IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 8, 2019, accepted June 19, 2019, date of publication June 26, 2019, date of current version July 11, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2925019

A Deep Reinforcement Learning Approach
to Proactive Content Pushing and
Recommendation for Mobile Users

DONG LIU ™, (Student Member, IEEE), AND CHENYANG YANG “, (Senior Member, 1IEEE)

School of Electronics and Information Engineering, Beihang University (BUAA), Beijing 100191, China

Corresponding author: Dong Liu (dliu@buaa.edu.cn)

This work was supported in part by the MOE-CMCC Science Foundation of China under Project 1-4 MCM2017, and in part by the

National Natural Science Foundation of China (NSFC) under Grant 61731002.

ABSTRACT The gain from proactive caching at mobile devices highly relies on the accurate prediction of
user demands and mobility, which, however, is hard to achieve due to the random user behavior. In this
paper, we leverage personalized content recommendation to reduce the uncertainty of user demands in
sending requests. We formulate a joint content pushing and recommendation problem that maximizes the
net profit of a mobile network operator. To cope with the challenges in modeling and learning user behavior,
we establish a reinforcement learning (RL) framework to resolve the problem. To circumvent the curse of
dimensionality of reinforcement learning for the joint problem, that is, with very large action and state spaces,
we decompose the original problem into two RL problems, where two agents with different goals operate
together, and we limit the number of possible actions in each state of the pushing agent by harnessing the
well-learned recommendation policy. To enable the generalization of action values from experienced states
to the unexperienced states with function approximation, we find a proper way to represent the state and
action of the pushing agent. Then, we resort to double deep-Q network with dueling architecture to solve the
two problems. The simulation results show that the learned recommendation and pushing policies are able
to converge and can increase the net profit significantly compared with baseline policies.

INDEX TERMS Wireless edge caching, content recommendation, pushing, deep reinforcement learning.

I. INTRODUCTION

Content caching at the wireless edge has been acknowledged
as a promising way to support the explosively increasing traf-
fic demands and improve user experience [1]-[4]. By caching
at base stations (BSs), the traffic load of backhaul and service
latency of users can be reduced, and network throughput
and energy efficiency can be improved dramatically [5]-[7].
By further proactively pushing the contents into the cache of
mobile devices at favorable channel conditions [3], [8], [9],
users can enjoy zero latency with low cost of the network if
the requested contents are pushed.

Due to the huge number of available contents at content
providers but limited cache size at each mobile device, the
benefit of proactive pushing highly relies on the predic-
tion of user behavior in requesting contents. Although user

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhenhui Yuan.

83120

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

preference, i.e., the probability distribution of a user request-
ing every content in a library [10], [11] or the rating of
the user for each content [12], can be learned via machine
learning techniques such as collaborative filtering [11]-[13],
the uncertainty of user behaviors still makes it hard to
precisely predict when and where a user will request
which content. Consequently, the efficiency of proactive
caching, e.g., the cache-hit ratio, at mobile devices may be
unsatisfactory [3].

On the other hand, user demands are increasingly driven
by recommendation systems, whose goal is to relieve users
from information overload by recommending the contents
best matching the preference of individual user. This, in turn,
improves user stickiness and boost the number of content
requests [14]. For example, driven by a powerful recommen-
dation algorithm, Douyin (Tik Tok in the US), a short video
app in China, was the most downloaded iPhone app in the
world for the first quarter of 2018 [15]. Considering that

VOLUME 7, 2019

https://orcid.org/0000-0002-0619-1480
https://orcid.org/0000-0003-0058-0765

D. Liu, C. Yang: Deep RL Approach to Proactive Content Pushing and Recommendation for Mobile Users

IEEE Access

people often do not know what they want until you show
it to them, recommendation systems can be leveraged as a
powerful tool to reduce the uncertainty in user demands,
which has the potential to unleash the caching gain.

Considering that recommendation and wireless edge
caching are operated so far by different entities, i.e., content
providers and mobile network operators (MNOs), respec-
tively, recommendation policy and caching policy have been
designed independently in different communities [1]-[14],
[16]-[18]. Yet content caching and recommendation are cou-
pled with each other, since recommendation has large influ-
ence on user demands, which further affects caching policy.
Recently, there is a trend towards integrating content recom-
mendation with wireless edge caching [19]-[23]. In [19], user
demands are rendered less uncertain by modifying the rating
of contents shown to each user so that the cost of content
provider for proactive pushing can be reduced. In [20]-[22],
by recommending contents that are both cached at BSs and
appealing to each user, the cache-hit ratio at BSs can be
increased. In [20], the BS first optimizes caching policy based
on recommending top-N contents according to the preference
of each user, and then adjusts the recommendation lists based
on the cached contents. In [21], a caching policy was opti-
mized to maximize a “soft” cache-hit ratio by recommend-
ing related contents in the cache if the originally requested
content is not cached in nearby BSs.

However, how user demands are affected by recommenda-
tion is assumed known a priori in [19]-[21]. In particular,
the probability distribution of a user requesting for each
content after recommendation is known in [19], [20], and
the probability of a user accepting a recommended content
is known in [21]. Such assumption is unrealistic, because
the reaction of users to recommendation is hard to observe
without a controlled experiment to measure the requests
of a user for contents before and after recommendation.
In [22], the impact of recommendation on user demands
was modeled by a user-specific psychological threshold.
Then, an e-greedy algorithm was proposed to find the pol-
icy by learning the threshold via interactions with users.
In [23], reinforcement learning (RL) was adopted to learn
the caching policy for BSs with recommendation, where the
recommended contents are the cached contents at the BS
and are identical for every user due to not differentiating
the preferences of users. Such recommendation improves
the caching gain by making the users aware about the files
locally cached at nearby BS. Nonetheless, user preferences
are heterogeneous in practice [11], hence the recommended
contents may not match the taste of each user, which leads to
the performance loss from personalized recommendation as
evaluated in [22].

In this paper, we jointly consider proactive content pushing
and recommendation for mobile users to maximize the net
profit of MNO, which is the revenue minus the transmission
cost. To deal with the difficulty in modeling individual user
behavior, we formulate the problem under RL framework.
To deal with the large action and state spaces, we decompose

VOLUME 7, 2019

the problem into two RL problems by decoupling the role
of recommendation and pushing, and leverage the ability of
recommendation in reducing user demands uncertainty. The
first problem aims to help a user find a preferred content to
increase user stickiness, which also boosts user requests and
hence the revenue. The second problem aims at reducing the
transmission delay (hence improving user experience), which
also reduces transmission cost. It is worthy to note that these
two problems are not independent, where the pushing policy
relies on the recommendation policy. Then, we resort to deep
reinforcement learning (DRL) algorithm, specifically dou-
ble deep Q-network (DDQN) with dueling architecture [24],
to solve the two RL problems. Finally, we compare such
a value-based DRL algorithm with several state-of-the-art
policy-based DRL algorithms, i.e., deep deterministic policy-
gradient (DDPG) [25], advantage actor-critic (A2C) [26], and
proximal policy optimization (PPO) [27].

The major contributions are summarized as follows:

« Different from [19]—[21] that assume a known model of
how user requests are affected by content recommen-
dation, the proposed framework is model-free, which
does not require any priori knowledge of user behav-
iors in requesting contents as well as mobility pattern.
Different from [22] where a psychological threshold
is learned, we directly learn the recommendation and
pushing policies. Different from [23] where the rec-
ommendation is common for all users and the caching
policy is designed for BS, we consider personalized
recommendation and pushing to user devices. To the best
of our knowledge, this is the first attempt to jointly opti-
mize content recommendation and pushing under the RL
framework.

o The complexity of learning is reduced by three means:
1) We decompose the problem so that two agents with
different sub-goals are trained sequentially but work
together after training to achieve the final goal. The first
agent learns the recommendation policy to boost rev-
enue and reduce the uncertainty of user requests, while
the second agent learns the pushing policy to reduce
transmission cost. 2) We limit the number of possible
actions of the second agent by only pushing the contents
that the user is likely to request in near-future time steps,
which can be predicted after the recommendation policy
is well-learned by the first agent. 3) We represent the
states and actions of the pushing agent in a proper way
to enable better generalization of action values from
experienced states to unexperienced states.

« Simulation results show that the learned recommenda-
tion and pushing policies can converge and increase the
net profit significantly compared with baseline policies,
and the adopted value-based DRL algorithm outper-
forms the policy-based DRL algorithms.

The rest of the paper is organized as follows. In Section II,
we introduce the system model. Section III formulates the
joint recommendation and pushing problem, decomposes
the problem into two problems, and solves them by DRL.

83121

IEEE Access

D. Liy, C. Yang: Deep RL Approach to Proactive Content Pushing and Recommendation for Mobile Users

Simulations results are given in Section I'V. Conclusions and
future works are discussed in Section V.

Il. SYSTEM MODEL

In this section, we first introduce the notions to be used
throughout the paper and the network architecture to sup-
port reinforcement learning. Then, we describe the model
of the system with content recommendation and pushing as
well as the basic idea of joint recommendation and pushing
policy.

A. BASIC NOTIONS IN REINFORCEMENT LEARNING

A standard RL problem can be described as a Markov deci-
sion process, where an agent learns from interactions with an
environment to achieve a goal [28]. For an episodic Markov
decision process, the agent and environment interact in a
sequence of discrete time steps ¢ = 1,2, --- , T constituting
an episode. At each time step ¢, the agent observes the state
of the environment s(¢) and executes an action a(t). Then,
the agent receives a reward r(¢) from the environment and
transits into a new state s(z 4 1). The interaction of the agent
with the environment is then captured by an experience vector
e(r) 2 [s(r), a(t), r(1), st + D].

The goal of the agent is to learn a policy from its expe-
riences to maximize an expected return, which reflects the
cumulative reward received by the agent during the T'-time-
step episode. The policy (denoted by m) determines which
action should be executed in which state. At each time step ¢,
7 is learned from the past experiences D = {e(l),---,
e(t —1)}. The expected return is defined as]E[Zl-T=1 Yo,
where y denotes the discount factor.

Trainer ’

Training Samples

Data Base

FIGURE 1. Learning-enabled network architecture. The CPs and the
trainer jointly serve as the agent but reside in different network entities.

B. LEARNING-ENABLED NETWORK ARCHITECTURE

Consider a learning-enabled cellular network architecture
introduced in [29], where a server is connected with multi-
ple central processors (CPs) and each CP is connected with
multiple BSs in an area, as shown in Fig. 1. The server
consists of a trainer and a data base. Each CP can monitor
the status of mobile users (say monitor content requests and
gather channel conditions) via BSs and process the collected
observations into experience vectors, which are then sent to
the server and stored in the data base. A centralized trainer at
the server learns the policy based on the experiences stored
in the data base, and issues the learned policy to the CPs.

83122

Each CP stores the learned policy, based on which the CP
controls the BSs to execute actions by sending instructions.

Each CP and the trainer jointly serve as the so-called
agent in RL parlance, but reside in different network entities
owing to the following reasons. The CP is located closer
to BSs, hence the delay and overhead of control signaling
(e.g., instructions updated in the timescale of seconds) can be
reduced. The policy stored at the CP can be updated less fre-
quently (say hours or days). Hence, the trainer is centralized
at the top of the network to enable sufficient use of computing
resources (e.g, GPUs) and data resources (i.e., experiences)
gathered throughout the whole network.

C. RECOMMENDATION, PUSHING, AND USER REQUESTS
Consider mobile users traveling across multiple cells covered
by a CP, which handles user association and controls the
associated BS to execute the recommendation and pushing
actions. As an illustration, assume that the mobility pattern
of each user is characterized by a Markov process, where the
probability distribution of the next location of a user depends
on its current location and last location.'

Each user is equipped with a cache that can pre-store C
contents and may request contents from a library of contents
(stored at the server or BSs).

A mobile user may continuously request contents during
a period of time, e.g., watch short videos one by one on
a smart phone app. We call such period of continuously
sending requests by a user as a session (i.e., an episode in
RL parlance), which can be divided into discrete time steps,
as shown in Fig. 2. After a user starts a session, the user
requests and consumes a content in each time step.

At the beginning of each time step, the CP controls the
associated BS of the user to recommend a content to the
user from a pre-determined recommendation candidate set
containing F contents® according to the stored policy. The
recommendation is issued to the user by only presenting the
title or thumbnail of the content through the app, which incurs
negligible transmission cost. If the user accepts the recom-
mendation, the user will request the recommended content,
and close the app (i.e., terminate the session) with probability
q1 after consuming the requested content. If the user rejects
the recommendation, the user will instead request another
content according to a specific distribution, and terminate
the session with probability g5 after consuming the requested
content. Because users are more likely to continue requesting
contents if their preferred contents are recommended to them,
q1 < q2. This reflects the impact of recommendation on user
stickiness.

I The last location is considered because the difference between the current
location and the last location of a user can reflect the moving direction
and speed. Our RL framework can be extended into the case with more
complicated mobility pattern by including the transmission costs during
multiple past time steps into the state vector as discussed later.

2We assume that the recommendation candidates is winnowed down to
hundreds contents by machine learning methods, say by deep neural net-
works [30].

VOLUME 7, 2019

D. Liu, C. Yang: Deep RL Approach to Proactive Content Pushing and Recommendation for Mobile Users

IEEE Access

Accepted

Recommended Content l:l l:l

Transmission
Duration

Transmitted Content | (0]

Accepted

Accepted Rejected

Requested & Consumed Content ~—~| |

/‘%{_

Initial Delay Caused by Prebuffering=" Playback Duration

Cached Content

I I

1

Time Step

@ On-demand Transmission El Proactive Pushing

FIGURE 2. lllustration of a session with four requests (i.e., T = 4 time steps), each color represents
a content. The BS recommends one content in each time step and pushes one content in time

steps 2 and 3.

Meanwhile, at each time step, the CP can also control the
associated BS to push (or not to push, e.g., when the channel
is not good) one content proactively into the cache of the user
device. By proactive pushing, if a user requests a content pre-
stored in its own cache, the content can be directly retrieved
from the cache without the need of prebuffering, i.e., the user
can enjoy zero latency. If the requested content is not cached
in its own device, the associated BS will transmit the content
to the user. Such an on-demand transmission introduces cost
to the network (e.g., energy consumption at the BS) and initial
delay to the user. The value of the initial delay depends on
where the content is stored: the server or the associated BS.

Content recommendation affects which content the user
will request, while pushing introduces transmission cost.
When a user undergoes bad channel condition so that the
pushing cost is high, or the pushed content is finally not
requested by the user before the end of the session, the total
transmission cost will increase. Therefore, in each time step,
the CP should intelligently decide which content to recom-
mend, whether or not to push, and which content to push into
the user device, according to a policy m learned from past
experiences D.

In Fig. 2, we provide an example to help understand the
recommendation and pushing procedure in a session with
duration of T = 4 time steps. In time step 1, the user starts
a session (i.e., opens the app). During the session, the BS
recommends a content at the beginning of each time step.
In time step 1, the user accepts the recommendation. Since
the recommended content has not been cached in the mobile
device, the user is served by on-demand transmission, hence
prebuffering is required. According to the instruction from
the CP, the BS does not push any content in time step 1,
because the transmission cost is higher than the predicted
transmission costs in future time steps. In time steps 2 and 3,
the BS pushes the contents to be recommended in time
steps 3 and 4, respectively. Because the recommended content
in time step 3 is already pushed to the user in time step 2,
when the user accepts the recommendation in time step 3,
prebuffering is unnecessary. In time step 4, the user rejects the
recommendation, and terminates the session after it consumes
the 4th requested content.

VOLUME 7, 2019

The request history of a user reflects the preference of
the user, and a user will accept a recommendation with high
probability if the user prefers the recommended content. This
suggests that the probability of a user accepting a recom-
mendation (called as acceptance probability) depends on
its recently consumed contents [31]. Let Q denote the set
of recently consumed contents of a user and pg ; denote
the probability that the user will accept the recommenda-
tion of content j. For notational simplicity, we consider the
case where the acceptance probability depends on the most
recently consumed content of the user as an illustration.
In this case, pg ; can be simplified into p;;, which denotes the
probability that the users who have just consumed content i
will accept the recommendation of content j. Then, the reac-
tion of a user to recommendation can be characterized by a
matrix P = [p;jlrxr.

Without recommendation, it may not be easy for a user to
find a preferred content due to the vast amount of available
contents. Hence, the request probability for each content
is low. By contrast, the probability of a user requesting a
recommended content is high if the content is sufficiently
attractive. In other words, a good recommendation can reduce
the uncertainty in user requests.

Ill. RECOMMENDATION AND PUSHING BY DRL

In this section, we first formulate the joint recommendation
and pushing problem into RL framework. Since the original
problem is with large state and action spaces, we decompose
the joint optimization into two RL problems and resort to
DRL to solve them.

A. PROBLEM FORMULATION

Considering that the energy consumed at a BS for transmit-
ting a content to a user increases with the duration of trans-
mission, the transmission cost, denoted as m(¢), is modeled as
proportional to the transmission duration. Since mobile users
experience fast fading channels, the duration for transmitting
a content is much longer than the channel coherence time
(in millisecond timescale), and hence is inversely propor-
tional to the average rate. Therefore, m(¢) can be modeled
as m(t) = B/R(t), where B is a scaling factor representing

83123

IEEE Access

D. Liy, C. Yang: Deep RL Approach to Proactive Content Pushing and Recommendation for Mobile Users

the cost for transmitting a content per unit time and R(?) is
the average rate of a user.

Assume that each user is associated to the BS with the
strongest average received power, and each BS serves the
associated users over orthogonal time-frequency resources
and allocates a fixed amount of bandwidth to each associated
user. Then, R(¢) can be expressed as

Phodo(t)™*
Yica\o Phidi(t)~ + o*

R(@)=Ey| Wlog, [1+ €))]
where W is the transmission bandwidth for the user, iy and
do(t) are the small-scale fading channel and the distance
between the associated BS to the user, respectively, « is the
path-loss exponent, P and o2 are the transmit power of each
BS and the noise power, respectively, @ is the set of the BSs
in the network, >, 4o Phidi()™ is the total interference
power from other BSs, and [E;; denotes the expectation taken
over the small-scale fading.

Then, the total transmission cost in time step ¢ caused by
both on-demand transmission and proactive pushing (if any)
can be expressed as

m()[1o(t) + Ip(1)] @

where I,(¢) and I,(¢) are indicator functions. I,(f) = 1 if
the requested content is not in a user’s cache and requires
on-demand transmission in time step ¢, and I,(t) = 0 other-
wise. Ip(¢) = 1 if pushing occurs in time step ¢, and Ip(¢) = 0
otherwise.

The goal of the recommendation and pushing policy 7 is to
maximize the average accumulated net profit of MNO during
each session (i.e., an episode).? Hence, the optimal policy can
be found from the following problem

T T
max E| Y 0= m@Ue®) + 50| Ga)

t=1 t=1

F
sty)< C (3b)

f=1
where 7 is another scaling factor representing the revenue
of each request whose value is determined by how much
the MNO charges a user. The expectation is taken over all
random variables in each time step, including user loca-
tions, fading channels, which content a user requests, and
whether a session terminates after a content is consumed
(which determines the session length 7'). The first and second
terms of (3a), respectively, reflect the accumulated revenue
and transmission cost for the session. (3b) is the cache size
constraint, which limits the number of cached contents at each
user, where cf(t) = 1 if content f is cached in time step # and

c¢r(t) = 0 otherwise.

The user behaviors, including the mobility patterns, accep-
tance probability matrix P, the user requests distribution

3We can also consider other goals, e.g, minimizing the transmission delay,
by adjusting the reward.

83124

when rejects a recommendation, and the session end prob-
abilities g1 and g», as well as channel distributions are all
unknown by the agent in advance. More importantly, such
user behaviors are in general hard to model. This calls for a
model-free approach. We resort to RL to solve the optimiza-
tion problem.

B. RL FRAMEWORK FOR JOINT OPTIMIZATION
The joint recommendation and pushing problem in (3) can be
formulated as the following RL problem.

State: The recommendation and pushing action in time
step ¢ should depend on a user’s last consumed content with
index denoted as fq(t — 1),4 the cache status of the user
denoted as ¢(t) = [c1(¢), - -, cr(t)], as well as the costs
to transmit a content in current and future time steps. The
transmission cost in a time step depends on the channel
condition of the user, which further depends on the user
location. The agent is unaware of the future transmission
costs. According to the Markov property of user mobility,
we include the transmission costs during the last two time
steps m(t — 1), m(t — 2) into the state.” It is noteworthy
that the difference between the costs of successive time steps
can reflect the change of channel conditions. For example,
if m(t—1) < m(t—2), then it implies that the user was moving
towards the cell center in time step (+ — 1). The whole state
can be denoted by vector

s(t) = [fq(t = 1), (t), m(z — 1), m(r — 2)] “)

which has F' x ZiC:O (f) possible discrete combinations due
to fq(t — 1) and ¢(¢), and involves continuous variable due to
m(t — 1), m(t — 2).

Action: Let f;(t) and f,(¢) denote the indexes of the con-
tent to be recommended and the content to be pushed in
time step #, respectively. Considering that pushing introduces
transmission cost as shown in (2), it is better for a BS not to
push anything to a user in some time steps, e.g., when the
channel conditions are not good enough. We denote f,(1) =
0 if no content is pushed in time step . When the cache
of the user is full and a content is needed to push to the
user, the least-recently consumed content in the cache will
be removed to ensure the cache size constraint (3b) because
a consumed content is not likely to be requested by the user
again.® Then, the action can be denoted by vector

a(t) = [f:(0), fp(0)] &)

which has F x (F + 1) possible combinations.

4If the acceptance probability depends on multiple recently consumed
contents, then fq(t — 2), fq(t — 3), ..., should also be included in the state.

5To capture more complex user mobility pattern, m(t — 3), m(t — 4), - - -
can also be included into the state.

O1f all the cached contents have not been consumed yet, the least-recently
cached content will be removed. Such a content is cached with the longest
duration but still has not been requested, indicating that it is the content least
likely to be requested. We can also include which content to be removed from
the cache into the action so that the agent can learn it, which however will
increase the already large action space.

VOLUME 7, 2019

D. Liu, C. Yang: Deep RL Approach to Proactive Content Pushing and Recommendation for Mobile Users

IEEE Access

Reward: Since our goal is to maximize the average accu-
mulated net profit of MNO during a session, the reward
function can be naturally designed as the net profit in each
time step, i.e.,

r(t) =n —m)lo(t) + Ip(1)] (6)

Define the action-value function (also

Q-function)

called as

T
Q"(s,a) 2 [Z Y () ‘ s(t) =s,a(t) = a, 71:| (7
1=t

as the expected return (i.e., the average accumulated net profit
for y = 1) achieved by policy 7 when taking action a from
state S.

By defining the optimal action-value function as
Q*(s, a) £ max, Q7 (s, a), the optimal policy can be easily
obtained from Q*(s, a) as

T*(s) £ arg max O (s, a) 8)

and hence the goal of the agent is to learn the optimal action
value Q*(s, a) in each state.

Q-learning is a commonly used algorithm to learn Q*(s, a)
from experience e(t) = [s(¢),a(r), r(z),s(t + 1)] by the
following iteration

O(s(2), a(1)) < Q(s(1), a(?))
+4 [r(t) +y m;lx O(s(t + 1), a) — Q(s(1), a(t))] ©)]

which is with guaranteed convergence to Q*(s, a) with suffi-
cient experiences and properly chosen learning rate 6 [32].

The state and action spaces of such a formulation of
RL problem (called “Non-decomposed’ framework in the
sequel) however are too large to learn the action values in
every single state. Even if we resort to DRL, e.g., deep
Q-network Q(s, a; @) with parameter 6 to approximate
Q*(s, a) [33], the problem is still very hard to solve due to
the combinatorial actions and states involved.

C. DECOMPOSED RL FRAMEWORK

The large action and state spaces come from the fact that
recommendation policy and pushing policy are coupled with
each other. On one hand, recommendation affects which
content will be requested by a user and hence affects which
content should be pushed. On the other hand, pushing policy
determines the cached content, based on which recommenda-
tion policy can be leveraged to stimulate the user to request
a cached content. For example, the BS can recommend a
cached content instead of the most attractive but non-cached
content to a user [20].

Nonetheless, the gain from exploiting the impact of push-
ing on recommendation is much lower than the gain from
exploiting the impact of recommendation on pushing. This
can be explained as follows. Given the recommendation
policy that can recommend a preferred content to a user,
the probability that the requested content is cached is high

VOLUME 7, 2019

if the BS can push the content to be recommended into the
user’s cache in advance. On the contrary, if the pushing policy
is not designed based on the recommendation policy that
recommends a preferred content to a user, the probability that
a preferred content is cached is low. Since a user is not likely
to accept the recommendation of a non-preferred content,
recommendation does not help much in stimulating the user
to request a cached content.

Moreover, recommendation can increase the revenue by
boosting user requests [14], while pushing can help reduce
system cost and improve user experience if the pushed con-
tent matches the taste of the user, which can only increase the
net profit remarkably if the revenue has already been boosted.

This implies that the pushing policy should be designed
based on the recommendation policy, instead of the other
way around. Furthermore, thanks to the ability of recommen-
dation in reducing the uncertainty in user requests as previ-
ously explained, it is possible to precisely predict the future
requested content based on a well-learned recommendation
policy. Recall that unlike pushing, recommendation itself
causes negligible transmission cost during the interactions
with users. This suggests that training the recommendation
policy first and the pushing policy afterwards can help the
learned pushing policy to achieve low cost without compro-
mising user experience.

Therefore, we can decompose the problem into two RL
problems by distinguishing the roles of recommendation and
pushing policies explicitly, in order to reduce the state and
action spaces for viable learning. We consider two agents,
where the first agent learns the recommendation policy, and
the second agent learns the pushing policy based on the
learned recommendation policy.

1) RECOMMENDATION PROBLEM

The goal of personalized recommendation is to increase
user stickiness by helping a user find the preferred contents.
If the recommended contents match the taste of a user suf-
ficiently well, the user will accept the recommendation and
will request more contents, say during a session. Hence,
the recommendation policy can be designed to maximize the
average accumulated revenue]E[Zthl n].

The action and reward of the recommendation agent are
denoted by a;(¢) = fi(¢) and r1(t) = n, respectively. Since
which content to recommend should depend on the user’s last
consumed content, the state in recommendation problem is
represented by s1(t) = fq(z—1). Then, the index of the content
recommended in time step 7 is

Jo(®) = m(fy(r — 1) (10)

where () denotes the recommendation policy.

Both the state and action respectively have F possible
values, which are much smaller than the direct formulation
because the cache status ¢(z) and transmission cost m(t — 1),
m(t — 2) are excluded from the state and the pushing action
Sfp(@) is excluded from the action of the recommendation
agent.

83125

IEEE Access

D. Liy, C. Yang: Deep RL Approach to Proactive Content Pushing and Recommendation for Mobile Users

2) PUSHING PROBLEM

The goal of the pushing policy is to reduce the cost of
the network and improve the experience of a user by pre-
downloading contents that the user is very likely to request
in future time steps. If a pushed content is requested, then
the user can enjoy zero initial delay by retrieving the content
directly from its own cache. If the content was pushed under
better channel condition than the channel when user initiates
the request, then the transmission cost of the network can be
reduced. Hence, the pushing policy can be designed to min-
imize the average accumulated cost Zth 1 m(@)Uo(1) + Ip(1)]
for a well-learned recommendation policy.

Albeit the intention of pushing policy is to push the con-
tents that the user will request with high probability in future
time steps, when establishing the RL framework for joint
recommendation and pushing, the agent does not explicitly
predict the contents to be requested. Instead, it directly learns
the policy by maximizing the expected return (i.e., the accu-
mulated net profit). Due to the large state and action spaces,
huge number of experience vectors (i.e., training samples) are
required for trial-and-error. When we decompose the original
RL problem into two RL problems and first learns the rec-
ommendation policy, the pushing agent can explicitly predict
the contents to be requested in multiple time steps ahead with
high precision thanks to the ability of recommendation in
reducing the uncertainty in user requests. Then, the state and
action spaces of the pushing agent can be further reduced
dramatically, as detailed below.

When the recommendation policy is learned good enough
that it can recommend preferred contents to a user, the user
will accept the recommendation with high probability. There-
fore, it is of high precision to predict that the content to
be requested/consumed in time step ¢ (with index denoted
as fq(t)) is the recommended content, i.e., fq(t) = fi(®).
With a well-learned recommendation policy, the content to
be recommended in the next time step can also be predicted
by considering (10) as

Ft+1) = m(fy@) = m(fit) = mlr(fy(t — 1) (11)

In a similar fashion, we can predict that the content to be
recommended (and hence to be requested by the user) in the
next n-step of time step ¢ as

Filt +n) = m(- - mlfyt — D)) 2 78 (fye — 1) (12)

Since a precise prediction of the next n-step recommenda-
tion relies on the fact that the user accepts the recommended
contents in the 1st ~ (n — 1)th steps when the session does
not terminate within next n steps, the prediction becomes
less precise with the increase of n. Consequently, pushing the
content to be recommended in too many time steps ahead may
bring no benefit except transmission cost. Further considering
the limited cache size of the user device, the pushing agent
should only push the contents to be recommended (which
are thereby the contents likely to be requested by the user)
within next N (N < C) steps of time step ¢ (called pushing

83126

candidate set), i.e.,

H@®) e fIf =filt +n)forn=1,--- N} (13)

This reduces the action space of the pushing agent. In par-
ticular, the number of possible actions can be reduced from
F 4+ 1 to N + 1 (including no pushing) for each state,
by introducing the pushing candidate set based on the well-
learned recommendation policy 7.

However, if we simply use the index of the content to be
pushed (i.e., fp(?)) to represent the action, the possible actions
are distinct for each possible value of f4(# — 1) (which is a part
of the state vector of the pushing agent as will be introduced
later). For example, the last consumed content is the file with
index 1, i.e,, fq(# — 1) = 1, and the contents to be recom-
mended in one and two time steps ahead are fr(t +1) =2 and
fit +2) =3, respectively. Then, the possible action set for
fqt =) =1with N =2is f,(t) € {0, 2, 3}, where f,(1) =0
stands for no pushing. However, when fy(t — 1) = 2, we may
havefr(t +1)=3 andﬁ(t + 2) = 4, and then the possible
action set for fq(t — 1) = 2 with N = 21is f,(¢) € {0, 3, 4}.
This makes it difficult for the agent to generalize the action
values from experienced states to the unexperienced states
with function approximation, say by deep neural networks.

Fortunately, we can find a mapping from any given value
of fq(t — 1) to the index of the content to be pushed in time
step ¢ by substituting (12) to (13) as,

Ko@) = 7 (gt — 1)) (14)

With this mapping, the agent only needs to decide how many
time steps ahead a content to be recommended should be
pushed in the current time step ¢ (i.e., decide n), instead
of directly deciding the specific index of the content to be
pushed (i.e., fp(#)). Hence, the action can be represented by
ax(t) = n. Whenn = 1,---, N, the content to be recom-
mended in the next n-step (i.e., fr(t + n)) is pushed in time
step . When n = —1, no content is pushed. In this way,
the possible action set, i.e., {—1,1,2,---, N}, is the same
for each possible value of f4(# — 1), which makes the agent
able to learn the approximated optimal Q-function with less
experiences. Then, the index of the content to be pushed at
time step ¢ can be expressed as

folt) = w20 (fo(r — 1) (15)

We define nro(-) £ 0, i.e., no content is pushed.

Since the agent only considers pushing from the push-
ing candidate set that is determined by fit + n), it is the
cache status of the contents to be recommended (rather than
the cache status of all the recommendation candidates) that
affects the reward and hence the pushing policy. We let
¢y(t) = 1 denote that content fr(t + n) is cached and ¢, (1) =
0 otherwise. Then, the cache status can be represented as
(1) £ [Co(), E1(1), - -+, En(1)] (instead of ¢(¢) defined in
section III-B) for the pushing agent. Now, the number of pos-
sible cache status is reduced from Z;C:O (f) to 2V . In practice,
2V is not a large number due to the limited cache size at user
deviceand N < C K F.

VOLUME 7, 2019

D. Liu, C. Yang: Deep RL Approach to Proactive Content Pushing and Recommendation for Mobile Users

IEEE Access

. Q: (s (t)j 1;0,)

° Al [ACIONAN
. : ouT
w @ @

(a) Recommendation agent: Qr(s1(t), a1(t); 0:r)

FIGURE 3. Q-networks with dueling architecture.

Further including m(¢t — 1) and m(t — 2), we can represent
the state vector of the pushing agent as

$2(t) = [fq(t — 1), €(t), m(r — 1), m(t — 2)] (16)
The reward of the pushing agent is
ra(t) = —m(t)[Lo(1) + Ip(2)] a7

By decoupling recommendation from pushing, limiting the
number of possible actions, and representing the state and
action of the pushing agent in a proper manner, the two prob-
lems can be efficiently solved by DRL. This RL framework
can be implemented with value-based RL algorithms such
as deep Q-network (DQN), or with policy-based (or more
specifically, actor-critic) RL algorithms. However, among
state-of-the-art policy-based RL algorithms, DDPG [25] is
more appropriate in continuous action space, while A2C [26]
and PPO [27] are on-policy algorithms that are less sample-
efficient. Moreover, A2C and PPO may converge to stochas-
tic policies, while a deterministic recommendation policy is
more appealing for the problem at hand. This is because
a deterministic recommendation policy allows the agent to
accurately predict the contents to be recommended in future
time steps, based on which the pushing candidates set can
be determined. In this work, we consider dueling DDQN.
Specifically, we use two Q-networks to approximate the opti-
mal action-value functions for recommendation and pushing
agents, respectively.

D. DRL WITH DUELING DDQN

We build the Q-networks based on an improved version of
DQON (namely dueling DDQN [24]), which modifies the
original DQN [33] with dueling network architecture and
introduces double Q-learning update [34] for more efficient
and stable learning.

In particular, the Q-networks of the two agents are shown
in Fig. 3, which are stored at CPs. The parameters ;, §,, are
learned by the trainer at the server as shown in Fig. 1 and then
sent to CPs to update the Q-networks, based on which the CP
selects actions for the BS to execute under each state.

For the recommendation agent, the state s1() = fq(t — 1)
is the index of last consumed content. The state is first
converted into a F-dimensional one-hot vector for the input

VOLUME 7, 2019

,,,,,,,,,,, . ©
""" ! . ’ .QP(SQ(t) 6,)

. . .Qp(sz(t)NB)
cN(t>. ;. @

m(t—1) H1 A —> One-hot
iiiiiiiiiiii —> Fully Connected
IN V + A - mean(A)

(b) Pushing agent: Qp(s2(t), a2(t); Op)

n
N
~

~~

layer and then goes through two fully-connected hidden lay-
ers. The second hidden layer H2 is split into two streams,
V-stream V;(s1(¢); 0,) and A-stream A;(s1(¢), a;(¢); 6;), form-
ing the dueling architecture [24], which learns the action
value more efficiently by separately estimating the state value
and advantages for each action. The output layer implements
the following mapping

Or(s1(1), ar(1); 0r) = Vi(s1(2); 0r) + Ar(s1(1), a1(1); 0r)

1 F
— = 2 Asi(0), @ 61)

a=1

(13)

For the pushing agent, a part of state s>(¢), fq(t — 1),
is first converted into a F-dimensional one-hot vector, and
then concatenated with other parts of s>(¢) as the input layer.
After going through a fully connected hidden layer and the
dueling architecture, the output layer (similar to (18)) yields
the action-value function Qp(s2(¢), ax(1); 6,).

Since the training procedures for the two networks are
the same, we omit all the subscripts in the following for
notational simplicity. The parameter # of the Q-network is
learned by minimizing the loss function

L®) =E [() - 00, a(0:)’ 19)

with

y(t) = r(t) + Q(s(t + 1), arg max Q(s(r + 1), a: 0); 0) (20)
where Q(s, a; é) is the target network. It is the same as the
Q-network and updated by § <« 0 + (1 — t)8 with very
small value of 7 to reduce the correlations between the action-
values Q(s, a; @) and the target values y(f), which improves
the convergence of learning [33].

In (20), we employ the double Q-learning update where the
optimal action is chosen by the Q-network, i.e.,

Amax = argmax Q(s(t + 1), a; 6) (21)
a

The optimal action value is evaluated by the target network,
ie., Q(s(t +1), amax; @), which can reduce the overestimation
of action value compared with traditional Q-learning [34].
During the interaction with the environment, every CP
collects the experience e(t) = [s(¢), a(¢), r(¢), s(t + 1)] from

83127

IEEE Access

D. Liy, C. Yang: Deep RL Approach to Proactive Content Pushing and Recommendation for Mobile Users

every user in its coverage into the data base at the server as
D ={e(1), -, e(t — 1)}. During the training of Q-network,
the trainer iteratively samples a mini-batch of the experiences
from D uniformly, and updates parameter # with gradient
descent as

06— %lw > 06) — O6sG). agi): 0)* (22)

jeB

in each iteration, where B denotes the set of indexes of
sampled experiences. By such an experience replay, data effi-
ciency can be improved through re-sampling the experiences
stored in the data base as training samples, and the correlation
among training samples can be reduced, which also improves
the convergence of learning [33].

As previously explained, effective pushing relies on the
precise prediction of the contents to be requested in future
time steps, which further depends on the acceptance proba-
bility of recommendation. To avoid high transmission cost
during interactions with the environment, recommendation
policy should be first trained, while the pushing agent does
not push any content until enough experiences are gathered
(say after L; episodes) for the recommendation agent to learn
to recommend attractive contents to a user. In addition, we let
the pushing agent learn the pushing policy in an emulated
environment while not really pushing any content, until the
pushing policy is learned well enough (say after L, episodes).
Otherwise, the pushing agent may not be able to push the right
content at the right time step, which may make pushing even
inferior to not pushing.

To be specific, during the period between the (L; + 1)th
episode and the L,th episode, the recommendation agent con-
tinues to take actions in real environment, while the pushing
agent observes the user requests and transmission costs from
the real environment but only takes virtual actions. In the
emulated environment, the recommendation agent operates
the same as in the real environment, and the user’s reac-
tion to the recommendation is also the same as in the real
environment. Hence, the reward obtained by the recommen-
dation agent is the reward obtained from the real environ-
ment, i.e., r(¢). Besides, in the emulated environment the
observations related to user mobility is the same as those
observed in the real environment (because pushing does not
affect user mobility), and hence the cost for transmitting a
content at time step ¢ is also the same as the cost observed in
the real environment, i.e., m(¢). Yet the pushing agent operates
(i.e., pushes contents) in the emulated environment to learn
the pushing policy. Then, based on (17), the reward obtained
by the pushing agent in the emulated environment can be
computed by

r5(t) = —m(0)Io(1) + I5(0)] (23)

where I/ () = 1 if the requested content is not cached by the
user in the emulated environment, and I(’)(t) = 0 otherwise,
II;(t) = 1 if pushing occurs in the emulated environment,
and II’)(t) = 0 otherwise. Based on what content is pushed in
the emulated environment, the cache status in the next time

83128

step (denoted by ¢/(z + 1)) can be obtained. Because pushing
only affects the cache status in the state vector defined in (4),
the next state of the emulated environment can be obtained as
S+ 1) = [fy®), @ + 1), m@), m(t — 1)], where the only
difference with the next state in the real environment is the
cache status. The experiences obtained in the emulated envi-
ronment are also put into the data base as training samples.

In each time step of the first L; episodes, the recommenda-
tion agent either randomly selects a content to recommend
with probability e, or selects the optimal action aj(t) =
arg max, Qr(s1(?), a; 0;) based on the stored Q-network at
the CP with probability 1 — &;. Such e-greedy method is
able to balance the tradeoff between finding a better action
(i.e., exploration) and maximizing the return based on cur-
rently estimated Q-network (i.e., exploitation).

In each time step of the (L; + 1)th to the Lth episodes,
the recommendation agent continues to act e-greedily and
the pushing agent starts to act e-greedily in the emulated
environment to learn the pushing policy.

After the Loth episode, both agents act e-greedily in real
environment to learn the recommendation policy and pushing
policy simultaneously. The overall algorithm for the learning
procedure is given in Algorithm 1.

Different from existing algorithms, we consider two agents
working together with different goals, where the policy of the
pushing agent depends on the policy of the recommendation
agent. We also consider an emulated environment for the
pushing agent to learn its policy without any interaction with
real environment, which improves the on-line performance.

IV. SIMULATION RESULTS

In this section, we compare the performance of the learned
policy by DRL with baseline policies via simulation. Since
the way we representing the action and state of the pushing
agent is not easy to follow, we illustrate how the learned
pushing policy behaves, again with simulation. We also com-
pare the adopted DRL algorithm with several state-of-the-art
policy-based DRL algorithms.

A. SIMULATION ENVIRONMENT SETUP
We consider a scenario where users are moving along a
road across multiple cells, as shown in Fig. 4. The distance
between adjacent BSs is 500 m and the transmit power of
each BS is 46 dBm. The pathloss is modeled as 35.3 +
37.61log((d;) in dB, and the small-scale channel is Rayleigh
fading. The duration of each time step is 10 s, which is for
short videos (e.g., Douyin app [15]). To simulate a general
case without specific mobility pattern, in each time step
each user is assumed to move forward with speed uniformly
selected between (5 = 0.5) m/s with probability 0.8 or to stop
(due to traffic light or traffic jam) with probability 0.2.
Since the net profit actually depends on the ratio between
n and B, we can normalize the revenue n = 1 without
loss of optimality. Considering that the transmission cost
may exceed the revenue for a user located in cell-edge area,
the scaling factor for transmission costis set as 8 = 3. By this

VOLUME 7, 2019

D. Liu, C. Yang: Deep RL Approach to Proactive Content Pushing and Recommendation for Mobile Users

IEEE Access

Algorithm 1 Content Recommendation and Pushing
Learning
1: Initialize replay memory, i.e., the data base D.
2: Initialize Q-network Qr,Qp w1th random welghts 0:,0,.
3: Initialize target network Qr, Qp with weights 0r =40,
0p =0,.
4: for episode =1,2,--- do
for time stepr =1,--- , T do
6: With probability e, select a random recommen-
dation a;(7), otherwise ai(t) = m(s1(t)) =
arg max, Qy(s1(¢), a; 0;).

W

7: if episode < L; then
8: Do not push any content, a(t) = —
9: else
10: Update the predicted next 1- to N-step recom-
mendations by
fE+ D) =22 (fqt = D), -
Ht +N) = 7N —).
11: With probability &, randomly select ax(t) €
{_17 17 o "N}v
otherwise select ax(t) =
arg max, Qp(s2(t), n; 0;).
12: end if
13: if L; < episode < L, then
14: ifr = 1 then
15: Initialize the emulated environment,
s'(t) = s(1).
16: end if
17: Execute action a(t) = [a;(¢),0], observe
reward r(t), and record transmlssmn cost m(t).
18: Execute action a'(r) = [a;(r), 72T (fg(t —)]
in the emulated environment, obtam the reward
for pushing agent by substituting the recorded
m(t) into (23), and observe next state s'(z+1).
19: Store experience [s'(1), a'(1), r1(1), (1), s'(t+1)]
in D.
20: else
21 Execute action a(r) = [a; (1), 7> (fy(r — 1),
observe reward r(t), r>(¢) and next state st+1)
22: Store experience [s(?), a(t), r1(t), r2(t), s(t + 1)]
in D.
23: end if
24: Randomly sample a mini-batch of experiences from
D as
B = {[s(), a(), (), r2(), s(+ DI}
25: Get s1(t) from s(z)
26: Get amax = arg max, O;(s1(j + 1), a; 6;) and set
- @, if eplsode terminates at step j+1
no= {n ()47 Oc(s1G+1), dmax; 0;), otherwise
27: Perform a gradient descent step minimizing
y1(G) — Oc(s1(0), a1 (2); 0r))2 with respect to 6
28: if episode > L; then
29: Get state representation s(j) from s(j) based on 7,
30: Get nmax = argmax, Qp(s2(j + 1), n; ;) and set
. r2(j), if episode terminates at step j + 1
()= (N4 Qp(s2(+1), fimax; 0p), otherwise

3L Perform a gradient descent step minimizing
(yz(]) Op(s2(1), ax(1); 0))* with respect to 6,
32: end
33: Update the target networks:
0r <~ 10,4+ (1 — 1:)0r, 0p <~ 10, +(1 - 1:)0p
34: end for
35: end for

VOLUME 7, 2019

z m(t)>'r]

S 'S 50m [N m(t) <n
******** B et J ettt - | Sttt

— —

4.6 m/s 5.4m/s 5.1m/s

FIGURE 4. Simulation scenario.

setting, the cost will be higher than the revenue if the distance
between user and BS is larger than 220 m.

The recommendation candidate set consists of F = 100
contents. The cache size of each mobile device is C = 5.
The size of the pushing candidate set is N = 5. The request
probability for content f when rejecting the recommenda-
tion (i.e., the probability of requests from a user without
recommendation) is modeled by Zipf distribution py =

5/2 j~% with the skewness parameter { = 0.6 [35].

To evaluate the performance of a recommendation policy,
one needs to know how a user reacts to a content when the
content is recommended to the user, i.e., accepts the recom-
mended content or not. Existing datasets, e.g., MovieLens
dataset [36] and Netflix dataset [14], only provides the rating
or request records, which cannot reflect whether or not a
user accepts a recommendation. Therefore, the performance
of a recommendation policy is not able to be evaluated with
existing datasets. To evaluate the performance of a recom-
mendation policy, one needs to conduct real experiments,
e.g., A/B test [37], which however is rather labor intensive
and time consuming. In this paper, we provide a simulated
environment based on well-acknowledged intuitions and facts
revealed from real data sets analysis.

We set the acceptance probability matrix P = [p;;]rxF for
each user as the following form,

® & ... @& ® 6 ®
pP— ® 6 (] 9 ® ® (24)
® .. © ® @ ® ... O

where “®” represents a value uniformly chosen from [0, 0.1],
and “@®” represents a value uniformly chosen from [0.9, 1].
For p;; € [0, 0.1], the users who just have consumed content
i are likely to reject the recommendation of content j. For
pij € [0.9, 1], the users who just have consumed content i
are likely to accept the recommendation of content j. Com-
pared with user demands without recommendation (e.g., Zipf
distribution with { = 0.6, where the content most likely to be
requested is requested with probability 1706/ Zloo 06 =
0.07), the uncertainty in user request can be reduced 51gn1f1-
cantly if recommending a content with acceptance probability
greater than 0.9 (i.e., the content with “®’”). The users share
the same structure of P, but the specific values of p;; differ
among users.

We set 5% elements in each row of P as values randomly
selected from [0.9, 1] and the rest of 95% elements from
[0, 0.1]. This means that the contents likely to be accepted

83129

IEEE Access

D. Liy, C. Yang: Deep RL Approach to Proactive Content Pushing and Recommendation for Mobile Users

by the users who have just consumed a content are 5% of the
whole recommendation candidate set. These 5% of the con-
tents can be regarded as similar or related contents, e.g., the
contents with the same genre. To show a clear structure of P,
we have re-ordered the indexes of contents so that similar
contents lie together with each other.

We set the diagonal elements of P as values randomly
selected from [0, 0.1], because a user is less likely to
accept the recommendation of a content that has just been
consumed.

Considering that the requests of a user are also not likely
to bounce between two contents, e.g., a user is not likely to
request contents in sequence suchas 1 — 2 — 1 — 2
during a session, p;; and pj;; should not both lie in [0.9, 1].
One possible way to reflect such a fact is to set the ith row as
the circulating shift of the (i — 1)th row. Such a circulating-
shift structure can reflect the fact that a content may have
multiple genres. Take the first two rows of P for example,
as shown in Fig. 5, contents 2 ~ 6 have the same genre (say
genre 1, Romance), and contents 3 ~ 7 have the same genre
(say genre 2, Comedy). Then, the contents 3 ~ 6 belong to
both genres 1 and 2.

Gef)l‘e 2

FIGURE 5. Overlap in genres.

Despite that the structure of P given by (24) may not
capture more complex user demand with recommendation,
it agrees with intuition and can reflect some basic facts
(e.g., non-repeated requests, no bouncing requests between
two contents, and contents with multiple genres) revealed
by real datasets [10], [36]. An advantage of using simu-
lated environment is that we can flexibly control users’ reac-
tion towards recommendation by adjusting the parameters
of matrix P, which allows us to analyze the impact of user
behavior on recommendation and pushing. Moreover, with
such circulating-shift structure of P, it is not hard to see that
the optimal recommendation policy maximizing the average
accumulated revenue E[Zthl n] is to recommend a content
with “@” based on the last consumed content. For example,
when the last consumed content of a user is content 1, we look
up the Ist row of P given in (24) and find that contents
2 ~ 6 is with “@®”. Then, any one of contents 2 ~ 6 can
be recommended. Such a policy can be used as a baseline to
show whether the recommendation policy learned by DRL
can converge to the optimal policy. It is worthy to note that
although we consider a certain structure of P in simulation,
the proposed RL framework does not use any priori knowl-
edge on such structure.

To capture the impact of recommendation on user stick-
iness, the session ending probabilities for each user varies

83130

within g1 = 0.05 £ 0.005 if the user accepts the recommen-
dation and g = 0.5 % 0.05 otherwise.

The simulations are conducted on a work station with
Intel Core 17-8700K CPU and single Nvidia Geforce GTX
1080Ti GPU. The proposed RL framework is implement by
TensorFlow 1.8.0 [38] with Python 3.6 on Windows 10.

B. FINE-TUNED HYPER-PARAMETERS OF ALGORITHM 1
The hidden layers H1 and H2 consist of 800 and 600 nodes,
respectively, and use rectified linear unit (ReLU) as the acti-
vation function. Both V and A layers of the two Q-networks
have half of the nodes as H2 for Q; and the other half of
the nodes as H1 for Oy, respectively, and have no activation
function. The output layers of O, and Qf have F and N + 1
nodes, respectively, where each node returns an action value
of the input state.

The replay memory size is |D| = 10°. The discount factor
is set as y = 1 because we aim to maximize the average
accumulated net profit during every session.

The whole process of simulation contains two consecutive
phases, namely training phase and testing phase.

1) TRAINING PHASE

The training phase of the recommendation agent starts from
the first episode. The exploration probability is &, = 1 for the
first 5 x 10° episodes and then decreases linearly to 0.01
within 3.5 x 10* episodes. The training phase of the pushing
agent starts from the L; = 4x 10*th episode, during which the
pushing agent first interacts with the emulated environment
within the 6.5 x 103 episodes, and then starts to interact with
real environment from the L, = 4.65 x 10*th episode. The
exploration probability is &, = 1 at the 4 x 10%th episode
and then decreases linearly to 0.01 within 10* episodes.
Adam [39] is used to adjust the learning rate during training,
and the initial learning rate is 8 = 10~%. The update rate for
the target network is T = 0.0025. The mini-batch size for
gradient descent is |B| = 32.

2) TESTING PHASE

The testing phase starts from the 5 x 10*th episode, during
which the exploration probability is set as zero for both
recommendation and pushing agents. In the testing phase,
the neural network weights 6., 6., 8, 6, are frozen and no
longer updated. The performance evaluation are based on the
results obtained during testing phase.

C. COMPARING WITH POLICY-BASED DRL ALGORITHMS

To justify why we employ dueling DDQN for the decom-
posed RL framework, we compare the adopted value-based
algorithm with several policy-based DRL algorithms, which
are PPO, A2C, and the DDPG with the k-nearest neigh-
bor (KNN) search [40] (called “DDPG + KNN”* for short).
We take the recommendation problem as an example for
illustration. The details of these policy-based DRL algorithms

VOLUME 7, 2019

D. Liu, C. Yang: Deep RL Approach to Proactive Content Pushing and Recommendation for Mobile Users

IEEE Access

Return

Dueling DDQN
= = =PPO

A2C
----- DDPG + KNN

0 5 10 15
Episode (Session) x10%

FIGURE 6. Comparison of dueling DDQN with several policy-based DRL
algorithms in recommendation problem.

are given in the appendix. The returns achieved by different
DRL algorithms are provided in Fig. 6.

We can see from the figure that dueling DDQN converges
faster than all the policy-based algorithms. “DDPG + KNN”’
converges faster than PPO and A2C, but can only achieve
50% of the return as dueling DDQN. Both PPO and A2C
can achieve a return close to dueling DDQN, where PPO
converges faster than A2C. Since both PPO and A2C are
on-policy algorithms, they are less sample-efficient than off-
policy algorithm with experience replay such as DQN and
hence converge slower. Moreover, our simulation results
show that A2C and PPO may converge to stochastic policy if
we do not decrease the entropy coefficient (i.e., 8, defined in
the appendix) during the training phase, while a deterministic
recommendation policy (as learned from dueling DDQN) is
more appealing for the pushing problem as we discussed in
Section III-C-2).

In the sequel, we employ dueling DDQN as the DRL
algorithm.

D. COMPARING WITH BASELINE POLICIES

There are no existing works jointly considering recommen-
dation and pushing with unknown users behavior. Existing
policies in [20]-[23] are not applicable to our considered sce-
nario due to the following reasons: (1) We consider pushing
to user devices while [20]-[23] consider caching at the BSs.
(2) We consider mobile users and hence exploit mobility
pattern, but [20]-[23] do not. We consider the fact that a
user will not request a content again if the user has requested
the content in a short period (say minutes), but [20]-[23]
assumes that a user may request a content repeatedly. (3) The
optimization objectives of this work and those in [20]—[23]
are very different. Therefore, we do not compare with policies
in [20]-[23].

To show the gain respectively from optimizing recommen-
dation and optimizing pushing by decomposing the joint opti-
mization problem, we compare the learned policy by DRL
with the following baseline policies:

VOLUME 7, 2019

1) Optimal Rec. & No pushing: In each time step, the asso-
ciated BS of a user recommends a content according to
the optimal recommendation policy that maximizes the
average accumulated revenue E[ZLI n] and does not
push any content. The optimal recommendation policy
is obtained with known structure of P, which recom-
mends a content with “®”” based on the last consumed
content. This policy can be regarded as a performance
upper-bound of the state-of-the-art recommendation
policies without pushing.

2) No Rec. & Optimal pushing: The BS does not rec-
ommend any contents to each user. Then, the optimal
pushing policy is to let each user cache the contents that
are most likely to be requested by the user. This policy
provides a performance upper-bound of the state-of-
the-art pushing policies without recommendation.

3) Non-decomposed: This policy is learned by directly
applying dueling DDQN to the RL framework for
joint pushing and recommendation optimization in
Section III-B. Since the action and state spaces are
huge for the non-decomposed RL framework, we only
consider a recommendation candidate set consisting of
F = 10 contents (specifically, each row of P has ten
elements, among which two elements are with “®")
for “Non-decomposed’ to reduce the complexity. This
simplified scenario makes it easier for the agent to
learn which content should be recommended because
the action and state spaces are smaller, and the per-
centage of preferred content increases (i.e., 20% for
“Non-decomposed” compared with 5% for “decom-
posed”). It is noteworthy that such a scenario does not
affect the optimal performance, because the cache size
and the acceptance probability of a preferred content
remain unchanged. For the training phase, the explo-
ration probability is first set as one for the first 5 x 103
episodes and then decreases linearly to 0.1 within 4.5 x
10* episodes. The testing phase starts from the 6 x 10*th
episodes. Other fine-tuned hyper-parameters are the
same as those for Algorithm 1 under the decomposed
RL framework.

In Fig. 7, we show the learning curve of proposed RL
framework. For the first 4 x 10% episodes, the recommen-
dation policy is learned without pushing any contents to the
user and finally achieves 500% of the return (i.e., accumu-
lated net profit) over “No Rec. & Optimal pushing”. From
the 4 x 10*th to 4.65 x 10*th episodes, the pushing agent
learns pushing policy in the emulated environment while
does not push in real environment. Hence, the return is
almost the same as “Optimal Rec. & No pushing”. After
that, the pushing agent interacts with real environment. The
return finally achieves 800% of the return over “No Rec. &
Optimal pushing”. It is worthy to note that although the
dueling DDQN [24] is not able to guarantee convergence
for all scenarios, Algorithm 1 always converges for all the
tests we have done. We also show the performance if push-
ing agent directly interacts with real environment at the

83131

IEEE Access

D. Liy, C. Yang: Deep RL Approach to Proactive Content Pushing and Recommendation for Mobile Users

Proposed

= = =Optimal Rec. & No Pushing
4 |=m== No Rec. & Optimal Pushing
""""" Non-decomposed

Emulated

| Without Emulated Environment

N

c
5
&
1
0
<—>
-r Training Pushing Policy 1
< > << >
Training Recommendation Policy Testing
) | | i | . . .
0 1 2 3 4 5 6 7 8
Episode (Session) «10%

FIGURE 7. Learning curve. The result of each episode are obtained by
averaging over 50 Monte Carlo trials and moving average over

50 successive episodes. In each trail, the matrix P, user mobility, fading
channels, and the content request of a user when it rejects the
recommendation are randomly generated.

20

Optimal Rec. Proposed
151 & No Pushing 1

4

-10 | [Accum. Net Profit (Return) 1
I Accum. Cost
["""]Accum. Revenue

No Rec.
[& Optimal Pushlng

(9]
I

Return Breakdown
o

'
(9]
T

-15

FIGURE 8. Return breakdown after Algorithm 1 converges.

4 x 10*th episode in the figure. The return first drops because
pushing policy has not been learned well enough, which
increases the transmission cost compared with no pushing.
We can see that “Non-decomposed’ is inferior to the pro-
posed decomposed framework even in the simplified sce-
nario, which is due to the ““delayed reward” as explained in
the sequel. Simulation results show that “Non-decomposed™
tends to not push anything to the user. Without pushing,
“Non-decomposed” actually minimizes the immediate cost
in the current time step (because pushing incurs transmis-
sion cost) and hence maximizes the immediate reward but
does not necessarily maximize the accumulated reward in
the long run. In other word, the benefit of pushing may
only be observed several time steps later (e.g., when the user
experiences bad channel condition and requests the pushed
content.)

In Fig. 8, we compare the return breakdown to understand
where the gain comes from. Compared with “No Rec. &
Optimal pushing” the accumulated revenue achieved by
“Optimal Rec. & No pushing” is boosted 600% because users

83132

will request more contents during a session. However, the
accumulated transmission cost also increases significantly
due to increased number of content requests. The proposed
framework can achieve the same accumulated revenue as
“Optimal Rec. & No pushing’, which suggests that the
learned recommendation policy is optimal. By learning the
optimal pushing policy, the accumulated transmission cost
of the proposed framework can be reduced and hence the
accumulated net profit increases significantly compared with
baselines.

E. BEHAVIOR OF THE PUSHING POLICY

In Fig. 9, we show the average achievable rate (reflecting
channel condition), which content is pushed to a user (if any),
and whether a requested content is cached in each time
step during a simulated session to illustrate how the learned
pushing policy behaves. The result is obtained from one
snapshot of a session after the pushing policy learned by
Algorithm 1 converges.

From Fig. 9(a), we can see that the contents to be recom-
mended in time steps 10 ~ 13 are proactively pushed to the
user in time steps 6 ~ 9, respectively. The user accepts the
recommendation in time steps 10 ~ 13, leading to cache hits
shown by the blue bars. Because the requested contents have
already been cached, on-demand transmission is not required
in time steps 10 ~ 13 where the average achievable rate is
low (i.e., transmission cost is high). These pushing actions
indicate that the learned pushing policy can intelligently
adapt to the mobility pattern of the users and the propaga-
tion environment of the network, so that the contents to be
requested under bad channel condition are proactively pushed
under good channel condition. Besides, we can see that only
the content to be recommended in four time steps ahead
(i.e., n = 4) is pushed to the user, although the size of pushing
candidate setis N = C = 5. This is because with the increase
of n, the prediction of the next n-step recommendation (and
hence user request) becomes less precise as we explained in
Section IV-B-2). From P, we can compute the probability that
the user accepts the predicted recommendation (which also
indicates the probability of precisely predicting the content
to be requested) in the next fourth time step can be as low as
(0.9 x (1 —g1))* ~ 0.52.

In Fig. 9(b), we show the impact of prediction precision of
the next-n step recommendation by adjusting the acceptance
probability. Specifically, the elements with “®” in P are
set as one, which means that users will definitely accept
the recommendation of a sufficiently attractive content. This
is the optimistic case where the prediction of next-n step
recommendation is perfect as long as the session does not
terminate. We can see that, with more precise prediction of the
next-n step recommendation, the content pushed to the user
is the content to be recommended in five time steps ahead.
Compared with Fig. 9(a), more contents are pushed under
good channel conditions and hence the cache hit probability
under bad channel conditions increases, which reduces the
transmission cost. Moreover, since the acceptance probability

VOLUME 7, 2019

D. Liy, C. Yang: Deep RL Approach to Proactive Content Pushing and Recommendation for Mobile Users

IEEE Access

Average Achievable Rate, R(t), bps/Hz

Channel Condition

[Pushing Policy
I Cache Hit

Pushing

Not Pushing

123 45 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Time Step, t

@ ® € [0.9,1]

(&)
1

o

o

Average Achievable Rate, R(t), bps/Hz

0
1 2 3 45 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
Time Step, t

(b)® =1

Channel Condition
[Pushing Policy
I Cache Hit

Pushing

Not Pushing

FIGURE 9. lllustration of the learned pushing policy in a simulated session. The number above each orange bar
denotes in which time step a content to be recommended is pushed to the user in the current time step. For example,
in (a), the content pushed in time step 6 is the content to be recommended in time step 10.

is higher, a user is more likely to continue requesting contents,
which results in longer session duration, e.g., T = 38 as
shown Fig. 9(b). This increases the accumulated revenue
during a session.

V. CONCLUSION AND FUTURE WORKS

In this paper, we considered joint content pushing and rec-
ommendation for mobile users to increase the net profit of
MNO without comprising user experience. To cope with the
challenge caused by unknown user behaviors, we resorted to
RL framework. Considering that the joint pushing and rec-
ommendation problem has too large state and action spaces to
be solved even with DRL algorithms, we decoupled the orig-
inal problem into a recommendation problem and a pushing
problem by differentiating the roles of recommendation and
pushing. By first letting the recommendation agent learning
the recommendation policy, the pushing agent is able to
predict when a user will request which content explicitly,
which can further reduce the state and action spaces and
can also reduce the transmission cost during interactions
with the environment. By learning the pushing policy in an
emulated environment, the cost can be further cut down.
Simulation results showed that the revenue of MNO can
be increased by boosting user requests due to the enhanced
user stickiness by recommendation. By further integrating
proactive pushing based on the content recommendation and
mobility pattern, the transmission cost of the network can

VOLUME 7, 2019

be reduced. As a final consequence, the net profit of MNO
can be increased remarkably.

This work is an early attempt to apply RL for joint content
recommendation and pushing. Although the result is still
preliminary, it suggests an alternative while promising way
to relieve the negative impact of user behavior uncertainty
on proactive caching in wireless edge and to learn the user
behavior that is hard to model. Due to the lack of experiments
and models for users’ interaction with content recommenda-
tion, the evaluation of the proposed framework in real world
scenarios are left for future works.

APPENDIX A

POLICY-BASED DRL ALGORITHMS AND THEIR
FINE-TUNED HYPER-PARAMETERS

In this appendix, we provide the details of several policy-
based DRL algorithms, by taking the recommendation
problem as an example for illustration.

A. DDPG + KNN

DDPG maintains an actor network w(s; #,,) and a critic net-
work O(s, a; 0p). The actor network specifies the current
policy by deterministically mapping states into a specific con-
tinuous action, and the critic network is used to approximate
the action-value function. To apply DDPG to discrete action
space, [40] proposes to embedding discrete action into a con-
tinuous space and employ k-nearest neighbor search (KNN)

83133

IEEE Access

D. Liy, C. Yang: Deep RL Approach to Proactive Content Pushing and Recommendation for Mobile Users

o

51(t)

o000

‘—» g —»‘-» g

5 (t) . E ‘

IN @ ouT
H1

Actor Network

. KNN
a,(t) = pu(s ();0,.) —— A, (1)
Proto Action

FIGURE 10. The architecture of “DDPG + KNN".

® ® v®le.)
5 () ‘-» : : : 7(a(t) =1[s(1),0)

@ () = Ns.(6),6)
"1 our

FIGURE 11. A2C with shared layers.

to find the discrete actions that are close to the output of the
actor network.

The architecture of actor network and critic network used
for recommendation problem are shown in Fig. 10.

The action a;(¢) (i.e., the content to be recommended in
current time step) is denoted by a F-dimensional one-hot
vector, e.g., the content with index n is denoted by a vector
that only the nth element is ““1” and all the other elements
are ““0”’s. The state s1(¢) (i.e., the index of last requested con-
tent) is first converted into a F'-dimensional one-hot vector for
the input layer of actor network and then goes through a fully-
connected hidden layer. The actor network outputs a proto-
action in R as 4 (¢), which may not be a valid action because
the valid action set consists of F'-dimensional one-hot vector.
Then, KNN is used to find k actions in the valid action set that
are closest to the proto-action a;(¢z) by Euclidean distance,
which is denoted by A (7). Finally, the agent will recommend
a content in 4 () that has the largest action value according
to the output of critic network. The detailed training algorithm
for “DDPG 4+ KNN” is given by [40].

B. A2C
A2C is a synchronous variant of Asynchronous Advantage
Actor Critic (A3C) [26], which has been shown to achieve
the same or better performance than A3C and is more cost-
effective when using single-GPU machines [41]. In A2C,
there are multiple actors interact with each parallel envi-
ronment simultaneously. Different from A3C, the actor and
critic networks are updated until every actor has collected the
experience from the environment. The architecture of A2C
implementation used for recommendation problem is shown
in Fig. 11.

The actor network has a hidden layer and a softmax out-
put layer for the policy 7w (ay(t)|si(¢); @), which denotes the

83134

IN

: ‘ argmax
‘-"-’. Q51 (1), A:(8);00) M a, ()
: : ouT Action

Critic Network

probability that the agent executes action aj(¢) for state s1(¢).
The critic network shares all the non-output layers with the
actor network and has linear output layer for the value func-
tion V(s1(¢); 8,). The loss function for updating the networks
is given by

Laz = E[~ log (@ (0)]s1 (0)A®)

+ BIR@) = V(510 0,01 = foH (x(51(0: 0) |
(25)

where A(t) = Y X0 yir(4 i) + yFV(si(t + k) 0,) —
V(s1(1); 0,) = R(t)—V(s1(¢); 8,) is the estimate of the advan-
tage function, and the first term — log 7w (a(¢)|s1(?); G)A(t)
is the policy gradient loss for updating the actor network,
[R(t) — V(s1(2); 0,)]? is the value loss for updating the critic
network, and H (7 (s1(); #)) is the entropy of the policy, and
B1 and B, are the value loss coefficient and entropy coeffi-
cient, respectively. The entropy coefficient B, encourages the
policy to be stochastic, which is beneficial for exploration.

C. PPO

PPO aims to improve the stability of policy gradient algo-
rithms by ensuring the deviation from the previous policy is
relatively small [27]. As mentioned in an OpenAl blog [42]
“PPO has become the default reinforcement learning algo-
rithm at OpenAl because of its ease of use and good perfor-
mance’’. PPO shares the same network architecture as A2C
but has a different loss function given by

Lppo =]E[— Lcrip(0)

+ BIR@) = V(510: 0,01 = oH (x(51(0: 0)
(26)

where the first term Lcrp(0) is the clipped surrogate objec-
tive expressed by

L @@l 0) -

Lewip(®) = min @)1 0); 0oy

lp< @y (0)]s1(¢); 8)
m(ay(®)]s1(t); Ooia)’

l—e 14 e> A(t)}
(27)

VOLUME 7, 2019

D. Liu, C. Yang: Deep RL Approach to Proactive Content Pushing and Recommendation for Mobile Users IEEEACC@SS

o (@ ®)]s1(1);:0) A
who§§ second term Cllp(m, .1 —e 1+ 6)‘.4.0)
modifies the surrogate objective by clipping the probability

ratio within [1 — ¢, 1 + €].

D. FINE-TUNED HYPER-PARAMETERS

We have tried our best to tune the hyper-parameters for
each algorithm for a fair comparison. For all the algorithms,
the number of nodes for hidden layer H; is 800 and Adam
is used to adjust the learning rate. The fine tuned hyper-
parameters for each algorithm are listed as follows:

1) DDPG + KNN: The hidden layer H; in the critic
network has 600 nodes. The learning rates for the
actor network and critic network are 2 x 107 and
1074, respectively. The update rates for the target
actor network and target critic network are 0.01 and
0.0025, respectively. The number of neighbors in
KNN is set as 25%. Other settings are the same as
dueling DDQN.

2) A2C: Four environments run in parallel and the learn-
ing rate is set as 1074, The value loss coefficient is
B1 = 0.05. To obtain a deterministic recommendation
policy, the entropy coefficient is set as B = 0.5
for the first 7.5 x 103 episodes and then decreases
linearly to zero for the next 7.5 x 107 episodes. Other
settings are set the same as the implementation by
OpenAl [41].

3) PPO: In the clip function, € is set as 0.2. The value loss
coefficient is 81 = 1. Again, to obtain a deterministic
recommendation policy, the entropy coefficientis 8y =
0.02 for the first 7.5 x 103 episodes and then decreases
linearly to zero for the next 7.5 x 107 episodes. Other
settings are the same as that of A2C.

REFERENCES

[1] N. Golrezaei, A. F. Molisch, A. G. Dimakis, and G. Caire, ‘“Femto-
caching and device-to-device collaboration: A new architecture for wire-
less video distribution,” IEEE Commun. Mag., vol. 51, no. 4, pp. 142149,
Apr. 2013.

[2] E. Zeydan, E. Bastug, M. Bennis, M. A. Kader, I. A. Karatepe,
A. S. Er, and M. Debbah, “Big data caching for networking: Moving
from cloud to edge,” IEEE Commun. Mag., vol. 54, no. 9, pp. 36-42,
Sep. 2016.

[3] D. Liu, B. Chen, C. Yang, and A. F. Molisch, “Caching at the wireless
edge: Design aspects, challenges, and future directions,” IEEE Commun.
Mag., vol. 54, no. 9, pp. 22-28, Sep. 2016.

[4] L. Li, G. Zhao, and R. S. Blum, “A survey of caching techniques in
cellular networks: Research issues and challenges in content placement
and delivery strategies,” IEEE Commun. Surveys Tuts., vol. 20, no. 3,
pp. 1710-1732, 3rd Quart., 2018.

[5] X. Li, X. Wang, K. Li, Z. Han, and V. C. M. Leung, “Collaborative
multi-tier caching in heterogeneous networks: Modeling, analysis, and
design,” IEEE Trans. Wireless Commun., vol. 16, no. 10, pp. 6926-6939,
Oct. 2017.

[6] D.LiuandC. Yang, “Energy efficiency of downlink networks with caching
at base stations,” IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 907-922,
Apr. 2016.

[71 J. Liu, B. Bai, J. Zhang, and K. B. Letaief, “Cache placement
in Fog-RANs: From centralized to distributed algorithms,”
IEEE Trans. Wireless Commu., vol. 16, no. 11, pp.7039-7051,
Nov. 2017.

VOLUME 7, 2019

[8]

[9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

K. Wang, Z. Chen, and H. Liu, ‘“Push-based wireless converged networks
for massive multimedia content delivery,” IEEE Trans. Wireless Commun.,
vol. 13, no. 5, pp. 2894-2905, May 2014.

W. Chen and H. V. Poor, “Content pushing with request delay
information,” [EEE Trans. Commun., vol. 65, no. 3, pp. 1146-1161,
Mar. 2017.

M. C. Lee, A. F. Molisch, N. Sastry, and A. Raman, “Individual preference
probability modeling for video content in wireless caching networks,”
in Proc. IEEE GLOBECOM, Dec. 2017, pp. 1-7.

B. Chen and C. Yang, “Caching policy for cache-enabled D2D commu-
nications by learning user preference,” IEEE Trans. Commun., vol. 66,
no. 12, pp. 6586-6601, Dec. 2018.

M. D. Ekstrand, J. T. Riedl, and J. A. Konstan, “Collaborative filtering
recommender systems,” Found. Trends Hum.-Comput. Interact., vol. 4,
no. 2, pp. 81-173, Feb. 2010.

T. Hofmann, “Latent semantic models for collaborative filtering,” ACM
Trans. Inf. Syst., vol. 22, no. 1, pp. 89-115, Jan. 2004.

C. A. Gomez-Uribe and N. Hunt, “The Netflix recommender system:
Algorithms, business value, and innovation,” ACM Trans. Manage. Inf.
Syst., vol. 6, no. 4, p. 13, 2016.

M. Wittenberg. (May 2018). Introducing Douyin, China’s Incredibly
Sticky Short Video App, Posted on Medium. [Online]. Available:
https://mondaynote.com/introducing-douyin-chinas-ridiculously-sticky-
short-video-app-ab005727d89%e

A. Singhal, P. Sinha, and R. Pant, “Use of deep learning in modern
recommendation system: A summary of recent works,” Int. J. Comput.
Appl., vol. 180, no. 7, pp. 17-22, Dec. 2017.

D. Liu and C. Yang, “Caching policy toward maximal success probabil-
ity and area spectral efficiency of cache-enabled HetNets,” IEEE Trans.
Commun., vol. 65, no. 6, pp. 2699-2714, Jun. 2017.

Z. Chen, J. Lee, T. Q. S. Quek, and M. Kountouris, ‘“Coopera-
tive caching and transmission design in cluster-centric small cell net-
works,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 3401-3415,
May 2017.

J. Tadrous, A. Eryilmaz, and H. El Gamal, ‘“‘Proactive content download
and user demand shaping for data networks,” IEEE/ACM Trans. Netw.,
vol. 23, no. 6, pp. 1917-1930, Dec. 2015.

L. E. Chatzieleftheriou, M. Karaliopoulos, and I. Koutsopoulos,
“Caching-aware recommendations: Nudging user preferences towards
better caching performance,” in Proc. IEEE INFOCOM, May 2017,
pp. 1-9.

P. Sermpezis, T. Giannakas, T. Spyropoulos, and L. Vigneri, “Soft
cache hits: Improving performance through recommendation and deliv-
ery of related content,” IEEE J. Sel. Areas Commun., vol. 36, no. 6,
pp. 1300-1313, Jun. 2018.

D. Liu and C. Yang, “A learning-based approach to joint content
caching and recommendation at base stations,” in Proc. IEEE Globecom,
Dec. 2018, pp. 1-7.

K. Guo, C. Yang, and T. Liu, “Caching in base station with rec-
ommendation via Q-learning,” in Proc. I[EEE WCNC, Mar. 2017,
pp. 1-6.

Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, “Dueling network architectures for deep reinforcement
learning,” in Proc. ICML, Jun. 2016, pp. 1995-2003.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
in Proc. ICLR, Jun. 2016, pp. 1-3.

V.Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement
learning,” in Proc. ICML, Jun. 2016, pp. 1928-1937.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” 2017. arXiv:1707.06347. [Online].
Available: https://arxiv.org/abs/1707.06347

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

F. Calabrese, L. Wang, E. Ghadimi, P. Gunnar, L. Hanzo, and P. Soldati,
“Learning radio resource management in RANs: Framework, opportu-
nities and challenges,” arXiv preprint: 1611.10253. [Online]. Available:
http://arxiv.org/abs/1611.10253

P. Covington, J. Adams, and E. Sargin, “Deep neural networks
for youtube recommendations,” in Proc. ACM RecSys, Sep. 2016,
pp. 191-198.

83135

IEEE Access

D. Liy, C. Yang: Deep RL Approach to Proactive Content Pushing and Recommendation for Mobile Users

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

G. Shani, D. Heckerman, and R. I. Brafman, “An MDP-based rec-
ommender system,” J. Mach. Learn. Res., vol. 6, pp.1265-1295,
Sep. 2005.

C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
nos. 3—4, pp. 279-292, 1992.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-
mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen,
C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S.
Legg, and D. Hassabis, ‘““‘Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double g-learning,” in Proc. AAAI, 2016, pp. 1-10.

P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic characterization:
A view from the edge,” in Proc. ACM SIGCOMM IMC, Oct. 2007,
pp. 15-28.

F. M. Harper and J. A. Konstan, “The movielens datasets: History
and context,” ACM Trans. Interact. Intell. Syst., vol. 5, pp. 19:1-19:19,
Dec. 2015.

R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne, “Con-
trolled experiments on the web: Survey and practical guide,” Data Mining
Knowl. Discovery, vol. 18, no. 1, pp. 140-181, Feb. 2009.

M. Abadi, A. Agarwal, P. Barham, and E. Brevdo. (2018). TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. [Online].
Available: http://tensorflow.org/

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. ICLR, 2014, pp. 1998-2006.

G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap,
J. Hunt, T. Mann, T. Weber, T. Degris, and B. Coppin, “Deep reinforce-
ment learning in large discrete action spaces,” 2015, arXiv:1512.07679.
[Online]. Available: https://arxiv.org/abs/1512.07679

0. AL (2014). OpenAl Baselines: ACKTR & A2C. [Online]. Available:
https://openai.com/blog/baselines-acktr-a2c

(2014). Proximal Policy Optimization. [Online]. Available: https:/
openai.com/blog/openai-baselines-ppo/

83136

DONG LIU (S’13) received the B.S. degree
in electronics engineering and the Ph.D. degree
in signal and information processing from
Beihang University (formerly Beijing Univer-
sity of Aeronautics and Astronautics), Beijing,
China, in 2013 and 2019, respectively. His current
research interest includes caching and machine
learning in wireless networks.

CHENYANG YANG (SM’08) received the Ph.D.
degree in electrical engineering from Beihang Uni-
versity (formerly Beijing University of Aeronau-
tics and Astronautics, BUAA), China, in 1997,
where she has been a Full Professor with the
School of Electronics and Information Engineer-
ing, since 1999. She has published over 200 papers
in wireless caching, URLLC, energy-efficient
i transmission, CoMP, interference management,
{ cognitive radio, and relay. Her recent research
interests include mobile Al, wireless caching, and URLLC. She was sup-
ported by the 1st Teaching and Research Award Program for Outstanding
Young Teachers of Higher Education Institutions by the Ministry of Edu-
cation of China. She was the Chair of the Beijing Chapter of the IEEE
Communications Society, from 2008 to 2012. She has ever served as an Asso-
ciate Editor for the IEEE TRANSACTIONS ON WIRELESS COMMUNICATION, a Guest
Editor for the IEEE JourNAL OF SELECTED Topics IN SIGNAL PROCESSING and the
IEEE JoURNAL OF SELECTED AREAS IN COMMUNICATIONS, and as a TPC Member,
the TPC Co-Chair or the Track Co-Chair for many IEEE conferences.

VOLUME 7, 2019

	INTRODUCTION
	SYSTEM MODEL
	BASIC NOTIONS IN REINFORCEMENT LEARNING
	LEARNING-ENABLED NETWORK ARCHITECTURE
	RECOMMENDATION, PUSHING, AND USER REQUESTS

	RECOMMENDATION AND PUSHING BY DRL
	PROBLEM FORMULATION
	RL FRAMEWORK FOR JOINT OPTIMIZATION
	DECOMPOSED RL FRAMEWORK
	RECOMMENDATION PROBLEM
	PUSHING PROBLEM

	DRL WITH DUELING DDQN

	SIMULATION RESULTS
	SIMULATION ENVIRONMENT SETUP
	FINE-TUNED HYPER-PARAMETERS OF ALGORITHM 1
	TRAINING PHASE
	TESTING PHASE

	COMPARING WITH POLICY-BASED DRL ALGORITHMS
	COMPARING WITH BASELINE POLICIES
	BEHAVIOR OF THE PUSHING POLICY

	CONCLUSION AND FUTURE WORKS

	POLICY-BASED DRL ALGORITHMS AND THEIR FINE-TUNED HYPER-PARAMETERS
	DDPG + KNN
	A2C
	PPO
	FINE-TUNED HYPER-PARAMETERS

	REFERENCES
	Biographies
	DONG LIU
	CHENYANG YANG

