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ABSTRACT In contrast to defect-free fabric images with macro-homogeneous textures and regular patterns,
the fabric images with the defect are characterized by the defect regions that are salient and sparse
among the redundant background. Therefore, as an effective tool for separating an image into a redundant
part (the background) and sparse part (the defect), the low-rank decomposition model provides an ideal
solution for patterned fabric defect detection. In this paper, a novel patterned method for fabric defect
detection is proposed based on a novel texture descriptor and the low-rank decomposition model. First,
an efficient second-order orientation-aware descriptor, denoted as GHOG, is designed by combining Gabor
and histogram of oriented gradient (HOG). In addition, a spatial pooling strategy based on human vision
mechanism is utilized to further improve the discrimination ability of the proposed descriptor. The proposed
texture descriptor can make the defect-free image blocks lay in a low-rank subspace, while the defective
image blocks have deviated from this subspace. Then, a constructed low-rank decomposition model divides
the feature matrix generated from all the image blocks into a low-rank part, which represents the defect-
free background, and a sparse part, which represents sparse defects. In addition, a non-convex log det as a
smooth surrogate function is utilized to improve the efficiency of the constructed low-rank model. Finally,
the defects are localized by segmenting the saliency map generated by the sparse matrix. The qualitative
results and quantitative evaluation results demonstrate that the proposed method improves the detection
accuracy and self-adaptivity comparing with the state-of-the-art methods.

INDEX TERMS Patterned fabric, defect detection, GHOG, low-rank decomposition, ADMM.

I. INTRODUCTION
Fabric defect detection is the key step in quality control of
textile products. Currently, it is mainly conducted visually
by skilled workers. However, the detection accuracy and
reliability are restricted by the human errors and eye fatigue.
Automatic and intelligent detection and analysis of fabric
defects based on machine vision can provide a promising
solution, which not only minimizes labor costs, but also
improves accuracy and efficiency. With the development of

The associate editor coordinating the review of this manuscript and
approving it for publication was Auday A.H. Mohamad.

machine vision technology, some fabric inspection machines
have been successfully applied to the textile process, such
as Shelton web-SPECTOR, Barco Visions Cyclops, EVS
ITex2000 and MQT. However, these inspection systems only
work for limited fabric types. Therefore, it is necessary to
further study the fabric defect detection methods.

Machine vision based methods for fabric defect detection
should be designed based on the features of fabric images,
e.g., their texture. One feature is the pattern, referring to the
unit repetitively shown on the fabric. Fig. 1 shows the fabrics
with different patterns from simple non-motif patterns (twill
and plain fabrics, as shown in Fig. 1(a)) to the complex motif
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FIGURE 1. (a) Plain and twill. (b) Star-patterned fabric. (c) Box-patterned
fabric. (d) Dot-patterned fabric.

patterns (e.g., dots, boxes, and stars as shown in Fig. 1(b-d)).
For the plain and twill fabrics, the background is homoge-
neous and the defects are salient. Therefore, it is relatively
easy to detect defects on these fabrics. Most exiting methods
were designed for plain and twill fabrics and can achieve high
detection rate for this type of fabrics. These approaches can
be classified into four categories, including statistical analysis
methods [1], frequency transform methods [2], model based
methods [3], and dictionary learning methods [4]. However,
these methods do not work well for fabrics with complex
patterns due to a few challenges. This is because the repetitive
unit has a complex structure, which can be similar to the
defects, making the detection difficult. Besides, it is difficult
to collect the data samples of defects on these complex fabrics
for the construction of available benchmark datasets.

Recently, a few methods have been proposed for the fab-
rics with complex patterns, such as the ELO rating (ER)
method [5], and wavelet-preprocessing golden image sub-
traction (WGIS) [6]. These approaches also suffer from some
advantages, e,g., requiring non-defective samples. In addi-
tion, the accuracy of these methods heavily relies on the
accurate partitions and the selected template.

Low-rank decomposition model is an effective method
that divides a data matrix into a redundant part spanning
several low-rank subspaces and a sparse part which is the
outlier [7]. As the method can simultaneously detect the out-
liers and recovers the low-dimensional subspace of matrices,
it has been successfully applied for the problems of object
detection, image segmentation, image denoising, etc. For
patterned fabric images, the defect-free regions are macro-
homogeneous, which lay in a low-dimensional subspace,
while the defective regions are salient and sparse. Therefore,
low rank decomposition model can be an effective tool for the
task of the patterned fabric defect detection.

However, directly using low-rank decomposition in the
raw pixel space of images to detect defects in the complex
patterned fabrics is not practical due to the low accuracy. This
promotes us to introduce new powerful descriptors to effi-
ciently characterize the fabric texture, which make the defect-
free or background regions lay in a low rank subspace, whilst
the defective regions deviate from the subspace. In order
to efficiently characterize the fabric texture, the following
should be considered: 1) Texture of defect-free fabric images
usually has specific layout in a unique orientation, yet the
appearance of defects damages the regularity of this ori-
entation. Therefore, an orientation-aware descriptor should
be used for representing the fabric image features; 2) Due

to the complex texture of the fabric images, the gray value
exhibits a high frequency variance, and hence a high order
gradient descriptor should be employed rather than the first-
order gradient descriptor.

In this paper, we propose to use a second-order orientation-
aware descriptor, denoted as GHOG, by combing Gabor
and HOG. As the 2-dimensional (2D) Gabor transform are
similar to biological visual sensory systems that can effi-
ciently extract the orientation, it is used to generate the first-
order orientational maps. Then, we use them as the inputs to
calculate the second order gradient orientational map over
the same image region. Thereafter, HOG is generated by
counting the gradient magnitude when the gradient orienta-
tion is consistent with the orientation of Gabor filtered maps.
In addition, in order to further enhance the ability of the
describing large variety of local shape changes and to increase
discrimination ability, a spatial pooling strategy is embedded
into the model. Then, an efficient low-rank decomposition
model is constructed to divide thematrix generated by the ori-
entation feature extracted from image blocks into a low-rank
matrix (background information) and a sparse matrix (defect
information). In addition, a non-convex log det is utilized as
a smooth surrogate function to accelerate the convergence
speed of the constructed low-rank model. Finally, the defects
are localized by segmenting the saliency map generated by
the sparse matrix.

A preliminary conference version of this work has been
published in [8]. This paper includes the work in [8] but
significantly extends it in the following points: 1) In [8],
the traditional HOG was used to extract the feature from
Gabor maps. In this paper, HOG is generated by count-
ing the gradient magnitude when the gradient orientation
is consistent with the orientation of Gabor filtered maps;
2) Following the idea of [8], a spatial pooling strategy is
utilized to enable small displacement of second order gradi-
ents in the neighborhood of a certain point; 3) A non-convex
log det is also exploited as a smooth surrogate function for
the rank instead of the nuclear norm to improve the effi-
ciency of the low-rankmodel; 4) Experimental results are pre-
sented to further demonstrate the efficiency of our proposed
method.

The reminder of this paper is organized as follows.
Section II introduces the related work of fabric defect detec-
tion. In Section III, the proposed algorithm is presented.
Section IV gives evaluation on the performance of the pro-
posed algorithm in comparison with other existing methods.
Finally, we conclude the paper in Section V.

II. RELATED WORK
Many methods of fabric defect detection were proposed with
the aim to improve the accuracy and to reduce the compu-
tational complexity. Most proposed methods are generally
used to detect defects in plain and twill fabrics, and they
mainly include four categories: spectral analysis, model-
based, and dictionary learning approaches. Spatial statisti-
cal methods via calculating gray-scale values of the defects
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contrasted with their surroundings, including histogram
character analysis method [9], local contrast enhancement
method [10]. However, these methods heavily rely on the size
of selected windows and their discrimination rules. More-
over, they always suffer from the issue to detect small size
defects.

With spectral analysis methods, an image of interest is
converted into spectral domain using a suitable orthogonal
transform, e.g, the Fourier transform (FT) [11], the Gabor
transform [12] and the orthogonal wavelet transform [2].
However, these methods require huge amount of computa-
tions and hence are not efficient.

Model-based methods extract texture features by means of
modeling and parameter estimation. Defect detection is real-
ized by estimating whether the test image is consistent with
the model with normal textures. A few model-based meth-
ods were reported, such as Gaussian-Markov random field
(GMRF) [13], and Gaussian mixture model (GMM) [14].
These methods can achieve satisfactory performance, but
they usually suffer from high computational complexity, and
also the model-based methods cannot efficiently detect the
defects of smaller size.

With dictionary learning based methods, defects are
located in two ways: one is first to construct a dictionary
by adaptively learning the training or test images, and then
reconstruct the defect-free fabric image based on this dic-
tionary. The defects are identified by subtracting the recon-
structed image from the input test image [15]. The other is to
construct a dictionary in the same way, and then the image
patch to be tested is projected on to the dictionary, leading to
reduction in the dimension of the image patch. The defects are
detected using the support vector data description (SVDD)
technique [16]. However, these two methods requires con-
struction of a dictionary for every type of textile images,
and thus are not efficient in terms of computational burden.
Also the performance of the first method may suffer from
the problem that the reconstructed images may exhibit areas
similar to defects.

For complicated patterned fabrics, several methods have
been recently published, such as the wavelet pre-processing
golden image subtraction (WGIS) [6], template matching
for discrepancy measures (TMPM) [17], the Bollinger bands
(BB) [18], the regular bands (RB) [19] and the ELO rating
method [5].

With WGIS, a template (also called golden image) is
selected from defect-free images. Both the template and the
images to be tested are pre-processed by wavelet filtering.
Then the defects are detected by evaluating the difference
between the pre-processed template and the test images. The
TMPM method also makes use of a golden image as the
template for defect detection, but it uses a fitness function to
explore the difference between the template and the images
to be tested. The BB and RB methods detect the defects
by comparing the moving averages and standard deviations
of small area of images against certain thresholds obtained
from the regularity property of a patterned texture, e.g.,

dot-, boxand star-patterned fabrics. ELO rating (ER) define
a similarity which named as competition score between two
image blocks. The defective image block are detected by
calculating the score between the test image block and a
trained template.

The above techniques for patterned fabric defect detection
employs traditionalmethods to characterize the fabric texture,
such as wavelet transform, Gabor transform, average value,
and standard deviation. A common feature of patterned fabric
images is the normal background with certain orientation,
whichwill be destroyed by the defects. Therefore, the orienta-
tion is an important feature for describing the fabric texture.
In addition, as fabric images have the complex texture and
complex variations in their grey level, high-order gradient
should be used to describe them. However, the existing meth-
ods did not consider these characteristics of the patterned fab-
ric image. On the other hand, themajority of existingmethods
for complicated pattern usually utilize template matching
techniques to localize the defective regions. The detection
accuracy depends on precise alignment and selection of a
suitable template.

By decomposing the feature matrix into a low-rank matrix
corresponding to the background and a sparse matrix cor-
responding to the object, low-rank decomposition model
can be well applied for the patterned fabric defect detec-
tion problem [20]–[22]. However, the performance of the
low-rank decomposition model depends on selection of
a descriptor. An efficient descriptor can make the back-
ground part in a lower dimensional feature subspace, and the
sparse part is more far away from the subspace. Therefore,
an effective feature extraction is the crucial step for low-rank
decomposition.

In this paper, we propose a powerful second order orienta-
tion aware descriptor, denoted as GHOG, for characterizing
the fabric texture. Moreover, an effective low rank decompo-
sition model is introduced to separate the defective regions
from the normal background.

III. THE PROPOSED ALGORITHM
In this section, we describe the proposed fabric defect detec-
tion method, which includes feature extraction of GHOG
descriptor, construction of low-rank decomposition model,
optimization of the model and acquisition and segmentation
of the saliency map.

A. FEATURE EXTRACTION OF GHOG
Effective fabric defect detection requires powerful feature
descriptors, characterized by uniqueness in measurements,
and thus sufficient discriminative capabilities. Considering
the aforementioned characteristics of patterned fabric image,
a second order orientation-aware descriptor is a suitable tool
for describing complex texture. Therefore, GHOG, a new
feature descriptor is proposed, leading to reduction in the
dimension of the feature vectors and capturing information
of second order orientation. The proposed GHOG descriptor
is shown in Fig. 2, and the detailed procedures are described
as follows:

83964 VOLUME 7, 2019



C. Li et al.: Defect Detection for Patterned Fabric Images Based on GHOG and Low-Rank Decomposition

FIGURE 2. Feature extraction of GHOG.

1)Gabor orientational filteredmap generation.The 2-D
Gabor filter has the following complex form [23]:

g (x, y; λ,ψ, σ, γ)=exp
(
−
x ′2+γ 2y′2

2σ 2

)
exp

(
i
(
2π

x ′

λ
+ψ

))
(1)

Its real part is:

g (x, y; λ,ψ, σ, γ )=exp
(
−
x ′2+γ 2y′2

2σ 2

)
cos

(
2π

x ′

λ
+ψ

)
(2)

And its imaginary part is described as:

g (x, y; λ,ψ, σ, γ )=exp
(
−
x ′2+γ 2y′2

2σ 2

)
sin
(
2π

x ′

λ
+ ψ

)
(3)

where x ′ = x cos θ + y sin θ , y′ = −x sin θ + y cos θ , λ is
wave length, which is not smaller than 2, and no more than
1/5 of the size of the input image; θ denotes the orientation,
whose value ranges from 0 to 2π ; ψ represents phase shift
ranging from−π to π , while 0 and π respectively correspond
to center-on and center-off functions, and −π/2 and π/2
correspond to anti-symmetric function; γ is the length-to-
width ratio of the filter, which determines the ellipticity of
the Gabor function; the shape is round when γ = 1, and the
shape stretches along the orientation of parallel stripes when
γ < 1. In this paper, γ is set to 0.5; σ is the standard deviation
of the Gaussian factor in the Gabor function. The value of σ
cannot be preset directly, as it depends on the bandwidth b.
b must be a positive constant, which is related to the ratio

of σ/λ, i.e., b = log2
σ
λ
π+

√
ln 2
2

σ
λ
π−

√
ln 2
2

, σ
λ
=

1
π

√
ln 2
2 ·

2b+1
2b−1 . In this

paper, we usually set b = 1, and then the relationship of σ
and λ is σ = 0.56λ.

In this paper, we choose eight orientations θ (θ = 00,
450, 900, 1350, 1800, 2250, 2700, 3150) with one scale to fil-
ter the patterned fabric image, and accordingly eight direc-
tional filtered maps Go (o = 1, 2, . . . , K, K is set to 8 in
this paper) are generated to capture the orientational features
as follows.

Gk (x, y)=
√
(GRk (x, y)∗I (x, y))2+(GIk (x, y)∗I (x, y))2 (4)

where I (x, y) represents the input image, GRk (x, y) and
GIk (x, y) for the real and imaginary part of the Gabor filter in
the k − th orientation, ‘*’ represents convolution operation.
2) Generation of the Second-Order Gradient Orienta-

tional Maps. After generating the first order orientational
filtered map Gk (x, y), we use them as the inputs to calculate
the second order gradient orientational map over the same
image region.

First of all, the gradients in the horizontal and vertical
directions of the image pixel are calculated as follows:

GMk (x, y) =

√(
∂Gk (x, y)
∂x

)2

+

(
∂Gk (x, y)

∂y

)2

(5)

θk (x, y) = arctan(
∂Gk (x, y)

∂y
/
∂Gk (x, y)
∂x

) (6)

∂Gk (x, y)
∂x

= Gk (x + 1, y)− Gk (x − 1, y) (7)

∂Gk (x, y)
∂y

= Gk (x, y+ 1)− Gk (x, y− 1) (8)

Then each orientation is mapped to the range of [0, 2π ]
from that of [−π/2, π/2], which keeps consistent with the
number of the Gabor filter maps. After quantization, the entry
no of each orientation θo is computed as follows:

no(x, y)=mod(
⌊
θo(x, y)
2π/N

+
1
2

⌋
,N ), o=1, 2, . . . ,K (9)
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FIGURE 3. The Spatial pooling arrangement of the proposed GHOG
descriptor.

Then, the second-order gradient magnitude GMk (x, y) is
used as pixel value to generate the second-order gradient map
for each pixel location (x, y).
3) Spatial pooling. After generating the second-order ori-

entation map GMk (x, y), we employ spatial pooling to gener-
ate the local descriptor. Firstly, we equally divided the input
image GMk (x, y) into N blocks GM i

k (x, y), i = 1, 2, ..N with
the same size Nb × Nb, and Nb is set to 16 in this paper; then
each image block is divided into sub-regions using spatial
pooling strategy, and a histogram of certain property (such
as edge points, gradients and binary patterns) is generated
for each sub-region. In the end, the final descriptor for each
image block is formed by concatenating all these histograms
of all the orientations. As suggested by Brown et al. [24],
DAISY-style operation achieved the best performance by
comparing several different spatial pooling strategies. There-
fore, we adopt this strategy to build our proposed GHOG
descriptor. The strategy is illustrated in Fig. 3.

As shown in Fig. 3, on the input image block, a series
of concentric rings of concentric rings is marked whose
radius are arranged in arithmetic sequence. On each ring,
we have K circles with its centers evenly distributed, and
the radius of the circles is proportional to the radius of the
ring. Therefore, there are four parameters which determine
the spatial arrangement of the GHOG descriptor: the number
of quantized orientations (K); the radius of the region (R); the
number of circles on each ring (C); the number of concentric
rings (CR). We empirically set R = 8, K = 8, CR = 3 and
C = 8 in our case.

The total number of the decomposed circles can be com-
puted as T = CR × C + 1. Within each circle CRIj,
j = 1, 2, . . .T and for each image block GM i

k , we define
Hkj(s) as the histogram of orientation gradients features of
GM i

k , which is constructed by accumulating the gradient

magnitude GM i
k of all the pixels with the same quantized

orientation entry nk .

H i
kj(s) =

∑
(x,y)∈CRIj

f (nk (x, y) = s) ∗ GM i
k (x, y) (10)

where s = 0, 1, . . . ,K−1; k = 1, 2, . . . ,K ; j = 1, 2. . . . ,T .

f (X ) =

{
1, if X is true
0, otherwise

(11)

Next, for each block of second-order orientation map,
we concatenate all the histograms from T circles (as shown
in Fig. 3) to obtain its second order gradient histogram H i

k .

H i
k = [H i

j1,H
i
k2, · · · ,H

i
kT ]

T (12)

Then, normalize each histogram H i
k to a unit norm

vectorĤ i
k :

Ĥ i
k =

H i
k

‖H i
k‖

(13)

where ‖ · ‖ usually stands for `2-norm.
For each block of second order gradient maps GM i

k , its
GHOG features GHOGi is generated by concatenating the
histograms of all the orientations.

GHOGi =

[
∧

H i
1,

∧

H i
2, . . . ,

∧

H i
K

]T
(14)

In order to construct the model in the following section,
we define a feature matrix F as the final GHOG descriptors
to represent the information of the entire image.

F = [GHOG1,GHOG2, . . . ,GHOGN ] (15)

B. CONSTRUCTION OF LOW-RANK
DECOMPOSITION MODEL
After obtaining the feature matrix F, the problem of fabric
detection is to use an effective model to decompose the
feature matrix F into a redundant information part L (non-
salient background) and a sparse part S (salient defect). And
the low-rank decomposition model is formulated as:(
L∗, S∗

)
=arg min

(L,S)
(rank(L)+µ ‖S‖0) s.t.F = L+S (16)

where L lies in the low-rank subspace, representing the nor-
mal background, that is, the regularly repetitive texture. S lies
in the sparse subspace, and represents the defective regions.

Since Eq. (14) is non-deterministic polynomial (NP)-hard
problem, it is difficult to obtain the optimal solution of
Eq. (13). We utilize the following convex function to surro-
gate it:(
L∗, S∗

)
= arg min

(L,S)
(‖L‖∗ + µ ‖S‖1) s.t.F = L + S (17)

where ‖L‖∗ is the nuclear norm of L, which is the sum of
the singular values of L; ‖.‖1 indicates the l1 norm, which
is the sum of absolute value of all the elements in each
column vector;µ is a positive constant that trades-off the low-
rankness and sparsity.
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FIGURE 4. Comparison of L (x, ξ), rank (x), ‖x‖∗ in the case of a scalar.

Use of the nuclear norm as a convex surrogate provides
a way to solve the rank minimization problem in the first
term of Eq. (14), i.e., rank minimization problem is correct.
However, it is very computationally expensive for solution.
Inspired the heuristical work in [25], we employ a non-convex
optimization toward the rank minimization problem. Instead
of the nuclear norm, we use a smooth but non-convex surro-
gate of the rank. For a given matrix with a symmetric pos-
itive semi-definite structure, the rank minimization problem
can be approximately surrogate by minimizing the following
equation [26]:

E(X , ξ ) = log det(X + ξ I ) (18)

where ξ is a positive scalar. E(X , ξ ) approximates the sum of
the logarithm of singular values, thus it is smooth and non-
convex. The log det is proved to be a non-convex surrogate
of the rank [27]. As shown in Fig. 4, the surrogate function
E(X , ξ ) yields a better approximate the rank than the nuclear
norm.

For the low-rank matrix L, Eq. (15) is rewritten as follows:

L(L, ξ ) = log det((LLT )1/2 + ξ I )

= log det(U61/2U−1 + ξ I )

= log det(61/2
+ ξ I ) (19)

where 6 is the diagonal matrix whose diagonal elements are
eigenvalues of matrix LLT , i.e.,LLT = U6U−1 ; meanwhile,
61/2 is also the diagonal matrix whose diagonal elements
are the singular values of the matrix L. Hence, L (L, ξ) is a
log det(·) surrogate function of rank (L) obtained by setting
X =

(
LLT

)1/2. Finally, Eq. (14) can be rewritten as follows:

(L∗, S∗)=arg min
(L,S)

(L(L, ξ )+µ ‖S‖1) s.t.F=L+S (20)

C. OPTIMIZATION OF THE MODEL
The alternating directionmethod ofmultipliers (ADMM) [28]
demonstrates a good balance between efficiency and accu-
racy in solving optimization problems. In this paper, ADMM
has been adopted to solve Eq. (17).

The augmented Lagrangian multiplier function of Eq. (17)
is as follows:

L (L, S,Z ) = L (L, ξ)+ µ ‖S‖1 +
β

2
‖L + S − F‖2F

−〈Z ,L + S − F〉 (21)

where Z ∈ Rm×n is the multiplier of the linear constraint,
β > 0 is the penalty parameter for the violation of the
linear constraint, 〈·〉 is the inner product and ‖·‖F is the
induced Frobenius norm. The proposed objective function
can be solved by alternatively minimizing the objective func-
tion with respect to the L, S and the multiplier Z. It can be
described as solving the following three sub-problems:

L(k+1) = argmin
L

L(L(k), S(k),Z (k);β)

S(k+1) = argmin
S

L(L(k+1), S,Z (k);β)

Z (k+1) = Z (k) − β
(
L(k+1) + S(k+1) − F

) (22)

For the first sub-problem in Eq.(19), which solves for F at
fixed S andZ, it can be explicitly represented as the following
form:

L∗ = argmin
L

L(L, ξ )

+
β

2
‖L + S − F‖2F − 〈Z ,L + S − F〉 (23)

Substituting Eq.(15) into Eq.(20), we can get the following
Equation:

L∗ = argmin
L

n0∑
j=1

L(σj(L)+ ξ )

+
β

2
‖L + S − F‖2F − 〈Z ,L + S − F〉 (24)

where n0 = min {m, n}, and σj(L) indicates the j-th singular
value of L. For simplicity, we use σj to denote σj(L). Even
though

∑n
j=1 log(σj + ξ ) is non-convex, it can be solved by

utilizing a local minimization approach. We define the equal-
ity h(σ ) =

∑n
j=1 log(σj + ξ ). Then h(σ ) can be approximated

by using its first-order Taylor expansion, as follows:

h (σ ) = h
(
σ (k)

)
+

〈
∇h

(
σ (k)

)
, σ − σ (k)

〉
(25)

where σ (k) is the solution obtained in the k-th iteration.
Therefore, Eq. (21) can be solved by iteratively solving:

L(k+1) = argmin
L

β

2

∥∥∥∥L(k) + S(k) − F − Z (k)

β

∥∥∥∥2
F

+

∑n

j=1

σj

σ
(k)
j + ξ

(26)

where we use the fact that ∇h(σ (k)) =
∑n0

j=1
1

σ
(k)
j +ξ

and

ignore the constants in Eq.(22).
In general, for a real matrix, the weighted nuclear norm is

a convex function only if the weights are descending, and the
optimal solution to Eq.(23) is obtained by a weighted singular
value thresholding operator, referred to as the proximal oper-
ator. In this paper, the weights are ascending, thus Eq.(23)
is non-convex. Therefore, it is difficult to find its global
minimizer. Nevertheless, we could find that the weighted
singular value thresholding gives one minimizer to Eq.(23)
via Theorem 1 (Proximal Operator of Weighted Nuclear
Norm) [29].
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Theorem 1 (Proximal Operator of Weighted Nuclear
Norm) [29]:

For each X ∈ Cn×m and 0 ≤ ω1 ≤ · · · ≤ ωn0 ,

n0 = min{m, n}, a minimizer to

min
L

1
2
‖X − L‖2F + τϕ (L, ω) (27)

is given by the weighted singular value thresholding operator
Sω,τ (X):

Sω,τ (X) := U (6 − τdiag(ω))+ V
T (28)

where U6V T is the SVD of X and (x)+ = max {x, 0}.
To be consistent with the expression of Theorem 1,

we convert Eq. (23) into a new form:

L(k+1) = argmin
L

1
2

∥∥∥Y (k) − L(k)∥∥∥2
F
+ τϕ

(
L, ω(k)

)
(29)

where τ = 1/β. Y (k) = F (k) + Z (k)
β
− S(k),

ϕ(L, ω) =
∑n0

j ω
(k)
j σj indicates a weighted nuclear norm

whose weights ω(k)
j = 1/

(
σ
(k)
j + ξ

)
.

According to this Theorem, we can obtain the low-rank
matrix at the (k + 1)-th iteration by

L(k+1) = U
(
∼

6−τdiag(ω(k))
)
+

V T (30)

where U
∼

6 V T is the SVD of the feature matrix Y, and
ω
(k)
j = 1/

(
σ
(k)
j + ξ

)
. Even though the weighted threshold-

ing is only a local minimizer, it always leads to a decrease
in the objective function value. In this paper, the initial value
ω(0) is set to [1, 1, . . . , 1]T .
After solving the low-rank matrix L, the sparse matrix S

can be solved by fixing L and Z. Indeed, we can easily obtain
the solution using the widely-used shrinkage problem [30]:

S(k+1) =
1
β
Z (k)
− L(k+1)+F−P

�
γ /β
∞

[
1
β
Z (k)
−L(k+1)+F

]
(31)

where P
�
γ /β
∞

indicates the Euclidean projection onto:

�
γ /β
∞ :=

{
X ∈ Rn×n

∣∣−γ /β ≤ Xij ≤ γ /β } (32)

Then the multipliers Z can be updated as follows:

Z (k+1)
= Z (k)

− β(Lk+1 + Sk+1 − F) (33)

D. SALIENCY MAP ACQUISITION AND SEGMENTATION
1) SALIENCY MAP ACQUISITION
For a given patterned fabric image, decomposing the feature
matrixF into a low-rank approximationL, which corresponds
to the normal patterned background, and a sparse part S,
which corresponds to the defective objects. A saliency map
M is generated by the l1-norm of each column Si in S, and it
is described as follows:

M (Ii) = ‖Si‖1 (34)

The larger value ofM (Ii) indicates that the patch Ii is more
likely to be defective objects.

2) SALIENCY MAP SEGMENTATION

First, obtaining a new saliency map
∧

M by de-noising the
generated saliency mapM

∧

M = g ∗ (M ◦M ) (35)

where g denotes the radius of circular smoothing filter and
‘‘◦’’ means the Hadamard inner product operator and ‘‘*’’ is
the convolution operator.

Next, normalizing the new saliency map
∧

M in [0, 255]

∼

M =

∧

M −min(
∧

M )

max(
∧

M )−min(
∧

M )
× 255 (36)

Finally, segmenting
∼

M by adopting an improved adaptive
threshold segmentation algorithm [31] to localize the position
of defective regions.

IV. EXPERIMENTAL RESULTS
In this section, we evaluate our proposed approach and com-
pare with state-of-the-art methods in the datasets of 256-
by-256 patterned fabric images, which are from Industrial
Automation Research Laboratory, Dept. of Electrical and
Electronic Engineering, The University of Hong Kong, these
images have three patterns: star-, box- and dot-patterned fab-
ric datasets for performance validation. There exist 25 defect-
free and 25 defective images in the star-patterned fabric
dataset, 30 defect-free and 26 defective images in the box-
patterned fabric dataset and 110 defect-free and 120 defective
images in the dot-patterned fabric dataset, respectively. All
the these images have corresponding ground-truth images
which are treated as standard criterion. In this paper, all
experiments are conducted on the platform of the computer
with Inter(R) Core(TM) i3-2120 3.3GHZ CPU and 4G DDR
memory, and in the simulation environment of MATLAB
2016a software.

A. QUALITATIVE RESULTS
According to the low-rank decomposition model, the feature
matrix extracted from the given patterned fabric image can
be divided into the superposition of two parts, i.e., a low-rank
approximate matrix and a sparse residual matrix. The final
detection result can be obtained from the saliency map which
is generated by the sparse matrix, so as to localize the position
of the defective regions.

The proposedmethod includes two parts: feature extraction
and detection method, they are equally important for fabric
defect detection. In order to validate the effectiveness of
our method, we firstly compare the saliency maps generated
by different descriptors, including Gabor [23], HOG [32],
Gabor+HOG (different from our proposed GHOG, it simply
concatenates Gabor and HOG), and HSOG [33] and different
detection methods, such as the template matching method
(TMM) [34], the context analysis method (CAM) [35] with
our method, as shown in Fig. 5.
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FIGURE 5. The saliency maps generated by different features and
detection models. The first column shows the original images, the second
column shows saliency maps generated by Gabor [23] with the LR model
(Gabor + LR), the third column shows the saliency maps generated by
HOG [32] with LR model (HOG + LR), the fourth column shows the
saliency maps generated by Gabor and HOG with LR model, the fifth
column shows the saliency maps generated by HSOG [33] with LR model
(HSOG + LR), the sixth column shows the saliency maps generated by
GHOG and TMM model [34] (GHOG + TMM), the seventh column shows
the saliency maps generated by GHOG and CAM model [35] (GHOG +
CAM), and the last column shows the saliency maps generated by our
method.

The first column are the original images, from the second to
the seventh column are the saliency maps generated by Gabor
feature [23] and the LR detection model, HOG feature [32]

and the LR detection model, Gabor+HOG features and the
LR detection model, HSOG [33]features and the LR detec-
tion model, GHOG feature and the TMM [34] detection
model, GHOG feature and the CAM [35] detection model,
respectively, and the last column consists of the saliency
maps generated by our proposed method (GHOG feature and
the LR detection model). From the second column and the
fifth column in Fig. 5, we can conclude that the detection
results based on the Gabor, HOG and Gabor+HOG and
HSOG features combined with LR model cannot outstand
the defect region for star-patterned fabric and box-patterned
fabric images, but they can outstand the detect region for
dot-patterned fabric images. On the other hand, from the
sixth column and the seventh column in Fig. 5, the saliency
map generated by the GHOG feature and the TMM or CAM
detection models cannot outstand the defect region. In the last
column, we can see that the saliency map generated by our
method can efficiently outstand the defect region for all the
three types of images. And the performance of these methods
can be concluded as Table 1. From Fig. 5 and Table 1,
we can see that the proposed defection method based on
GHOG and LR is more suitable for patterned fabric defect
detection.

In addition, we compare our method with some state-
of-the-art visual saliency models, including WT [36],
PGLSR [37], TDVSM [34], LSF-GSA [35] and SOMC [38],
as shown in Fig. 6. WT [44] analyzed wavelet coefficients
in the frequency domain to obtain the saliency map. How-
ever, even in a normal background with complex pattern, its
wavelet coefficients are larger, which will lead to incorrect
detection results. The PGLSR method [37] could effectively
detect defects in the patterned fabric, but similarities in tex-
ture between the background and the defect lead to inaccurate
shape descriptions of the defects, such as the third image
in Fig. 6(a). TDVSM [34] generated the saliencymap by com-
puting the subtraction of texture features between each pixels
and their average value. It could obtain a better detection
performance for fabric images with plain or twill textures, but
failed in the patterned fabric defect detection, especially for
box-patterned ones. LSF-GSA [35] incorporated local texture
features with global analysis to generate saliency map, while
the detection results may existed large amount of noises. Our
method generates saliency maps by combining the GHOG
feature descriptor with a low-rank decomposition model, and
it effectively outstands the defective regions. Subsequently,
segmenting the generated saliencymaps to get the final detec-
tion results.

We also compare our detection results with the existing
fabric detection algorithm. Since TDVSM [34] is invalid for
detecting patterned fabric defect, thus in this work, we only
compare the proposed method with the other two valid detec-
tion methods,i.e, PGLSR [37] and LSF-GSA [35], the exper-
imental results comparison is described in Fig. 7. In Fig. 7,
we can see that the other methods (as shown in the first
three columns) can almost localize the defect region, but the
detected shape of the defect is different from the ground
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FIGURE 6. The saliency maps of our method compared with other
state-of-the-art saliency models. The first column shows the original
images, the second column shows saliency maps generated by WT [36],
the third column shows the saliency maps generated by PGLSR [37],
the fourth column shows the saliency maps generated by TDVSM [34],
the fifth column shows the saliency maps generated by LSF-GSA [35],
the sixth column shows the saliency maps generated by SOMC [38],and
the last column shows the saliency maps generated by our method.

truth. Our detection results (as shown in the sixth column)
are similar to the ground truth images (as shown in the last
column), can efficiently localize the defective regions, and

FIGURE 7. Detection results of our method compared with other fabric
defect detection methods. The first column shows the original images,
the second column shows the detection results of TDVSM [34] method,
the third column shows the detection results of PGLSR [37] method,
the fourth column shows the detection results of LSF-GSA [35] method,
the fifth column shows the detection results of SOMC [38] method,the
sixth column shows the detection results of our method, the last column
shows the ground-truth images.

the detected shape of the defect is similar to the ground truth.
This demonstrates that our proposed method is superior to the
other methods.
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TABLE 1. Comparisons with other methods.

TABLE 2. Average numerical results for each defect type of star-patterned fabric images.

TABLE 3. Average numerical results for each defect type of box-patterned fabric images.

TABLE 4. Average numerical results for each defect type of dot-patterned fabric images.

B. QUANTITATIVE EVALUATIONS
Some evaluation metrics are introduced to further verify the
performance of our approach. Four statistical parameters,
i.e., true positive (TP), true negative (TN), false positive (FP),
false negative (FN), are adopted in this paper, which have
been used by Ng et al. [40]. Based on these parameters, some
measurement metrics including: Accuracy ACC = (TP +
TN )/(TP + FN + FP + TN ), true positive rate TPR =
TP/(TP+FN ), false positive rateFPR = FP/(FP+TN ), pos-
itive predictive value PPV = TP/(TP+FP) and negative pre-
dictive valueNPV = TN/(TN+FN ). The average numerical
results for each defect type of star-, box-, and dot-patterned
fabric images are illustrated in Table II, Table 3 and Table IV,
respectively. When available, these numerical results of all
the compared methods are generated either by using the
publicly released source code with fault parameters provided
by the authors (including TDVSM [34], PGLSR [37], LSF-
GSA) [35], and SOMC [38]), or directly copy the numbers
reported in their papers (the results ofWGIS [39] and ER [39]
are listed in [39] and BB [18], RB [19], and ID [40] are listed
in [40]). From these Tables, we can see that our proposed
approach performs the best performance on the three bench-
mark patterned fabric datasets.

C. RUNNING TIME ANALYSIS
In this paper, a non-convex log det as a smooth surrogate
function for the rank instead of the nuclear norm is adopted
to improve the efficiency of the proposed method. In order

to demonstrate its efficiency, we compare the running time
for the two methods. For the LR model with nuclear norm,
the running time is 0.27 s for detecting one image in our
simulation environment; however, the running time for LR
model by using smooth surrogate function is 0.18 s. There-
fore, our proposed method can efficiently reduce the running
time comparing to the traditional low-rank model.

V. CONCLUSION
In this paper, we have presented a novel patterned fab-
ric defect detection method based on GHOG and low-rank
decomposition. The main contributions of our method are
summarized as follows: 1) in order to efficiently characterize
the fabric texture feature, a novel second-order direction-
aware feature descriptor, denoted as GHOG, a combination of
Gabor and HOG, is proposed; 2) the low-rank decomposition
model is adopted for defect detection; 3) in order to improve
the efficiency of the proposed method, a non-convex log det
as a smooth surrogate function for the rank instead of the
nuclear norm is also exploited.

We also compare the performance of the proposed
approach with some stae-of-the-art approaches on the three
benchmark patterned fabric datasets. Experimental results
both in qualitative and quantitative demonstrate the effective-
ness and superiority of our proposed approach. Furthermore,
our proposed algorithm provides a new idea for surface defect
detection of other industrial products.
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