(G,L) =

√
n01 + n10
n11 + n10

(32)

where n11 represents the number of pairs of points that are in
the same cluster in G and L, n01 and n10 are the number of
pairs in the same cluster only in L and G, respectively.

G. ALGORITHM PROCESS
To show the details of KIFCM-IMOIA, its pseudo-code is
provided in Algorithm 2.

KIFCM-IMOIA starts in step 1 by creating an initial anti-
body population randomly. Then, our algorithm goes into
its main loop until the number of iterations reaches the
maximum generation T . In step 2, we compute the corre-
sponding objective functions of each antibody in current pop-
ulation according to Eq.(17) and Eq.(20). In step 3, we select
non-dominated solutions from current population. In step 4,
we select active antibodies from dominant population. If the
size of dominant population exceeds the maximum, partial
antibodies are selected from dominant population as active
antibodies; otherwise, dominant population is the active
population. Then, the proportional cloning is used to gen-
erate clone population with N antibodies. In step 6, dif-
ferential evolution strategy and adaptive mutation operator
are applied on cloned antibodies to form a new population.
Then, the new population and dominant population are com-
bined as next-generation population. The iteration continues
until the number of generations reaches maximum. At the
end of IMOIA, the approximate Pareto-optimal set AT is
reported. Then, we choose the optimal clustering centers
according to our needs in the approximate Pareto-optimal
set. In this paper, we select the final solution based on a
semi-supervised method as detailed in section 4.6. At the
end, the optimal solution, i.e., the set of cluster centers, is
reported.

V. EXPERIMENTS AND ANALYSIS
As mentioned before, our algorithm uses improved multi-
objective immune algorithm to obtain the optimal solutions.

Algorithm 2 KIFCM-IMOIA
Parameters: T : maximum generation

N : maximum size of population
Input: X = {xk}nk=1: the dataset

c: the number of clusters
Output: the set of cluster centers V = {v1, v2, . . . , vc}
1. Randomly create an initial antibody population P0 = {s1, s2, . . . , sN } as detailed in section 4.1;

while t < Tdo
2. Calculate the objective functions of each antibody in Pt according to Eq.(17) and Eq.(20);
3. Select non-dominated antibodies from Pt to form Dt as detailed in [26];
4. Select active antibodies as following steps:

If |Dt | > N
At = select N active antibodies from Dt by Algorithm 1;
else
At = Dt
end if

5. Applying proportional cloning on At to form Ct as detailed in section 4.3;
6. Apply the hybrid differential evolution strategy and adaptive mutation operator on Ct to form C ′t ;
7. Pt+1 = Dt ∪ C ′t ;

end while
8. Select the optimal solution from AT as detailed in section 4.6;
9. Decode the optimal solution into the set of cluster centers V = {v1, v2, . . . , vc};
10. Return the set of cluster centers V = {v1, v2, . . . , vc}.
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TABLE 1. UCI data sets used in experiment.

FIGURE 5. ACC against the parameters m and α on UCI data sets.
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FIGURE 6. Box plots of ACC obtained by two algorithms on 14 UCI datasets.

FIGURE 7. Box plots of ARI obtained by two algorithms on 14 UCI datasets.

To verify the impact of IMOIA, we compared our algorithm
with KIFCM-NNIA. In addition, in order to confirm the
performance of our algorithm, we compared our algorithm
with five famous clustering algorithms, i.e. AP [9], DBSCAN
[10], FCM [11], KFCM [20] and IFCM [12]. Fourteen UCI
real datasets are used to compare the performance of our
algorithm and comparison algorithms. The details of the data
sets are shown in the Table 1.

A. EVALUATION ON METRICS
In this paper, three clustering metrics are used to measure
the performance of our algorithm: ACC [30], ARI [31] and
NMI [32].

The ACC is calculated as:

ACC =

n∑
k=1

δ(lk ,map(gk ))

n
(33)
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FIGURE 8. Box plots of NMI obtained by two algorithms on 14 UCI datasets.

where n represents the number of data samples, gk and lk
represent the cluster label obtained by our algorithm and
the true classification label of the data sample xk , respec-
tively, map(·) is a mapping function that maps cluster labels
obtained by our algorithm to the true classification labels.
When lk = map(gk ), the function value of δ(lk = map(gk ))
is 1, otherwise it is 0.

Suppose that G and L respectively represent the clustering
label set obtained by our algorithm and the true classification
label set. The ARI is defined by

ARI =
RI − E(RI )

max(RI )− E(RI )
(34)

whereE(RI) represents the expected value ofRI.RI is the rand
index which is defined as:

RI =
a+ b
Cn
2

(35)

where a represents the number of pairs of points that are in
the same cluster in G and L, and b represents the number of
pairs of points in different clusters inG and L, n represents the
number of samples in the data set, Cn

2 indicates the number of
pairs that can be composed in the dataset. The range of ARI is
[−1, 1]. The larger the value, the closer the clustering result
is to the true classification.

The NMI is defined by

NMI =

c∑
i=1

c∑
j=1

nij log
(
n·nij
ni·n′j

)
√√√√( c∑

i=1
ni log

( ni
n

))( c∑
j=1

n′j log
(
n′j
n

)) (36)

where c represents the number of clusters, n represents the
number of samples in the data set, nij represents the number
of data samples belonging to the i-th cluster in the label set
obtained by the algorithm and belonging to the j-th cluster
in the true label set, simultaneously. ni is the number of data
samples belonging to the i-th cluster center obtained by the
algorithm, and n′j is the number of data samples belonging
to the j-th cluster in the real case. NMI effectively measures
the statistical information between the clustering result distri-
bution obtained by the algorithm and the actual classification
label distribution. The range ofNMI values is [0, 1]. Generally
speaking, the larger the NMI value, the better the clustering
result.

B. ANALYSIS OF PARAMETERS OF KIFCM-IMOIA
In this section, we evaluated the effects of parameters m and
α. In FCM [11], the value of m is 2. In IFCM [12], the values
of m and α are 2 and 0.85, respectively. In this section, m and
α are tested in sets {1.5, 2, 2.5, 3, 3.5} and {0.25, 0.45, 0.65,
0.85, 1}, respectively. Our algorithm is executed 10 times for
each UCI dataset to investigate m and α. Figure 5 shows the
curved surfaces of ACC with the variations of m and α on
14 UCI data sets.

As shown in Figure 5, the values of m and α have no
obvious effects onACC values of D1, D2, D4, D6, D7, D8 and
D11. For D3, D5, D9, D12, D13 and D14, the values of ACC
decrease obviously when the value of α is less than 0.5. For
D10, the value of ACC decreases obviously when the value of
m is greater than 2. In the following experiments, the values
of m and α are assigned to 2 and 0.65, respectively.

84574 VOLUME 7, 2019



W. Zang et al.: Kernel-Based Intuitionistic FCM Clustering

TABLE 2. The average values and their deviations of clustering results of six algorithms on 14 UCI datasets.
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TABLE 2. (Continued.) The average values and their deviations of clustering results of six algorithms on 14 UCI datasets.

C. RESULTS FROM KIFCM-IMOIA AND KIFCM-NNIA
To verify the impact of IMOIA, we compared our algorithm
with KIFCM-NNIA on 14 UCI datasets. In each algorithm,
the maximum generation T is 100 and the maximum size of
population N is 100.

Figure 6–Figure 8 show the box plots of two algorithms for
three metrics, i.e., ACC, ARI and NMI. In each plot, the left
box represents the result of KIFCM-NNIA and the right box
represents the result of KIFCM-IMOIA; the median value
of the metrics is indicated by the red line at the center of
the box; the top line of the box is the position of the third
quartile and the bottom line is the position of the first quartile;
the upper and lower limits of the whiskers represent the
maximum and minimum values of the metric, respectively;
the outlier is represent by the red symbol ‘‘+’’. Note that
a higher and more compact box indicates better clustering
results.

As shown in Figure 6, the boxes of the two algorithms are
consistent on D1. In the other 13 data sets, the performance of

our algorithm is obviously better than that of KIFCM-NNIA.
Especially for D6, the minimum ACC of our algorithm is
higher than the maximum ACC of KIFCM-NNIA.

As shown in Figure 7 and Figure 8, for D1, D3 and
D10, the maximum ARI obtained by KIFCM-NNIA is higher
than that obtained by KIFCM-IMOIA. For D1, D7 and D10,
the maximum NMI obtained by KIFCM-NNIA is higher
than that obtained by KIFCM-IMOIA. However, the boxes
obtained by our algorithm are lower. For other data sets,
KIFCM-IMOIA performs better. The reason for this phe-
nomenon is that IMOIA uses a novel active antibody selec-
tion strategy, a hybrid differential evolution strategy and an
adaptive mutation operator to maintain a better distribution
of solutions with better convergence.

D. COMPARISON OF RESULTS WITH OTHER CLUSTERING
ALGORITHMS
In this experiment, we compared our algorithm with
five famous clustering algorithms based on three
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TABLE 3. T-test results on 14 UCI datasets.

clustering metrics. To make the comparison fare, the max-
imum number of iterations for each compared algorithm is
100. In this paper, each algorithm is executed 30 times for
each dataset. The evaluation metrics are obtained from the
output at the end of each run. Table 2 shows the average values
and their deviations of clustering results of six algorithms on
14 UCI datasets.

As shown in Table 2, the clustering results of KIFCM-
IMOIA are better than other algorithms on 11 UCI datasets.
For Hayes-Roth, our algorithm performs slightly worse than
IFCM and KFCM on NMI. For Haberman’s Survival Data,
our algorithm performs worse than KFCMon three clustering
metrics. For Optical Recognition of Handwritten Digits, our
algorithm performs slightlyworse thanAP onACC. However,
for other data sets, our algorithm performs significantly better
than other algorithms. Especially for seeds, Glass Identifi-
cation, Letter Recognition (C\D), Skin Segmentation and
Electrical Grid Stability Simulated Data, the improvement
of our algorithm is obvious. As can be seen from Table 2,
the improvement rates of ACC are about 10%, the ARI

improvement rates are approximately 20%, and the improve-
ment rates of NMI are over 10% on these five data sets.

E. T-TEST RESULTS
In this section, we first select the best method from five
well-known clustering algorithms according to Table 2. Then,
we compared the numerical results of KIFCM-IMOIA and
the selected best method using the t-test. In our experiment,
the sample size is set to 30. Table 3 shows the t-test results,
including the standard error of the difference, the T value,
the 95% confidence interval and the two-tailed P value.

By performing the independent-samples T test on the
results of KIFCM-IMOIA and the selected best method, it can
be inferred whether there are significant differences between
the two algorithms. In Table 3, the positive T value indicates
that our algorithm performs better than other algorithms.
If the two-tailed P value is less than 0.05, it indicates that there
is significant difference between the result of our algorithm
and that of the compared algorithm. If the 95% confidence
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TABLE 4. Computational complexity of the seven algorithms.

interval is to the right of zero, then our algorithm performs
significantly better than the comparison algorithms.

As shown in Table 3, the T values are negative of three
clustering metrics on D2 which means that our algorithm
is performing poorly on this dataset. For D1, the T value
is negative of NMI and the two-tailed P value is less than
0.05 which means that our algorithm performs slightly worse
than the compared algorithms on NMI. For D7, the value in
the 95% confidence interval is on the left side of zero and
the two-tailed P value is greater than 0.05, which means that
our algorithm performs worse than the compared algorithms,
but the difference is not obvious. For D9, the T value is
positive of NMI and the two-tailed P value is less than 0.05,
which means that our algorithm performs better than the
compared algorithms, but the difference is not obvious. For
other datasets, our proposed algorithm can achieve significant
clustering performance. All two-tailed P values are less than
0.05, so the numerical differences of KIFCM-IMOIA and
the best method among other five compared algorithms are
statistically significant. In other words, the performance of
our algorithm is significantly improved compared with other
algorithms.

F. COMPUTATIONAL COMPLEXITY
In this subsection, we will discuss the time complexity of
seven algorithms. Assuming that N is maximum size of pop-
ulation, n is the size of dataset, c is the number of cluster cen-
ters. The steps to calculate the time complexity of KIFCM-
IMOIA are as follows:

1) In the initialization step of antibody population,
the time complexity is O(N ).

2) The time complexity of computing objective functions
of antibodies in population is O(Ncn).

3) In the step of identifying non-dominated antibodies in
the population, the time complexity is O((N + ND)2),
where ND is the number of non-dominated antibodies
in previous generation population.

4) In the step of selecting active antibodies from current
population, the time complexity is O(N + ND).

5) The time complexity of cloning, differential evolution,
and mutation is O(N ).

Therefore, the worst time complexity of one generation
for KIFCM-IMOIA can be simplified as O(Ncn). Assuming
that T is the maximum number of generations, the time
complexity becomes O(TNcn).

Table 4 summarizes the computational complexity of the
seven algorithms. The time complexity of KIFCM-IMOIA
is worse than that of FCM, KFCM and IFCM, but they are
in the same order of magnitude. The time complexity of

AP and DBSCAN are O(Tn3) and O(nlog(n)), respectively,
which are not as good as KIFCM-IMOIA. The time com-
plexity of KIFCM-NNIA is O(TNcn), which is same with
KIFCM-IMOIA.

VI. CONCLUTION
In order to prevent the algorithm from falling into local opti-
mum and improve robustness to noises, we present KIFCM-
IMOIA. Our algorithm combines kernel method and multi-
objective immune optimization algorithm with IFCM. The
kernel method projects data into higher dimensional spaces,
which improves robustness to noises. In addition, the multi-
objective immune optimization algorithm considers the sep-
aration between clusters and the compactness within clusters
simultaneously. This operation helps the proposed algorithm
to avoid falling into local optimum. First, to verify the impact
of IMOIA, we compared our algorithm with KIFCM-NNIA.
Experimental results show that IMOIA can maintain a bet-
ter distribution of solutions with better convergence. Then,
extensive experiments were performed to compare the per-
formance of our algorithm with five famous clustering algo-
rithms, i.e. AP [9], DBSCAN [10], FCM [11], KFCM [20]
and IFCM [12], on 14 UCI data sets. Experimental results
show that KIFCM-IMOIA performs better than other algo-
rithms on three clustering metrics, including the clustering
accuracy, adjusted rand index and normalized mutual index.
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