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ABSTRACT It is important to find an effective method for power quality (PQ) disturbance recognition
under the challenges of increasing power system pollution. This paper proposes a PQ disturbance signal
recognition method based on Multiresolution S transform (MST) and decision tree (DT). For improving
recognition accuracy, adjustment factors are introduced to obtain a controllable time-frequency resolution.
On this basis, five feature statistics are obtained to quantitatively reflect the characteristics of the analyzed
power quality disturbance signals, which is less than the traditional S-transform-based method. As the
proposed methodology can effectively identify the PQ disturbances, the efficiency of the DT classifier
could be guaranteed. In addition, the noise impacts are also taken into consideration, and 16 types of noisy
PQ signals with a signal-to-noise ratio (SNR) scoping from 30 to 50 dB are used as the analyzed dataset.
Finally, a comparison between the proposed method and other popular recognition algorithms is conducted.
The experimental results demonstrate that the proposed method is effective in terms of detection accuracy,
especially for combined PQ disturbances.

INDEX TERMS Multiple power quality disturbances, multiresolution S-transform, feature extracting,
disturbance classification, decision tree.

I. INTRODUCTION
Electric power has become an indispensable part of national
life, and improving the PQ conditions has great significances
in the normal operations for power grids. Recently, with
the development of modern electronic technology, a large
number of unbalanced non-linear loads and new energy with
random fluctuation characteristics have been added to the
power grids, resulting in many PQ disturbance events, such
as harmonic and transient disturbances [1]–[3]. These dis-
turbance events have negative impacts on the performances
for the equipment based on precision computers and micro-
processors, in some conditions, even bring some unexpected
consequences [4]. Therefore, investigating PQ signals is of
great significance in improving power supply quality, moni-
toring equipment state and troubleshooting.

The PQ disturbance contains a large amount of power
system operation information [5], [6]. Through the analysis
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of time-frequency information, such as the evolution of the
energy and frequency component, the fault location and type
can be obtained, which provides important basis for the
quick repair of power systems. Moreover, rapid advances
in power technology have provided new ways to cope with
the challenges facing smart management of power systems.
PQ analysis also plays an important role in transient anal-
ysis and monitoring of power equipment [7]. At the same
time, the increasing complexity of disturbance types also
puts forward higher requirements for PQ disturbance recogni-
tion. Accurate and real-time identification of disturbance has
attracted increasing attention in power industry.

In general, PQ disturbance recognition can be divided into
several parts, such as disturbance signal detection, feature
extraction, disturbance classification and recognition. Gen-
erally, the disturbance signals of PQ are non-stationary, and
most of the disturbances in the power systems represent
as the combination of several disturbances, which require
high efficiency for the signal analysis methods. Common
signal analysis methods including Kalman filtering (KF) [8],
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short-time Fourier transform (STFT) [9], wavelet trans-
form (WT) [10], discrete wavelet transform (DWT) [11],
wavelet packet transform (WPT) [12], Hilbert-Huang trans-
form (HHT) [13], multiple time-window spectrum estima-
tion (MTW) [14], and S-transform (ST) [15]. By comparing
with other method, the processing results for ST is excellent
and the time-frequency resolution is relatively great, thus, for
precise analysis signal properties, ST has become one of the
most widely used methodologies [16]. However, it is known
that the optimal resolutions for time and frequency cannot be
obtained simultaneously [17], and this degrades the accuracy
of the detection algorithm, especially for the combined distur-
bances analysis. Furthermore, recognition is another critical
procedure, and common disturbance classification methods
mainly including fuzzy expert system (FES) [8], support
vector machine (SVM) [18], extreme learning machine
(ELM) [19], artificial neural network (ANN) [20], proba-
bilistic neural network (PNN) [11], K-nearest neighbor [21]
and decision tree (DT) [14], etc. Unfortunately, traditional
classification methods show some deficiencies when faced
with complex and massive PQ data, such as ANN needs to
be retrained when a new type of disturbances appears [22].
Compared to other approaches, DT is easier to construct,
and its real-time processing capability is better than other
methods although its classification accuracy depends on the
selected features. If the features are clearly distinguishable
from each other, then the efficiency of the DT method is
excellent.

In this paper, a PQ disturbance recognition algorithm based
on Multiresoltion-ST (MST) and DT is proposed. Here,
MST [23], which is an improved algorithm of ST, uses
parameters to adjust the window function to achieve a con-
trollable time-frequency resolution. In addition, it has been
used successfully in research on seismic signal processing.
By applying the MST, the time-frequency characteristics of
the analyzed PQ signals are investigated, while 5 feature
statistics for each PQ signal are obtained. On this basis,
DT classifier was used to classify the PQ signal accord-
ing to the feature statistics. Due to the efficiency of MST,
the efficiency for the DT classifier could be guaranteed. For
checking the capability of the proposed algorithm, 16 types of
PQ disturbance signals with SNRs of 30-50dB, 7 of them are
combined PQ disturbances, are used as the dataset. In addi-
tion, the field PQ data is also investigated. The experimen-
tal results show that the proposed algorithm is efficient in
detecting PQ disturbances with better accuracy, even under
low SNR conditions.

The rest of the paper is organized as follows: In Section II,
the theoretical background of the proposed PQ distur-
bance recognition algorithm is introduced. Section III gives
the framework for the proposed PQ detection methodol-
ogy. Section IV and Section V present the experiments
to verify the efficiency of the proposed methodology
in detecting and classifying PQ disturbances, especially
for the field dataset. Finally, Section VI concludes the
paper.

II. THE METHODS
A. S-TRANSFORM
The basic idea of ST is similar with STFT, while its
window function feature changes with frequency, which
overcomes the defects of the conventional algorithms. The
time-frequency matrix contains adequate time-frequency
information, and disturbance characteristics, such as ampli-
tude and harmonic component, could be obtained.

In general, if the processing signal is x(t), then its ST
processing results S(t, f ) could be denoted as:

S(t, f ) =
∫
∞

−∞

x(τ )g(t − τ, f )e−i2π ftdτ (1)

g(t, f ) =
|f |
√
2π

e−
t2f 2
2 (2)

where, τ is a shift factor and g(t, f ) is a Gaussian window
function with a width of 1/|f |.

It can be found that the time-frequency resolution of the
ST is closely related to the properties of the Gaussian win-
dow function. However, the window width is only deter-
mined by frequency in conventional ST, which means that
the time-frequency resolution is fixed when the frequency is
given [24]. Thus, conventional ST is difficult to meet the
requirements when coping with complex combined distur-
bances in some conditions.

B. MULTIRESOLUTION S-TRANSFORM
In order to obtain a flexible time-frequency resolution, here,
the adjustment factors for the window function, shown as
parameters a, b and c in equation (3), have been introduced,
while the width of the window function could be denoted as:

σf =
1

|af b + c|
(3)

It is shown that the width of the window function could be
amended by changing the corresponding parameters, which
is shown as follows:

g1(t, f ) =
|af b + c|
√
2π

e−
t2(af b+c)2

2 (4)

On this basis, the expression of MST can be described as:

Smst (t, f ) =
∫
∞

−∞

x(τ )g1(t − τ, f )e−i2π ftdτ (5)

As discussed above, the time-frequency resolution, which
is related to window function characteristics, could be con-
trolled by changing the window width factors. According
to Heisenberg uncertainty principle, the time resolution and
frequency resolution cannot reach the optimal at the same
time. Therefore, the appropriate combination of parameters
should be determined according to the actual situation of the
PQ disturbance signal.

C. PARAMETERS DETERMINATION
For demonstrating the efficiency of the MST and investi-
gating the parameter determination, a comparison is carried
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FIGURE 1. Time-frequency analyzing results for combined sag disturbance. (a) PQ waveform, (b) Standard ST, (c) Empirically selected window ST,
(d) Double resolution ST, (e) Adaptive GW-based ST, and (f) MST used in this paper.

out with the following 4 versions of ST, including standard
ST [15], empirically selectedwindowST [25], single param-
eter optimization-based ST [26] and adaptive Gaussian-
window-based ST [27]. A multiple PQ disturbance signal,
which has two voltage sag, are used as the test signal, while
the waveforms is shown in Figure 1(a). Figure 1(b)-(e) depict
the processing results of the comparing modified ST. It is
observed that the competing algorithms are all failed to cap-
ture the time location of PQ events due to their high frequency
resolution in low frequency band. In other words, the high
frequency resolution could lead to high-energy concentration
without considering the time localization of the signal. Fur-
thermore, Figure 1(f) gives the result of themethodology used
in this paper, with a parameter of a = 0.94, b = 0.81, and c
= 16. By observing the figures, the used MST gives a better
time localization of the PQ events and more time-frequency
features are accurately reflected. As the experimental results
show that the processing results of our method is superior to
those of the other variants of ST in terms of reflecting features
in PQ events.

It is known that PQ disturbance could be mainly divided
into instantaneous and steady-state disturbance, while instan-
taneous disturbance refers to the disturbance signal mainly
accidentally changes in amplitude features, such as swell and
sag, then steady-state disturbance indicates the component
for the disturbance signal is obviously degenerated, such as
flicker and harmonic. Specifically, the characteristics for the
flicker disturbance are always contained in low frequency,
while those for sag, swell and interruption signals could
be reflected by the fundamental frequency contents (50Hz
or 60Hz). Besides, the harmonic and transient disturbance
should be detected when analyzing frequency components
between 100 to 700Hz and over 700Hz, respectively. From
this viewpoint, different parameters should be applied for dif-
ferent frequency bands to extract the features for different PQ
signals. In addition, we optimize the three parameters inMST
using the energy concentration measure (ECM) approach in
this study [28]. By optimizing the corresponding parameters,
an optimal time-frequency representation could be obtained.

However, due to the real-time requirement for the power
systems, the computation cost for repeating the determination
process for each PQ signal seems to be unacceptable. For
solving this problem, we select fixed typical parameter sets
to accomplish PQ signal analysis. Although the processing
result maybe not the optimal, it still can reflect the properties
for PQ signals. Hence, the frequency band are divided into
low, medium and high frequency bands for the requirements
of PQ signal detailed analysis, while the parameters are set
to be [0.94 0.81 16], [1.04 1.17 36], and [0.91 0.82 16],
respectively.

D. THE DESCRIPTION FOR THE DT CLASSIFIER
DT is a typical classification algorithm. Generally, the struc-
ture of DT is relatively simple, and less training data is
required [14]. Compared with other classification algo-
rithms, DT algorithm can accurately analyze large amount of
data in a short time, thus it is competent to cope with mass
data processing, which is one of the toughest challenges faced
by modern smart grids. From the aforementioned illumina-
tion, if the effectiveness of the proposed detection algorithm
is verified, thus the classification accuracy of the DT classi-
fier could be guaranteed. Here, the structure of DT classifier
and the decision rules are determined by the feature statistic
distributions for PQ disturbances.

III. PROPOSED PQ DETECTION FRAMEWORK
In this section, a brief description for the PQ disturbance
signals is given, including modeling equations and parameter
scope. Moreover, the principle of the proposed PQ detection
algorithm is introduced in detail.

A. THE MODELING FOR PQ DISTURBANCE SIGNAL
Here, 16 kinds of disturbance, 7 of which are combined
disturbance, are generated. The PQ signal is simulated using
MATLAB2015b, and its modeling equation and parameter
range are shown in Table 1 [14]. Considering the noise
influence in actual operation of power system, the signal
with a SNR of 30-50dB is used as the analyzing dataset.
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TABLE 1. PQ disturbance modeling signal equation and parameters.

The sampling rate is set to be 3.2 kHz. By observing the
Table 1, we can obtain that the combined PQ disturbance sig-
nals could be viewed as several single disturbance occurring
simultaneously.

B. TIME-FREQUENCY ANALYSIS OF PQ SIGNAL
The two-dimensional matrix of MST contains a large amount
of signal time-frequency information, while the characteris-
tics for each PQ signal should be reflected by its energy and
frequency features. To extract the time-frequency information
of the signal effectively, fundamental frequency contents J (t),
local power P(t) and local frequency F(t) are calculated, and
definition is shown as follows:

J (t) = Smst (t, 50Hz);

P(t) =
∫
∞

0
Smst (t, f )df ;

F(t) =
1
P(t)

∫
∞

0
f 3 · Smst (t, f )df (6)

where Smst (t, f) is the time-frequency matrix of MST.
By observing the equation, we can get the point that J (t)
reflects the energy distribution in fundamental frequency.
Similarly, P(t) represents the evolvement trend of the signal
energy, while F(t) represents the similar contents with regard
of frequency components.

Here, 8 types of single disturbance signals are analyzed
by applying MST, and the results are shown in Figure 2.
In each figure, the 4 subfigures, from top to bottom, depict
the waveform, foundational frequency (50Hz or 60 Hz) con-
tents, local power and local frequency curves. By observ-
ing the figures, the foundation frequency contents and local
power for sag, swell and interruption signal have the similar
evolvement trend with its waveform, while those for flicker
signal fluctuates periodically. Moreover, the local power for
harmonic signal are dominated by high-frequency fluctu-
ations, whereas the local frequency contents for transient
signal represents as large-amplitude increment when signal
occurring. Thus, we can conclude that the properties for
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FIGURE 2. Comparisons between eight kinds of signal disturbances. (a) The normal signal, (b) The swell disturbance, (c) The sag disturbance,
(d) The interruption disturbance, (e) The flicker disturbance, (f) The harmonic disturbance, (g) The transient disturbance, (h) The notch disturbance,
and (i) The spike disturbance.

single disturbance could be effectively reflected based on the
proposed algorithm.

Furthermore, the combined disturbance processing results
are given in Figure 3. It is shown that the characteristics for
single disturbance, shown in Figure 2, could still be observed,
such as the combined disturbance with a sag or swell signal
exhibit a clear trend with respect to local power. From this
viewpoint, the combined disturbance, which are seen as the
combination of single disturbances, could be detected, and
the results represent that the combined disturbances are dis-
tinguishable in their energy and frequency properties. In sum-
mary, the experimental results verify that the time-frequency
characteristics for the PQ disturbance signals could be effec-
tively reflected by the proposed methodology, while it pro-
vides a reliable basis for the corresponding signal recognition.

C. FEATURE STATISTICS FOR DETECTION
Through the aforementioned discuss, the characteristics
for PQ disturbance could be effectively reflected through

fundamental frequency components, local power and local
frequency contents. For achieving disturbance intelligent
recognition, the features for PQ signals should be quantita-
tively represented, thus five statistics are proposed based on
PQ event characteristics. Here, the description for the feature
statistics are given as follows:
Feature 1 and 2 (The Maximum and Minimum Amplitudes

of the Fundamental Frequency Components Amax and Amin):
The maximum and minimum amplitudes at the fundamen-

tal frequency (50Hz or 60Hz) are defined as the first two
feature statistics, and the definition are shown below:

Amax =
max[G(p)]

G0
;Amin =

min[G(p)]
G0

(7)

where G(p) and G0 denotes the mean of the fundamental
frequency contents for the PQ disturbances and standard
signal. Specifically, G(p) could be acquired by the following
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FIGURE 3. Comparisons between seven kinds of combined disturbances. (a) The swell with transient disturbance, (b) The sag with transient
disturbance, (c) The swell with harmonic disturbance, (d) The sag with harmonic disturbance, (e) The interruption with transient disturbance,
(f) The flicker with harmonic disturbance, and (g) The transient with harmonic disturbance.

equation.

G(p) =
1
N

pN∑
tp=1+(p−1)N

J (tp) (8)

where J (tp) indicates the fundamental frequency curves
around time position tp, while N is set be 50 in this study.
Feature 1 and 2 investigate the evolvement trend for the
fundamental frequency components. The characteristics for
the PQ signals, whose energy distribution exhibits a clear
trend such as swell and sag, could be accurately described
by these two features.
Feature 3 (The Correlation Coefficient for Fundamental

Frequency Components Sb):
The aforementioned experimental results, shown in

Figure 2 and 3, indicate that the periodical fluctuation fashion
is a significant feature to detect flicker events. In addition,
flicker events with different amplitude scopes have similar

fluctuation characteristics. Thus, the flicker events should be
effectively recognized by checking if an obvious periodical
fluctuation existing. On this basis, the correlation coefficient
with fundamental frequency components for flicker events is
proposed as the Feature 3, while the definition equation is
shown as follows:

Sb =
Cov[J (t), J0(t)]

√
Var[J (t)] · Var[J0(t)]

(9)

where J (t) and J0(t) denotes the fundamental frequency
components for the analyzed signal and flicker disturbances,
respectively.
Feature 4 (The Harmonic Energy Ratio for the Local

Power Kp):
It is shown that the local power for harmonic events rep-

resent as high-frequency vibrations. By applying multitaper
algorithm [29], the power spectrum density (PSD) of local
power for flicker, harmonic disturbance and flicker with
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FIGURE 4. Comparisons the PSD for local power between flicker,
harmonic, and flicker with harmonic disturbances. (a) The local power
comparison, and (b) The PSD comparision.

harmonic disturbance are compared in Figure 4. It is shown
that harmonic components are easy to be observed in PSD
for PQ disturbances with harmonic, thus the harmonic energy
ratio in local power are used as the Feature 4. Here, the Kp is
defined below:

Kp =

∫ 105
95 M (f )df∫
∞

0 M (f )df
;

M (f ) =
1
K

K∑
k=1

∣∣∣∣∫ ∞
0

P(t) · dK (t) · exp(−2π ft)dt

∣∣∣∣2 (10)

whereM (f ) represents the PSD for analyzed PQ disturbance
estimated by multitaper algorithm, which is superior to
the FFT method in terms of estimated bias and frequency
resolution. Moreover, P(t) denotes the local power for
PQ signal, whereas dK (t) and K represent the orthogo-
nal window function and the number of window functions,
respectively.
Feature 5 The Maximum Value for the Local

Frequency Kf ):
As aforementioned, the local frequency contents for the

transient signal represents as large-amplitude increasement
when signal occurring. Thus, it could be used as the criteria
for the transient events recognition, and the maximum value
for the local frequency contents, denotes as Kf , is used as the

Feature 5.

Kf =
max[F1(p)]

F0
F1(p) =

1
N

pN∑
tp=1+(p−1)N

F(tp) (11)

where F1(p) and F0 denotes the mean of the local fre-
quency contents for the PQ disturbances and standard signal,
respectively.

In order to verify the effectiveness of the feature statistics,
the processing results for sag and swell signal is used as an
example, and the comparison results are shown in Figure 5.
Figure 5(a) and (b) display the waveform, fundamental fre-
quency component, local power and local frequency con-
tents for the PQ signal from the top to the bottom, while
the comparisons between the feature statistics are shown
in Figure 5(c). By analyzing the figures, it is noticed that
the sag and swell disturbances could be distinguished by
quantitatively comparing the Feature 1 and 2. Hence, we can
get the point that the design for the proposed feature statistics
is appropriate.

IV. EXPERIMENTATION AND RESULTS
For checking the capability of the proposed methodology,
16 types of PQ signals, 7 of them are combined disturbances,
are processed. In the consideration of robustness, noisy dis-
turbance signals, with a SNR ranging from 30 to 50dB, are
used as the analysis dataset. Specifically, 2000 signals are
generated for each kind of PQ disturbance according to the
corresponding equation shown in Table 1. On this basis,
1000 signals are used to train theDT classifier, whereas others
are used to check the accuracy of the DT classification results.

A. INVESTIGATION ON NOISE INFLUENCES
For checking the robustness, noisy flicker with harmonic
signals, which have SNRs of 10dB, 20dB and 30dB shown in
Figure 6(a)-(c), are investigated. By observing the figures, the
periodical fluctuations in fundamental frequency contents,
which are used to detect PQ disturbance with flicker events,
are conspicuous enough to be observed, although that for
the noisy signal with 10dB has some distortions due to the
influence of strong interferences. Furthermore, the feature
statistics for all the noisy signals are analyzed, the comparison
results are depicted in Figure 6 (d), whereas the results indi-
cate that the statistics for noisy PQ signals do not display an
obvious deviation in terms of value distributions. Specifically,
the statistics Sb for noisy events, used as the most significant
criteria for flicker events, are 0.998, 0.991 and 0.929, respec-
tively. In other words, we can deduce that the feature statis-
tics has a relatively stable distribution range. Thus, we can
confirm that the proposed method can extract the essen-
tial characteristics of PQ disturbances even under low SNR
conditions.

B. THE FEATURE STATISTIC DISTRIBUTIONS
FOR PQ DISTURBANCES
It is shown that the local energy and local frequency can
directly reflect the condition of energy varies with frequency,
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FIGURE 5. Comparisons of the swell and sag disturbance. (a) The results for the swell disturbance, (b) The results for the sag disturbance, and
(c) The comparisons in feature statistics.

FIGURE 6. Robustness of the proposed method on detecting the noisy PQ signals. (a) Results for noisy PQ signal (30dB),
(b) Results for noisy PQ signal (20dB), (c) Results for noisy PQ signal (10dB), and (d) Feature statistics distribution
comparisons.

providing an important basis for the identification of com-
bined disturbances. As aforementioned, 5 statistics for each
PQ signal are calculated, and the analysis results are shown in
Figure 7. Figure 7(a)-(b) give the evolution for statistics Amax
and Amin obtained with different PQ signals. By observing
the figures, it is shown that the disturbances with voltage sag
and swell could be detected due to their temporary increasing
or falling characteristics in fundamental frequency curves.

Moreover, the contents shown in Figure 7(c) demonstrate
that the PQ disturbance with harmonic could be perfectly
recognized by comparing the statistics Kp. As aforemen-
tioned, the local power for harmonic events exhibits a
clear high-frequency fluctuated fashion. From this viewpoint,
the excellent effectiveness for the statistics Kp is reasonable.
Similarly, as the results depicted in Figure 7(d)-(e), the PQ
disturbance contained flicker or transient events could be
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FIGURE 7. Feature statistic comparisons for the 12 kinds PQ disturbances. (a) Amax distributions for PQ signals, (b) Amin distributions for PQ signals,
(c) Kp distributions for PQ signals, and (d) Sb distributions for PQ signals, and (e) Kf distributions for PQ signals.

captured by comparing statistics Sb and Kf , respectively.
In summary, the experimental results indicate that the pro-
posed feature statistics is efficient, while the characteristics
for different PQ disturbances could be quantitatively reflected
by them. Thus, the accuracy for DT classifier is guaranteed.

C. THE STRUCTURE OF DT CLASSIFIER
Given the aforementioned results, the efficiency of the
feature-extracting algorithm is excellent. It means that the
classification accuracy for DT classifier could be guaranteed.
Hence, the decision rules for the DT classifier are constructed
based on feature statistic distributions, and the corresponding
contents are shown in Table 2. Here, ‘‘&&’’ means that the
conditions should be satisfied simultaneously. For instance,
if the statistics 0.8 ≤Sb ≤ 1 and Kf ≤ 2.9, then the
signal should be identified as flicker disturbance. Moreover,
by analyzing the contents shown in Table 2 , it can be inferred

that the DT classifier should have a 5-layer structure, and the
PQ disturbances can be accurately recognized.

D. THE ANALYSIS OF RECOGNITION ACCURACY
To verify the accuracy of the proposed method, different PQ
signals with a SNR of [30-50dB] is used as the analyzing
dataset, while 2000 signals are generated for each type of
disturbance. In addition, the recognition results are shown
in Table 3. By observing the table, we can obtain that the
accuracy slightly degrades with the SNR decreasing. How-
ever, the recognition accuracies are all above 97%, such as the
flicker disturbances could be perfectly detected even under
30dB condition. Furthermore, we also compared our method
with other popular recognition algorithms in terms of accu-
racy, number of selected features, and types of analyzed PQ
signals. Specifically, Table 4 gives a detailed comparisonwith
other 9 existing methods, while ‘‘–’’ denote that the corre-
sponding conditions are not analyzed in the given algorithm.
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TABLE 2. Decision rules for classification.

TABLE 3. Recognition accuracy of the proposed method.

The competing algorithms include classical recognition algo-
rithm, such as KF and FES [8], and recent proposed method,
such as MTW and DT [14]. Due to similarity in analyzed
dataset, we directly cited the recognition results published
in the corresponding studies, and compared them with the
results obtained by our method.

It is shown that the classification accuracy correspond-
ing to the proposed algorithm is almost higher than all
the other algorithms, especially under high-noise conditions
(30dB). Thus, we can get the point safely that the comparing
algorithms are all have their own deficiencies when cop-
ing with PQ signals with low SNRs. In summary, all the

TABLE 4. Comparison of classification accuracy with the existing
methods.

aforementioned experimental results suggest that the accu-
racy for the PQ recognition algorithm is excellent.

E. THE COMPUTATIONAL TIME COMPARISON
For investigating the computational time, 2000 PQ signals
(3200-sample-long) are generated and used as the analyzed
dataset. We select some common used algorithm as the
competing methods to investigate the computational cost of
the proposed method. Different algorithms are applied to
the same dataset, and the mean computational time is used
as the assessment criteria. Here, the experimental environ-
ment is composed by MATLAB2015b with a CPU (Intel
i9-9900K, 3.6GHz) and 16G RAM. As shown in Figure 8,
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FIGURE 8. The computational time comparison.

the consuming time for our method is similar with recog-
nition method based on ST and PNN, and less than other
competing methodologies. It means that the computational
cost for MST is similar with ST; however, the proposed
method is significantly superior to it in terms of efficiency.
In addition, the processing time could be further improved
by investigating the corresponding fast calculation algorithm.
In summary, the PQ disturbance could be detected by our
method with less computational cost. All the aforementioned
experimental results suggest that the proposed method has
better real-time property, and it may satisfy the mass data
processing requirement in modern smart grids.

V. FIELD PQ DISTURBANCE DATA PROCESSING RESULTS
For checking the efficiency of the proposed algorithm,
the recognition accuracy for laboratory generated data and
field PQ disturbance signals, captured in the actual grid,
is also investigated. In laboratory environment, the signal
source (Lecroy wave station 2052) is used to generate differ-
ent PQ signals, whereas the oscilloscope (Lecroywave runner
604 Zi), having recording function, is used to display and save
the corresponding signals. Figure 9 (a) depicts the connection
of the laboratory data acquisition system, while Figure 9 (b)
gives a flicker signal, with modulation frequency 20Hz and
modulation amplitude 0.2 pu, generated by the signal source.
Moreover, field PQ disturbances are captured using the
energy analysis equipment (Fluke 435 series II), which has
been installed at a substation in campus, as illustrated in
Figure 10. Here, 952 field PQ disturbances are recorded. The
laboratory data and field data processing results are shown
in Figure 11, while the waveform, fundamental frequency
component, local power and local frequency are shown from
top to bottom, respectively. Figure 11 (a) gives the processing
results for a PQ signal generated in the laboratory environ-
ment, whereas Figure 11 (b) depicts the corresponding results
for a field PQ disturbance. In Figure 11(a), it is noticed
that a clear periodical fluctuation existing in the fundamental
frequency, which is the most critical feature for recognizing
flicker disturbance, whereas a diminutions have emerged in
the amplitudes of the fundamental frequency and local power

FIGURE 9. The composition for the PQ signals generating and recording
system. (a) the connection of the system, and (b) the acquired flicker PQ
disturbance.

FIGURE 10. The field data acquired condition at campus substation.

contents, shown in Figure 11 (b), which suggest that a sag
disturbance has occurred. The statistic Sb for the PQ signals
shown in Figure 11 (a) is 0.989 and Kf equals 1.212, which
indicates that the signal should be classified as flicker dis-
turbances. Moreover, the statistics Amin is 0.305, while KP,
KF and Sb are all below the corresponding threshold, which
denotes that the field signal is sag disturbance. The exper-
imental results demonstrate that the proposed methodology
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FIGURE 11. The processing results for the field PQ data. (a) The results
for the flicker disturbance, and (b) The results for the sag disturbance.

could accurately detect the PQ event and track the voltage
signal magnitude.

VI. CONCLUSION
In this paper, a PQ disturbance recognition method based
on the MST and DT is proposed. We use adjustment fac-
tors to control the window function feature and amend
the resolution for the time-frequency analyzing methods.
For effectively extracting the disturbance characteristics,
the frequency domain is divided into low, medium and
high frequency bands, whereas the corresponding factors are
determined respectively. On this basis, feature statistics are
calculated, which could quantitatively reflect the PQ-signal
properties, then DT classifier is constructed to accomplish
the accurate recognition of the disturbances. We make a
comparison with the other popular recognition algorithms,
as the content shown in Table 4 , and the influence of noise
is also taken into consideration. Noisy disturbance signals
with a SNR ranging from 30dB to 50dB are used as the
analyzing dataset. The experimental results demonstrate that
the capability of the proposed methodology is excellent in
recognition accuracy, such as the detection accuracy for the
proposed methodology is 99.08% in 30dB condition, supe-
rior to all competing algorithms. In addition, only 5 feature
statistics is needed, to our knowledge, which is less than most
of the other popular methods, and the computational cost is

relatively small. Furthermore, all these findings illuminate the
effectiveness and accuracy of the proposed method. In sum-
mary, the proposed method is efficient in distinguishing PQ
disturbances, especially for combined PQ disturbances. It has
implications for conquering the challenges faced in modern
smart grids.
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