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ABSTRACT Various improved canonical correlation analysis (CCA)methods were developed for enhancing
the performance of steady-state visual evoked potential (SSVEP)-based brain–computer interfaces (BCIs).
Among them, themethod combiningCCA spatial filters from sine-cosine references and individual templates
yielded the highest performance. However, the CCA aims to optimize the correlation between two sets of
variables rather than the signal-to-noise ratio (SNR) of the SSVEP signals, upon which the performance of
an SSVEP-based BCI depends mainly. In this paper, a novel algorithm, namely, maximum signal fraction
analysis (MSFA), is proposed for creating spatial filters based on individual training data. The spatial filter
for a specific stimulus target is estimated by directly maximizing the averaged SNR of the observed signals
across multiple trials. An individual template is calculated for each target by averaging training signals
of multiple trials. Target recognition is based on template matching between filtered template signals and
a single-trial testing signal. Classification performance of the MSFA-based method was evaluated on a
benchmark dataset and compared with that of the CCA-based methods. The results suggest that the proposed
MSFA method significantly outperforms the CCA-based methods in terms of classification accuracy, and
thus, it has great potential to be applied in the real-life SSVEP-based BCI systems.

INDEX TERMS Brain-computer interface, steady-state visual evoked potential, maximum signal fraction
analysis, canonical correlation analysis, signal-to-noise ratio.

I. INTRODUCTION
A brain-computer interface (BCI) is a non-muscular commu-
nication channel between the brain and an external device [1].
Such a channel can help people with severe motor disabilities
communicate with the external world and thus improve their
quality of lives. In the past decades, electroencephalogram
(EEG)-based BCIs have attracted attention in the field of
neural engineering and clinical rehabilitation. BCI systems
can be built using several paradigms such as motor imagery,
visual evoked potentials (VEP) and P300 event-related poten-
tials. Among them, the steady-state VEP (SSVEP)-based
BCIs have become popular due to the advantages of high
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communication speed, low user variation and litter user
training [2].

Great progresses have been achieved in the study of
VEP-based BCIs in recent years [3]–[14]. However, creating
a robust and practical BCI system remains a challenging prob-
lem [2]. The main reason is that the observed SSVEP signals
are very noisy and exhibit low signal-to-noise ratio (SNR).
In the EEG signals recorded on the scalp, the useful signal
for target recognition is generated from task-related brain
activities, while the noise is derived from spontaneous brain
activities and other task-unrelated sources, which include
power line interference, eye movements and eye blinks, etc.
Some noise sources, e.g. eye blinks, produce voltage changes
of much higher amplitude than the task-related brain activi-
ties. The low SNR of EEG signals severely limits the practical
applications of SSVEP-based BCIs.
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A widely used metric for BCI performance is the informa-
tion transfer rate (ITR) defined byWolpaw et al. [1]. Accord-
ing to the ITR metric, the three parameters to affect BCI
performance are the number of selectable targets, the accu-
racy of target detection and the average time taken for one
selection. Among the three parameters, the second one is
the most important because high classification accuracy is
necessary and essential for a practical BCI regardless of
its type and number of selections. Thereby, in the study of
SSVEP-based BCIs, much effort was made towards improv-
ing target recognition algorithms [8]. Power spectrum density
analysis (PSDA) was a widely used method for detecting
target frequency of SSVEP signals from a single electrode
channel [13]–[14]. To make use of information from multiple
channels, minimum energy combination (MEC) [15] and
canonical correlation analysis (CCA) [16]–[17], as spatial
filtering methods, were employed for target recognition. The
standard CCA algorithm estimates spatial filters between
a single-trial testing signal and sine-cosine reference sig-
nals. Although the algorithm exhibits better robustness than
PSDA, it is susceptible to noise including the spontaneous
EEG activities. To enhance the SNR of SSVEP signals, indi-
vidual training data were incorporated in CCA algorithm
and subsequently, diverse improved methods were developed
for SSVEP frequency detection [7], [18]–[21]. The multi-
way CCA (MwayCCA) and the L1-reguralized MwayCCA
(L1-MCCA) were first proposed to optimize sine-cosine ref-
erence signals of multiple standard CCA processes using
training data [18], [19]. The multi-set CCA (MsetCCA)
was proposed to optimize the reference signals with com-
mon features in multiple training trials [20] and exhibited
better classification performance than the MwayCCA and
the L1-MCCA. Nakanish et al. proposed an extended CCA
method that combines CCA-based spatial filtering and tem-
plate matching for detecting the frequency of SSVEP sig-
nals [6], [22]. Among the above methods, the extended CCA
method uses CCA process to separately estimate multiple
spatial filters, and the frequency detection is based on cor-
relation between two spatially filtered signals. A compari-
son study showed that the extended CCA method yielded
the best classification performance among all CCA-based
methods [22].

Green et al. presented a linear transformation, maximum
signal fraction analysis (MSFA), for maximizing the SNR of
a set of variables [23].MSFAwas first used for reducing noise
in multispectral satellite images [23] and achieved better
denoising effect than principal component analysis (PCA).
Subsequently, MSFA was applied to blind source separa-
tion [24], [25] and artifact removal [26], [27] of biomedical
signals. As a kind of spatial filtering algorithm, MSFA can
be used for removing noise of multichannel SSVEP signals.
Different from the CCA algorithm, which estimates spatial
filters by maximizing the underlying correlation between two
sets of variables, MFSA estimates spatial filters by directly
maximizing the SNR of one set of variables. Thereby, MSFA

is expected to provide more robust feature signals when it is
used to spatially filter multichannel SSVEP signals.

The detection accuracy of a BCI depends completely
upon the SNR of the extracted feature signals used for
classification. In this study, we proposed an MSFA-based
algorithm for target recognition in order to enhance the per-
formance of SSVEP-based BCIs. To the best of our knowl-
edge, the MSFA-based analysis has never been used in BCI
studies. The performance of MSFA was evaluated with a
40-target benchmark SSVEP data set recorded from 35 sub-
jects [28]. In the performance evaluation, the CCA-based
methods were used for comparing the performance with the
proposed MSFA-based algorithm.

II. MATERIALS AND METHODS
A. DATA ACQUISITION AND PREPROCESSING
A publicly available benchmark SSVEP data set [28] was
used in this study. The data set was acquired from 35 healthy
subjects (18 males and 17 females, aged from 17 to 34 years,
mean 22 years) while they performed a cue-guided target
selecting task. Among these subjects, eight had experience
using SSVEP-based BCIs, and the others were naïve. The
user interface was a BCI speller consisting of 40 visual
stimulus targets, which were coded using a joint frequency
and phase modulation (JFPM) method [29]. The stimulus
frequencies ranged from 8 Hz and 15.8 Hz with an interval
of 0.2 Hz, whereas the phases ranged between 0 rad and 1.5π
rad with an interval of 0.5π rad. The data set can currently be
downloaded at https://pan.baidu.com/s/1qYhyLtE.

The EEG data were collected with a Synamps2 system
(Neuroscan Inc.) at a sampling rate of 1000 Hz. Sixty-four
electrodes according to an extended international 10/20 sys-
tem were used for recording EEG. The reference electrode
was positioned at vertex (Cz). Electrode impedances were
kept below 10 k� during the experiment. Event trigger sig-
nals yielded by the stimulus program were recorded on an
event channel synchronized to the EEG data. The experiment
consisted of six blocks, each of which included 40 trials
corresponding to all 40 targets cued in a random order.
Each trial started with a visual cue, which lasted 0.5 s and
achieved by reddening the target to be attended. Subjects were
instructed to shift their gaze to the target as soon as possible.
Subsequently, all stimulus targets flicked concurrently for 5 s.
After the end of visual stimulation, the screen was blank for
0.5 s and then the next trial began. Subjects were asked to
avoid eye blinks during the stimulus period. To avoid visual
fatigue, they were allowed a short rest of several minutes
between two consecutive blocks.

The continuous EEG data were segmented into epochs of
length 6 s including 0.5 s before stimulus onset, 5 s for visual
stimulus and 0.5 s after stimulus offset. These epochs were
resampled to 250 Hz for offline analysis. More information
about the data set can be referred to [28].

Data preprocessing was conducted before the spatial fil-
tering for feature extraction. All data epochs were temporally
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filtered in the frequency band 7-90Hzwith a Chebyshev Type
I infinite impulse response (IIR) filter. Forward and backward
filtering was performed to avoid phase distortion. Consider-
ing a latency delay in the visual system, the filtered epochs
were extracted in [0.64 s, (0.64+d) s], where d indicates the
data length used for target recognition.

B. TARGET RECOGNITION BASED ON CCA
CCA is a multivariable statistical technique whose goal is
to examine the underlying correlation between two sets of
random variables. It seeks two weight vectors to maximize
the correlation between the two variables [30], [31]. Given
two multidimensional variables X and Y , their respective
linear combinations can be denoted as x = XTWx and
y = Y TWy. CCAfinds the two weight matricesWx andWy by
maximizing the correlation ρ between the two combinations
as follows:

ρ = argmax
Wx ,Wy

E[xT y]√
E[xT x]E[yT y]

= arg max
Wx ,Wy

E[W T
x XY

TWy]√
E[W T

x XXTWx]
√
E[W T

y YY TWy]
(1)

where ρ is a one-dimensional vector whose elements are
arranged in descending order and E denotes the opera-
tion of mathematical expectation. The first columns of Wx
and Wy, denoted respectively as wx and wy, corresponding
to the maximal value in ρ, are used as spatial filters in
SSVEP-based BCIs.

CCA has two input signals. In SSVEP-based BCI applica-
tions, the input X is a single-trial testing signal, whereas the
input Y is a reference signal that can be either a frequency spe-
cific sine-cosine reference signal (named SC CCA hereafter)
or an individual template signal (named IT CCA hereafter)
yielded by averaging training signals across multiple trials.

1) SC CCA
For the target with stimulus frequency fn, n = 1, 2, . . . ,Nf ,
the sine-cosine reference signals, Yn ∈ R2Nh×Ns , are artifi-
cially created as follows [16], [17]:

Yn =


sin(2π fnt)
cos(2π fnt)
· · ·

sin(2πNhfnt)
cos(2πNhfnt)

 , t =
0
Fs
,

1
Fs
, . . . ,

Ns − 1
Fs

(2)

where Nh and Ns denote the number of harmonics and the
number of sampling points in a single trial respectively, and
Fs is the sampling rate of EEG signals.
In the SC CCA, the maximal correlation coeffi-

cients ρn(1), n = 1, 2, . . . ,Nf are used as classification
features for target recognition. ρn(1) are calculated between
a testing signal X ∈ RNc×Ns and each reference signal
Yn, n = 1, 2, . . . ,Nf . The frequency of the testing trial is
decided as the frequency of the reference signal with the

maximum correlation:

ft = max
f
ρf (1), f = f1, f2, . . . , fNf (3)

2) IT CCA
In the IT CCA method [21], [22], the reference signals
are individual templates yielded by averaging training sig-
nals across multiple trials from the same target, i.e. χ̄n =
(1/Nt )

∑Nt
t=1 χ

t
n, where Nt is the number of training trials.

By replacing the sine-cosine reference signals Yn with indi-
vidual templates χ̄n, the procedure for target recognition is
the same as that of SC CCA.

3) EXTENDED CCA
The extended CCA (named EX CCA hereafter) is the com-
bination of SC CCA and IT CCA [6], [22]. Different from
the two CCA methods, which employ the maximal values
of canonical correlation ρ in (1) as classification features,
the EX CCA utilizes the correlation coefficients between dif-
ferent projected signals. The combination method makes use
of the following three spatial filters for computing projection
signals: (1) wx(X , χ̄n) between a testing signal X and the
individual template χ̄n; (2)wx(X ,Yn) between a testing signal
X and the sine-cosine reference signals Yn; (3) wχ̄n (χ̄n,Yn)
between the individual template χ̄n and the sine-cosine ref-
erence signals Yn. A correlation vector r̂n containing five
correlation coefficients for a stimulus target/frequency n, n =
1, 2, . . . ,Nf is calculated between different projection vec-
tors as follows:

r̂n=


rn,1
rn,2
rn,3
rn,4
rn,5

=

corr(XTwx(X ,Yn),Y Tf wy(X ,Yn)
corr(XTwx(X , χ̄n), χ̄Tn wX (X , χ̄n)
corr(XTwx(X ,Yn), χ̄Tn wX (X ,Yn)
corr(XTwχ̄n (χ̄n,Yn), χ̄

T
n wχ̄n (χ̄n,Yn)

corr(χ̄Tn wx(X , χ̄n), χ̄
T
n wχ̄n (X , χ̄n)

 (4)

where corr(a, b) denotes Pearson correlation coefficient
between two vectors a and b. Finally, the weighted correlation
coefficient rn is used as feature for target recognition:

rn =
5∑
l=1

sign(rn,l)·r2n,l (5)

where the function sign(·) is used in order to retain discrim-
inative information from negative correlation coefficients.
Finally, target recognition for the testing trial is completed
as follows:

T = argmax
n

rn, n = 1, 2, . . . ,Nf (6)

C. TARGET RECOGNITION BASED ON MSFA
MSFA is a kind of signal processing method that is used
for estimating a set of weight vectors of multichannel sig-
nals so that they can be integrated into a one-dimensional
signal [23]. The weight vectors are found by solving an
optimization problem that maximizes the SNR of a set of
variables. Assume that the observedmultichannel EEG signal
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X is derived from a set of source signals S corrupted by
additive noise N , i.e. X = S + N , X , S,N ∈ RNc×Ns , where
Nc and Ns are the number of channels and the number of
sampling points respectively. Then the optimization problem
is represented as:

ρ = max
w6=0

||Sw||2
||Nw||2

= max
w6=0

wT SSTw
wTNNTw

(7)

where w ∈ RNc×1 is the weight vector and the superscript T
denotes transpose operation. The set of solutions to the above
problem is defined recursively by constraining all solutions
wi, i = 1, 2, . . . ,Nc to be orthogonal with respect to the
weighted inner product wTi SS

Twj = 0 for all i 6= j. The
solutions to the optimization problem are the generalized
eigenvectors [23] defined by

SSTw = λNNTw (8)

where λi, i = 1, 2, . . . ,Nc is the eigenvalue corresponding to
the eigenvector wi. These eigenvalues and eigenvectors can
be found by eigen decomposition of SST and NNT using
Matlab function eig, i.e. [W ,D] = eig(SST ,NNT ), where
W = [w1,w2, . . . ,wNc ] is a eigenvector matrix and D =
diag(λ1, λ2, . . . , λNc ) is a diagonal matrix of eigenvalues.
Note that the eigenvalues in D are arranged in ascending
order.

In SSVEP-based BCIs, the weight vector wNc correspond-
ing to the maximum feature value in D can be used as a
spatial filter for a stimulus target. Assume that there are
Nt training trials for a specific stimulus target n, χ tn, t =
1, 2, . . . ,Nt . The signal component of each training trial is
considered invariant and can be obtained by trial averaging,
S0n =

∑Nt
t=1 χ

t
n. Thereby,χn = [χ1

n , χ
2
n , . . . , χ

Nt
n ], Sn =

[S0n , S
0
n , . . . , S

0
n ], Nn = χn − Sn. Replacing S and N in

Equation (7) with Sn and Nn, the spatial filter for target n can
be obtained. With the spatial filters for all stimulation targets,
two projection vectors can be computed by spatially filtering
the individual template for a target and a single-trial testing
signal respectively. Thus, a feature value is yielded by cal-
culating the Pearson correlation between the two projection
vectors as:

rn = corr(XTwn, χ̄Tn wn) (9)

Finally, the target recognition is done by comparing the
feature values from all targets and the target with maximal
feature value is decided as the one the subject is gazing at
using Equation (6).

D. ENSEMBLE SPATIAL FILTER AND
FILTER BANK ANALYSIS
Recently, two effective techniques were proposed for enhanc-
ing the performance of SSVEP-based BCIs, i.e. ensemble
spatial filter [5], [32], [33] and filter bank [7], [8], [34]
analysis. The former is a method that incorporates the spatial
filters from all stimulation targets to increase the SNR of
SSVEP signals, whereas the latter is a temporal method that

decomposes an SSVEP signal into multiple sub-band signals
and combines the useful information embedded in harmonic
components for the same purpose.

1) ENSEMBLE SPATIAL FILTER
Since a scalp recorded EEG signal is the mixture of multi-
ple source signals, the spatial filters from all stimulus tar-
gets, each of which combines SSVEP signals from different
channels, should be similar to each other within the same
frequency bands [35], [36]. Thereby, integrating these spatial
filters can significantly improve the performance of spatial
filtering. An ensemble spatial filter is constructed as W =
[w1,w2, . . . ,wNf ]. Then Equation (9) for computing correla-
tion coefficient for the nth stimulus target is modified as:

rn = corr(XTW , χ̄Tn W ) (10)

2) FILTER BANK ANALYSIS
According to the study [8], filter bank analysis decomposes
the informative frequency band of 8∼88 Hz into 10 differ-
ent sub-bands, with each sub-band ranging between m ×
8 Hz and 88 Hz. The sub-band signals are acquired by
applying zero-phase infinite impulse response (IIR) filters of
Chebyshev Type I. Assume that the template signals and a
single-trial testing signal for the mth sub-band are denoted
as χ̄mn ∈ RNf×Nc×Ns and Xm ∈ RNc×Ns respectively. In the
sub-band, the feature value derived from the nth target can be
calculated as rmn = f (χ̄mn ,X

m), where f denotes a kind of spa-
tial filtering algorithm such as the extended CCA and MSFA.
The weighted sum of squared feature values for all sub-bands
is used for the classification feature and calculated as:

rn =
Nm∑
m=1

a(m) · (rmn )
2 (11)

where Nm is the number of sub-bands and a(m) = m−1.25 +
0.25 is the weight coefficient defined in [8]. Finally, the target
corresponding to a single-trial testing signal is recognized
using Equation (6).

3) THE APPLICATION OF FILTER BANK AND
ENSEMBLE SPATIAL FILTER
Because of their respective characteristics, the three
CCA-based methods, SC CCA, IT CCA and EX CCA, can
only be combined with filter bank analysis, and the result-
ing methods are named SC FBCCA, IT FBCCA and EX
FBCCA respectively. MFSA, however, can be combined with
either filter bank or ensemble analysis or both, the resulting
methods are named FBMSFA, EN MSFA and EN FBMSFA
respectively.

Flowchart of the proposedMSFA-based methods for target
recognition is shown in Fig. 1. The flowchart is divided into
training stage and testing stage. The task in the training stage
is to estimate a spatial filter and a template signal for each
target using training trials, whereas that in the testing stage
is to classify a testing trial to a specific target/frequency
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FIGURE 1. Flowchart of the proposed MSFA-based methods for target recognition: (a) Training stage: The task is to estimate a spatial filter and a
template signal for each target using training trials; (b) Testing stage: The task is to classify a testing trial to a specific target using the templates and
spatial filters of all targets or an ensemble spatial filter yielded in the training stage.

using the templates and spatial filters of all targets yielded
in the training stage. This flowchart is a comprehensive one,
which can include or exclude the filter bank and/or ensemble
analysis. In the case that the ensemble analysis is not applied,
only the spatial filters wn, n = 1, 2, . . . ,Nf are used in the
testing stage. In the case that the filter bank analysis is not
applied, only the first sub-band (8 Hz-88 Hz) is used in the
two stages.

E. PERFORMANCE COMPARISON
Different spatial filtering algorithms can be evaluated under
four conditions, i.e. not using both filter bank and ensemble
spatial filter analysis, using either of them and using both
of them simultaneously. Since the extended CCA (EX CCA)
is actually one kind of ensemble analysis method, a reason-
able comparison of BCI performance should be made among
MSFA, SC CCA and IT CCA, among FBMSFA, SC FBCCA
and IT FBCCA, between EN MSFA and EX CCA, and
between EN FBMSFA and EX FBCCA.

In this study, three evaluating indicators, i.e. recognition
accuracy of targets, simulated ITR and r-square, are employed
for comparing BCI performance. The first twowere estimated
by leave-one-out cross validation, in which 5 blocks were
used as training data and 1 block was used as testing data.
For the estimation of simulated ITR, the 0.5 s gaze-shifting
time was included in the time for target selection. The third
indicator was calculated with the feature value yielded by
the target stimulus and the maximal feature value yielded by
non-target stimuli [1], [21].

III. RESULTS
The CCA and MSFA based methods have a total of five
parameters, i.e. the length of data windows, the number of
channels, the number of training trials, the number of har-
monics and the number of sub-bands. Except when each
parameter was targeted for performance analysis, they were
fixed to 0.8 s, 9, 5, 5 and 5 respectively if applicable. The first
parameter was selected in line with the study [4], whereas the

latter two were determined according to the studies [4], [5].
EEG data from nine channels over occipital region (Pz, PO5,
PO3, POz, PO4, PO6, O1, Oz, O2) were used for this study
and the number of channels was selected in turn from the
channel subset when it was used as a variable parameter.

First of all, we compared the BCI performance among
MSFA, SC CCA and IT CCA, and among FB MSFA,
SC FBCCA and IT FBCCA. The first triad of algorithms
does not incorporate filter bank analysis, whereas the second
does. Fig. 2 shows the averaged classification accuracy and
simulated ITR across all subjects yielded by each of the six
algorithms at nine data lengths, which ranged from 0.2 s to
1 s with the interval of 0.1 s. The results in each column were
derived from the same one triad. From Fig. 2(a) and 2(b),
it is observed that the accuracy from each algorithm increased
monotonically with data lengths. From Fig. 2(c) and 2(d), it is
observed that for the four algorithms that used training data,
the ITR first increased and then decreased with data lengths,
whereas for the two algorithms that did not use training data,
the ITR increased monotonically. This suggests that the sine-
cosine references based CCA methods need more data to
achieve their highest ITRs. In terms of both accuracy and ITR,
MSFA outperformed IT CCA and SC CCA, and FBMSFA
outperformed IT FBCCA and SC FBCCA. One way repeated
measures analysis of variance (ANOVA) revealed that there
were significant differences in both accuracy and ITR among
each triad of algorithms at all data lengths. The results of
statistical analyses are reported in Table 1. Moreover, post
hoc paired t-tests indicated that significant differences existed
between any two algorithms in each triad at each data length
with all p values small than 0.001.

Fig. 3 shows averaged classification accuracy across all
subjects yielded by the six algorithms at different number of
channels. From the figure, it is clearly seen that as the number
of channels increased, the classification accuracy behaved
an upward trend. In the first column, MSFA performed
much better than IT CCA and SC CCA, whereas in the sec-
ond, FBMSFA performed much better than IT FBCCA and
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FIGURE 2. Averaged classification accuracy (a, b) and simulated ITR (c, d) across all subjects yielded by six spatial filtering algorithms at
nine different data lengths. The error bars denote standard errors.

TABLE 1. Statistical analysis of significant differences in classification accuracy and simulated ITRs between SC CCA, IT CCA, and MSFA (Acc-1, ITR-1) and
between SC FBCCA, IT FBCCA, and FBMSFA (Acc-2, ITR-2) at nine data lengths. P denotes the significance level of differences.

SC FBCCA. One way repeated-measures ANOVA showed
that at each number of channels, there were significant differ-
ences in accuracy among the first/second triad of algorithms
(Nc = 3 : F(2, 68) = 81.56/88.14, p < 0.001; Nc = 4 :
F(2, 68) = 169.22/124.84, p < 0.001; Nc = 5 : F(2,
68) = 167.15/115.53, p < 0.001; Nc = 6 : F(2, 68) =
182.48/113.36, p < 0.001; Nc = 7 : F(2, 68) = 194.73/
104.36, p < 0.001; Nc = 8 : F(2, 68) = 191.34/88.11,
p < 0.001; Nc = 9 : F(2, 68) = 184.15/93.53, p < 0.001).
Fig. 3 shows averaged classification accuracy across all

subjects yielded by the six algorithms at different number of
channels. From the figure, it is clearly seen that as the number
of channels increased, the classification accuracy behaved an
upward trend. In the first column, MSFA performed much

better than IT CCA and SC CCA, whereas in the second,
FBMSFA performed much better than IT FBCCA and SC
FBCCA. One way repeated-measures ANOVA showed that
at each number of channels, there were significant differ-
ences in accuracy among the first/second triad of algorithms
(Nc = 3 : F(2, 68) = 81.56/88.14, p < 0.001; Nc = 4 :
F(2, 68) = 169.22/124.84, p < 0.001; Nc = 5 : F(2,
68) = 167.15/115.53, p < 0.001; Nc = 6 : F(2, 68) =
182.48/113.36, p < 0.001; Nc = 7 : F(2, 68) = 194.73/
104.36, p < 0.001; Nc = 8 : F(2, 68) = 191.34/88.11,
p < 0.001; Nc = 9 : F(2, 68) = 184.15/93.53, p < 0.001).
Fig. 4 illustrates averaged classification accuracy across

all subjects yielded by the six spatial filtering algorithms at
different numbers of training trials. For the two algorithms,
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FIGURE 3. Averaged classification accuracy across all subjects yielded by
the six spatial filtering algorithms at different number of channels. The
error bars indicate standard errors.

FIGURE 4. Averaged classification accuracy across all subjects yielded by
the six spatial filtering algorithms at different number of training trials.
The error bars indicate standard errors.

SC CCA and SC FBCCA, the classification accuracy
remained unchanged regardless of the number of training
trials because they did not use training data. For the other
four algorithms, the classification accuracy increased mono-
tonically with the number of training trials. At all numbers
of training trials, MSFA outperformed IT CCA and SC CCA,
whereas FBMSFAoutperformed IT FBCCA and SCFBCCA.
One way repeated-measures ANOVA exhibited that at each
number of training trials, there were significant differences in
accuracy between the first/second triad of algorithms (Nt =
2 : F(2, 68) = 338.24/103.57, p < 0.001; Nt = 3 : F(2,
68) = 332.36/152.04, p < 0.001; Nt = 4 : F(2, 68) =
339.42/205.67, p < 0.001; Nt = 5 : F(2, 68) = 276.14/
170.78, p < 0.001).

r-squares were utilized to explore the discriminability of
features for target recognition. Fig. 5 shows an example of
the averaged r-square values across all subjects for SSVEPs
at 10.2 Hz for the two triads of algorithms. One way repeated-
measures ANOVA showed significant differences among the

FIGURE 5. An example of averaged r -square value across all subjects for
SSVEPs at 10.2 Hz obtained from each of the six algorithms. The error
bars denote standard errors. The asterisks indicate the significant
differences between two algorithms in each triad. ∗∗ indicates p < 0.01
and ∗ ∗ ∗ indicates p < 0.001.

first/second triad of algorithms (F(2, 68) = 24.64/55.67,
p < 0.001). Post hoc paired t-tests showed that the r-square
achieved by MSFA was significantly higher than those
achieved by SC CCA and IT CCA, whereas that achieved by
FBMSFA was significantly higher than those achieved by SC
FBCCA and IT FBCCA. These results suggest that compar-
ing the three algorithms in each triad, MSFA and FBMSFA
could increase the distance of feature values between targets
and non-targets.

Comparing results of the two columns in Fig. 2, Fig. 3,
Fig. 4 and Fig. 5 respectively, the three algorithms in the sec-
ond column outperformed those in the first column due to the
incorporation of filter bank analysis. Paired t-tests showed
that there were significant differences between the two triads
of algorithms in accuracy and ITR at each data length with
p < 0.001, in accuracy at each number of channels with
p < 0.001, in accuracy at each number of training trials
with p < 0.001, and in r-square with p < 0.001. All of
these results fully illustrate that the filter bank analysis could
enhance the discriminability of the feature signals used for
target recognition.

Secondly, we compared the BCI performance between EN
MSFA and EX CCA, and between EX FBMSFA and EX
FBCCA. Different from the above-mentioned six algorithms,
all the four algorithms incorporate the analysis of ensemble
spatial filters. Fig. 6 shows averaged classification accuracy
and simulated ITR across all subjects yielded at different
data lengths. The classification accuracy yielded by each
algorithm in the first row increased monotonically with data
lengths. The ITR yielded by each algorithm in the second
row, however, first increased and then decreased. The results
yielded by EN MSFA and EN FBMSFA were much better
than those yielded by EX CCA and EX FBCCA respectively,
especially for short data lengths. Paired t-tests revealed that
at each data length, there were significant differences in
accuracy and ITR between each pair of algorithms with all
p values smaller than 0.001.
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FIGURE 6. The averaged classification accuracy (a, b) and simulated ITR
(c, d) across all subjects yielded by the four spatial filtering algorithms at
nine different data lengths. ∗ indicates the significant difference between
each pair of algorithms by paired t-test (p < 0.001). The error bars denote
standard errors.

FIGURE 7. Averaged classification accuracy across all subjects yielded by
the four spatial filtering algorithms at different number of channels. The
error bars indicate standard errors.

Fig. 7 illustrates averaged classification accuracy across
all subjects yielded by the four spatial filtering algorithms at
different number of channels. Clearly, the classification accu-
racies of all the algorithms increased consistently with the
number of channels. However, EN MSFA and EN FBMSFA
were superior to EX CCA and EX FBCCA respectively.
Paired t-test indicated that significant differences in accuracy
existed between EN MSFA and EX CCA, and between EN
FBMSFA and EX FBCCA at each number of channels with
all p values smaller than 0.001.
Fig. 8 shows averaged classification accuracy across all

subjects yielded by the four spatial filtering algorithms at
different number of training trials. Likewise, EN MSFA and
ENFBMSFA outperformed EXCCA and EXFBCCA respec-
tively at each number of training trials. Pared t-tests revealed
that there were significant differences in accuracy between

FIGURE 8. Averaged classification accuracy across all subjects yielded by
the four spatial filtering algorithms at different number of training trials.
The error bars indicate standard errors.

FIGURE 9. An example of the averaged r-square values for SSVEPs at
10.2 Hz derived from each of the four spatial filtering algorithms. The
error bars denote standard errors. The asterisks indicate the significant
differences between each pair of algorithms. ∗∗ indicates p < 0.01.

each of two pairs of algorithms at each number of training
trials with all p values smaller than or equal to 0.001.
Fig. 9 depicts an example of the averaged r-square values

for SSVEPs at 10.2 Hz for the four spatial filtering algo-
rithms. Paired t-tests showed that the r-squares achieved by
EN MSFA and EN FBMSFA were significantly higher than
those achieved by EX CCA and EX FBCCA respectively.
These results suggested that EN MSFA and EN FBMSFA
could increase the distance of feature values between tar-
gets and non-targets compared to EX CCA and EX FBCCA
respectively.

Comparing results of the two columns in Fig. 6, Fig. 7,
Fig. 8 and Fig. 9 respectively, it is clearly seen that the two
algorithms in the second column were superior to those in the
first column due to the incorporation of filter bank analysis.
Paired t-tests showed that there were significant differences
between the two pairs of algorithms in accuracy and ITR
at each data length with p < 0.001, in accuracy at each
number of channels with p < 0.001, in accuracy at each
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number of training trials with p < 0.001, and in r-square
with p < 0.001. All of these results fully illustrate that the
combination of ensemble spatial filter and filter bank analysis
is more effective than the use of these two analyses alone.

IV. DISCUSSIONS
Three parameters affecting the performance of an SSVEP-
based BCI are data length, the number of channels and the
number of training trials, which are determined to a large
extent by the spatial filtering algorithm used for target recog-
nition. These three parameters determine the communication
speed of a BCI system, its convenience of use and visual
fatigue of users. The data length required for achieving the
highest ITR is different for different algorithms. It is shown
in Fig. 2 that for the first triad of algorithms, MSFA achieved
the highest ITR at a data length of 0.9 s, whereas SC CCA
and IT CCA did not achieve their highest ITRs in the time
range; For the second triad of algorithms, FB MSFA and
IT MSFA yielded the highest ITRs at a data length of 0.8 s
and 0.9 s respectively, whereas SC FBCCA did not yield the
highest ITR in the time range. It is shown in Fig. 6 that for the
first pair of algorithms, EN MSFA and EX CCA reached the
highest ITRs at a data length of 0.7 s and 0.9 s respectively; for
the second pair of algorithms, EN FBMSFA and EX FBCCA
reached the highest ITRs at a data length of 0.4 s and 0.7 s
respectively. Thereby, the MSFA-based methods could use
shorter data length for target recognition than the CCA-based
methods under the same conditions. By replacing the latter
with the former, the communication speed of BCIs can be
improved substantially.

Using the same number of channels, classification accu-
racies achieved by different algorithms were different.
Fig. 3 shows that at each number of channels, the accu-
racy yielded by MSFA was much higher than that yielded
by SC CCA and IT CCA, whereas the accuracy yielded
by FBMSFA was much higher than that yielded by SC
FBCCA and IT FBCCA. Fig. 7 shows that at each number
of channels, the accuracy yielded by EN MSFA was much
higher than that yielded by EX CCA, whereas the accuracy
yielded by EN FBMSFA was much higher than that yielded
by EX FBCCA. Thereby, the two MSFA-based methods
could achieve the identical accuracy with fewer channels than
the two CCA-based methods. By replacing the latter with
the former, the convenience of BCI use can be improved
accordingly.

Using the same number of training trials, classification
accuracies achieved by different algorithms were also dif-
ferent. Fig. 4 shows that at each number of training trials,
the accuracy yielded by MSFA was much higher than that
yielded by SC CCA and IT CCA, whereas the accuracy
yielded by FBMSFA was much higher than that yielded by
SC FBCCA and IT FBCCA. Fig. 8 shows that at each number
of training trials, the accuracy yielded by EN MSFA was
much higher than that yielded by EX CCA, whereas the accu-
racy yielded by EN FBMSFA was much higher that yielded
by EX FBCCA. Thereby, the two MSFA-based methods

could achieve the identical accuracy with fewer training trials
than the two CCA-based methods. By replacing the latter
with the former, the fatigue of BCI users can be decreased
considerably.

So far, SSVEP-based BCIs do not yet support widespread
usage in spite of great advances. The main factors to limit
their practical applications may be attributed to low com-
munication speed, inconvenient to use and brain fatigue,
all of which are associated with the spatial filter used for
feature extraction. CCA is a successful spatial filtering algo-
rithmwidely used in SSVEP-based BCIs. Compared to CCA,
MSFA has more robust anti-noise performance and its effi-
ciency has been fully verified in this study. As a result,
substituting CCA with MSFA can enhance the performance
of SSVEP-based BCIs.

V. CONCLUSION
A novel target detection method using MSFA for spa-
tial filtering was proposed to enhance the performance of
SSVEP-based BCIs in this study. MSFA can learn spatial
filters from training data by effectively removing background
noise and other artifacts. With a benchmark data set from
35 subjects, theMSFA-based methods were comprehensively
compared with the CCA-based methods under various condi-
tions. The results demonstrated that MSFA achieved superior
classification performance and high robustness to noise, con-
tributing to the practical applications of SSVEP-based BCIs.
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