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ABSTRACT Various classifiers have been proposed for financial risk prediction. The traditional practice of
using a singular performance metric for classifier evaluation is not sufficient for imbalanced classification.
This paper proposes a multi-criteria decision making (MCDM)-based approach to evaluate imbalanced
classifiers in credit and bankruptcy risk prediction by considering multiple performance metrics simulta-
neously. An experimental study is designed to provide a comprehensive evaluation of imbalanced classifiers
using the proposed evaluation approach over seven financial imbalanced data sets from the UCI Machine
Learning Repository. The TOPSIS, a well-known MCDM method, was applied to rank three categories of
imbalanced classifiers using six popular evaluation criteria. The rankings results indicate that: 1) the rankings
generated by the TOPSIS, which combine the results of six evaluation criteria, provide a more reasonable
evaluation of imbalanced classifiers over any single performance criterion; and 2) Synthetic Minority
Oversampling Technique (SMOTE)-based ensemble techniques outperform other groups of imbalanced
learning approaches. Specifically, SMOTEBoost-C4.5, SMOTE-C4.5, and SMOTE-MLP were ranked as
the top three classifiers based on their performances on the six criteria.

INDEX TERMS Financial risk prediction, imbalanced classification, multiple criteria decision making
(MCDM), algorithm evaluation.

I. INTRODUCTION
Financial risk prediction has been a hot topic for years
due to its great importance [1]–[4]. Bankruptcy or default
prediction is one of the most important tasks in finan-
cial risk management. Since the number of default or
bankruptcy is significantly outnumbered by non-default or
non-bankruptcy [5]–[7], bankruptcy classification is a typical
imbalanced classification problem.

Many methods have been developed to learn from imbal-
anced data sets over the decades. They can be categorized
into three major groups: resampling, cost-sensitive learning,
and ensemble techniques. Previous researches have proved
that class imbalance is likely to result in a degradation for the
final prediction [8]–[10]. The class imbalance problem has
always been regarded as a challenging task in a broad scope
of financial problems. In last years, some works have studied
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the performance of imbalanced models on financial risk pre-
diction. He et al. [11] introduced amodel based on resampling
the credit scoring data sets according to their imbalance ratio
and a threshold. Sun et al. [12] proposed an ensemble for
imbalanced credit evaluation based on the SMOTE algorithm
and the BAGGING technique with different sampling rates.
Veganzones and Séverina [13] investigated the performance
of bankruptcy prediction models in imbalanced datasets by
analyzing three key notions: degree of imbalance, loss of per-
formance, and sampling techniques. García et al. [14] inves-
tigated whether or not there exists any potential difference in
their performance due to the distribution of sample types in a
database. As can be seen from the above analysis, few studies
comprehensively investigate the performance of various types
of financial risk prediction models in imbalanced data sets.
Thus, it is interesting to investigate the effects of imbalanced
classification techniques on financial risk classification and
compare their performances. The objective of this paper is
to propose a multi-criteria decision making (MCDM) based
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approach for a comprehensive assessment of imbalanced
classifiers in credit and bankruptcy risk prediction. The basic
idea of the proposed approach is to rank imbalanced clas-
sifiers in credit and bankruptcy risk prediction according
to their performances on a selection of metrics, rather than
singular metric, using MCDM methods [15], [16]. Although
there have been some studies evaluating the performance of
imbalanced classification methods, few, if any, have analyzed
this problem using a combination of multiple criteria.

An experiment is designed to assess four base classifiers
(SVM, MLP, LR and C4.5) and their combinations with
resampling, cost-sensitive learning, and ensemble techniques
using six evaluation metrics (i.e., G-mean, F-measure, AUC,
FP rate, FN rate, and time) over seven public imbalanced
credit and bankruptcy risk data sets. The results show that the
SMOTE-based ensemble techniques outperform other group
of techniques.

The contributions of the proposed MCDM-based eval-
uation approach for imbalanced classification methods in
financial risk prediction with respect to previous studies are
summarized as follows.
• A MCDM approach based on six key criteria (G-mean,
F-measure, AUC, FP rate, FN rate, and time) is pro-
posed to evaluate imbalanced financial risk classifica-
tion methods, integrated using TOPSIS method.

• This article makes a systematic analysis about resam-
pling, cost-sensitive learning, and ensemble techniques
in financial risk prediction.

• An objective determining weights of assessment criteria
based on Entropy method is put forward.

• Some instructive results are obtained for imbalanced
classification methods in financial risk prediction.

The rest of this paper is organized as follows.
Section 2 reviews the background and related works includ-
ing existing algorithms in financial risk classification, imbal-
anced learning techniques, and performance metrics for
imbalanced classification. Section 3 describes TOPSIS,
the MCDM method used in this study. Section 4 presents the
experiment design and results. Section 5 concludes the paper.

II. BACKGROUND AND RELATED WORKS
A. FINANCIAL RISK PREDICTION MODELS
Numerous classification algorithms have been proposed for
financial risk prediction, such as logistic regression (LR),
neural networks (NN), support vector machines (SVM),
decision trees (DT), and partial least squares [17], [18].
Ensemble learning techniques, which have demonstrated
notable improvement over a single classification algo-
rithm, have been applied to financial risk classification.
Ravikumar and Ravi [19] presented ensemble classifiers
by simple majority voting scheme based on seven algo-
rithms. Sun and Li [20] investigated weighted majority
voting combination of multiple diversified classifiers and
obtained higher average accuracy than any base classi-
fier. Furthermore, ensembles of classifiers [21] attempt
to increase the accuracy of individual classifiers by

their combination. Ensemble learning refers to the combi-
nation of several classifiers to produce a strong classifier.
The key to the integrated algorithm lies in the diversity of
the base classifiers. One of the most common approaches
to construct ensembles by data variation are Boosting [22]
and Bagging [23]. A strong classifier is obtained from mul-
tiple classifiers by resampling, which is the basic principle
for Bagging. Boosting integrations base classifiers based on
the weights. Bagging and Boosting-based ensemble methods
have been received increasing attention [24]–[27]. Bagging
andBoosting ensembles based onNNwere applied [24], [25].
Kim and Upneja [26] compared the predictive and discrimi-
natory performances of AdaBoosted DT models with single
DTmodels andAdaBoostedDTmodel based onC4.5 demon-
strated the best prediction performance. Sun et al. [27] estab-
lished AdaBoost ensemble respectively with single attribute
test (SAT) and DT and found that AdaBoost-SAT outper-
formed AdaBoost-DT.

B. IMBALANCED LEARNING TECHNIQUES
The class imbalance problem refers to a situation in which
the class distribution is highly skewed. Many techniques have
been developed to address the class imbalance problem over
the years. López et al. [28] categorize them into three major
groups: resampling, cost-sensitive learning, and ensemble
techniques.

As the number of imbalanced learning approaches
increases, how to select an effective one for a given task
becomes an important yet difficult issue. The traditional
practice of choosing a single measure to evaluate imbal-
anced classification algorithms is not sufficient and several
studies [29], [30] have proved that the choice of evaluation
measures can have a substantial effect on the conclusions.
For instance, the experiments conducted by Raeder et al. [30]
showed that Naive Bayes was ranked as the best classifier by
the area under the ROC curve (AUC) and the worst classifier
by Brier score on the same data sets.

This section introduces the three groups of imbalanced
classification techniques and the major evaluation measures
that have been used in imbalanced classification. For compre-
hensive and up-to-date reviews of classification approaches
for imbalanced data, please refer to [28], [29].

Most existing classification approaches for the imbalance
problem can be categorized into three groups: preprocessing,
ensemble, and cost-sensitive learning [28]. The following
subsections provide brief descriptions of each group.

1) PREPROCESSING IMBALANCED DATASETS:
RESAMPLING TECHNIQUES
Resampling approaches target the imbalanced classification
problem by reducing skewed distributions of imbalanced
data sets using preprocessing techniques. According to the
underlying principles, resampling approaches can be clas-
sified as undersampling, oversampling and hybrid meth-
ods. While undersampling changes class distribution by
removing data records from the majority class, oversampling
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creates new minority data records by replicating or utiliz-
ing sophisticated techniques. Hybrid methods combine both
undersampling and oversampling techniques to handle the
class imbalance. Because resampling concerns only about
preprocessing imbalanced data, it can be used with any
standard classifier or specially designed imbalance learning
algorithms.

This paper chooses random undersampling (RUS) and
Synthetic Minority Oversampling Technique (SMOTE) to
represent resampling techniques in the experiment. RUS ran-
domly removes majority examples from the original data to
reduce the imbalance [31]. Despite its simplicity, RUS per-
formed better than some more sophisticated techniques [32].
Synthetic Minority Oversampling Technique (SMOTE) [33]
is one of the most well-known approaches in the area of
preprocessing imbalanced data. It creates synthetic minority
class data by generating neighbors from real minority exam-
ples [33]. SMOTE improves the classification performance
for a minority class because it creates a larger and more
general decision region [33].

2) ENSEMBLE METHODS
Ensemblemethods have also been combinedwith preprocess-
ing algorithms [34]–[36] to address imbalanced classification
problem. This study chooses UnderBagging and SMOTE-
Boost to represent this category of techniques. UnderBag-
ging [34] randomly undersamples the majority data in each
Bagging iteration and keep all minority class instances
in every iteration. SMOTEBoost [35] introduces synthetic
minority class instances using SMOTE algorithm. Since new
instances are created, new weights must be assigned, which
are proportional to the total number of instances in the
new dataset. The weights of the instances from the original
data-set are normalized to form a distribution with the new
instances.

3) COST-SENSITIVE LEARNING
In real-life imbalanced classification problems, misclassi-
fying data instances from different classes have different
costs. Most likely, misclassification cost of the minority class
is higher than the majority class. For example, in medical
diagnosis, the cost of having a disease undetected is much
higher than the cost of having a false alarm. Based on this
observation, cost-sensitive methods deal with the class imbal-
ance problem by assigning different costs to different types of
misclassifications [37], [38].

4) SUMMARY AND COMMENTS
Many studies have been conducted to compare imbal-
anced learning techniques. VanHulse et al. [32] introduced
a comprehensive experiment with eight sampling meth-
ods. It showed that random sampling approach performs
better than intelligent sampling approach like SMOTE.
García et al. [39] surveyed the influence of imbalance ratio
for classifier results on several resampling methods. Exper-
iments showed that oversampling consistently outperforms

undersampling when data sets are strongly imbalanced.
Khoshgoftaar et al. [40] compared bagging with boost-
ing based on imbalanced data and noisy. The experiments
showed that bagging generally outperform boosting in noisy
data environments. Galar et al. [41] established an empir-
ical comparison with a wide range of ensembles. Their
main conclusion is that SMOTEbagging, RUSBoost, and
UnderBagging have the best AUC results. López et al. [28]
carried out an experimental analysis to contrast sampling,
cost-sensitive learning and ensemble techniques. The results
show the dominance of ensemble approaches UnderBag-
ging and SMOTEBagging as weak classifiers are C4.5 and
K-NN while the best results are acquired by SMOTE and
cost-sensitive learning when SVM is used.

In financial risk prediction, some studies have consid-
ered the effect of the imbalanced data on classification
results [5], [6], [42]–[45]. Li and Sun [6] used an over-
sampling method to balance the training dataset, and showed
that the constructed model based on the corrected balanced
training data set significantly outperformed the model trained
on the original imbalanced data set. Crone and Finlay [42]
applied both over-sampling and under-sampling methods to
balance the original imbalanced credit datasets. It showed
that over-sampling significantly increases the accuracy rel-
ative to under-sampling across all algorithms. Besides,
Brown andMues [5] implemented experimental comparisons
with several techniques based on imbalanced credit scoring
data sets. The results have shown that random forest and
gradient boosting classifiers have good performance in a
credit scoring context with noticeable class imbalances.

C. EVALUATION MEASURES
The evaluation criteria is a key factor in assessing a
classifiers’ performance. The performance of a binary clas-
sification algorithm can be evaluated using the information
provided by a confusion matrix shown in Table 1, which
summarizes correctly and incorrectly recognized examples of
each class.

Traditionally, frequently used performance metrics in eval-
uating classifiers are accuracy, recall, F-measure, G-mean,
and Area under the ROC Curve (AUC). The following
paragraphs describe these performance metrics and their
components.

(1)Overall accuracy (ACC): Accuracy is the percentage of
correctly classified instances. ACC = TP+TN

TP+FN+FP+TN .
ACC is not effective in evaluating imbalanced classifiers

because it is sensitive to data distributions [46].
(2) True positive rate (recall): TPrate = TP

TP+FN is the
percentage of positive instances correctly classified.

(3) True negative rate:TNrate = TN
FP+TN is the percentage

of negative instances correctly classified.
(4) False positive rate: FPrate = FP

FP+TN is the percentage
of negative instances misclassified.

(5) False negative rate: FNrate = FN
TP+FN is the percentage

of positive instances misclassified.
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(6) F-measure: It is the harmonic mean of precision and
recall, F − measure = 2precision×recall

precision+recall .
(7) G-mean: is the geometric mean of the true rates, which

can be defined as: G− mean =
√

TP
TP+FN ×

TN
TN+FP .

(8) AUC: The Area under the ROC (Receiver Operating
Characteristic) Curve (AUC) shows the tradeoff between TP
rate and FP rate and measures the ability of a classifier to
correctly predict positive instances [46]. Although AUC is a
powerful metric and provides an informative evaluation, it is
overly optimistic when the data is highly imbalanced [47].
The reason is that even a large change of the number of false
positives in highly skewed data sets will not greatly affect the
FP rate used in AUC.

As the number of imbalanced learning approaches avail-
able increases, how to select an effective one for a given
task becomes an important yet difficult issue. The traditional
practice of choosing a single measure to evaluate imbal-
anced classification algorithms is not sufficient and several
studies [29], [30] have proved that the choice of evaluation
measures can have a substantial effect on the conclusions.
For instance, the experiments conducted by Raeder et al. [30]
showed that Naive Bayes was ranked as the best classifier by
the area under the ROC curve (AUC) and the worst classifier
by Brier score on the same data sets.

III. MCDM METHOD
Multiple criteria decision making (MCDM), which evalu-
ates alternatives by considering two or more criteria, has
made remarkable progress during the past 40 years and many
approaches have been developed to solve MCDM problems,
such as goal programming [48], AHP [49], TOPSIS [50],
VIKOR [51], DEA [52], PROMETHEE [53] and ELECTRE-
TRI [54]. Since MCDM is used to rank discrete alternative
problems in this study, any approach developed for multiple
criteria discrete alternative problems can be used. We choose
Technique for order preference by similarity to ideal solution
(TOPSIS), which is a simple andwidely usedmultiple criteria
decision method, for the experimental study.

A. TECHNIQUE FOR ORDER PREFERENCE BY
SIMILARITY TO IDEAL SOLUTION (TOPSIS)
TOPSIS finds the best alternatives by minimizing the dis-
tance to the idea solution and maximizing the distance to the
negative-ideal solution [55]. The TOPSIS procedure used in
this paper is summarized as follows [56]:
Step 1: Calculate the normalized decision matrix. The

normalized value rij is calculated as:

rij = xij

/√
n∑
i=1

x2ij
, i = 1, · · · , n; j = 1, · · · ,m. (1)

where n and m denote the number of alternatives and the
number of criteria, respectively. The performance value of
alternative Ai on the criterion Cj is represented by xij.
Step 2: Calculate the weighted normalized decision

matrix according to obtaining the criterion weights using

entropy method. The weighted normalized value vij is
calculated as:

vij = ωjrij, i = 1, · · · , n; j = 1, · · · ,m. (2)

where ωj is the weight of the jth criterion, and
m∑
j=1
ωj = 1.

Step 3: Find the ideal alternative solution A+, which is
calculated as follows:

A+=
{
v+1 , · · · , v

+
m
}
=

{(
max
i
vij
∣∣∣j ∈ I ′) ,(min

i
vij
∣∣∣j ∈ I ′′ )} .

(3)

where I
′

indicates benefit criteria and I
′′

indicates cost crite-
ria. For the evaluation of classification algorithms, G-mean,
F-measure, AUC are benefit criteria to be maximized, while
FP rate, FN rate, and time are cost criterion to be minimized.
Step 4: Find the anti-ideal alternative solution A−, which

is calculated as follows:

A−=
{
v−1 , · · · , v

−
m
}
=

{(
min
i
vij
∣∣∣j ∈ I ′) ,(max

i
vij
∣∣∣j ∈ I ′′ )} .

(4)

Step 5: Calculate the degree of separation using the n dimen-
sional Euclidean distance. The distance of each alternative
from the ideal solution is calculated as follows:

D+i =

√√√√ m∑
j=1

(
vij − v

+

j

)2
, i = 1, · · · , n. (5)

The distance of each alternative from the anti-ideal solution
is calculated as follows:

D−i =

√√√√ m∑
j=1

(
vij − v

−

j

)2
, i = 1, · · · , n. (6)

Step 6: Calculate relative approach degree as follows:

R+i =
D−i
/(
D−i + D

+

i

)
, i = 1, · · · , n. (7)

Step 7:Rank alternatives bymaximizing the relative approach
degree R+i .

B. ENTROPY METHOD –DETERMINING
CRITERIA WEIGHTS
Theweights of criteria play an important role inMCDMmod-
els and have crucial impact on the final ranking of alterna-
tives. Various approaches have been developed to determine
criteria weights [57]–[60]. The information entropy [61] is
a measure of the average unpredictability of a random vari-
able. The advantage of the entropy-based weights computing
method is that it calculates the criteria weights from the given
evaluating matrix and requires no input from the decision
maker. This method has been used to assign criterion weights
in some literature [62], [63].

In the experimental study, the criteria weights are estimated
using the following procedure. Let X be the set of evaluating
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objects, Y be the set of evaluating index. The standardization
of evaluating matrix is presented as:

D =

A1
A2
...

Ai
...

Am



x11 x12 · · · x1i · · · x1n
x21 x22 · · · x2i · · · x2n
...

...
...

...
...

...

xi1 xi2 · · · xii · · · xin
...

... · · ·
...

...
...

xm1 xm2 · · · xmi · · · xmn


. (8)

where Ai is the ith alternative and xij is the representing value
of the ith alternative in relation to the jth criterion.
Step 1: Calculate the normalized decision matrix R

R =
[
rij
]
n×m , i = 1, · · · , n; j = 1, · · · ,m. (9)

The normalized value rij is calculated for the benefit criteria
as follows

rij =
(

max xij − xij
max xij −min xij

)
. (10)

Step 2: Calculate information entropy value. The entropy of
each index j is defined as follows

Ej = −k
n∑
i=1

fij lnfij, j = 1, · · · ,m. (11)

Where value offijis defined as fij = rij
/

n∑
i=1

rij, k =
1/
ln (n),

which guarantee 0 ≤ Ej ≤ 1 and suppose when fij =
0, fij ln fij = 0.
Step 3: Calculate difference degree. The difference degree

of each index j can be calculated as follows:

Gj = 1− Ej, j = 1, 2, · · · ,m. (12)

Step 4: Calculate index weigh ω = (ω1, ω2, · · · , ωm)
T

ωj =
Gj

/
n∑
j=1

Gj, j = 1, 2, · · · ,m. (13)

Since the lower value of entropy indicates the higher diversi-
fication and more information of the criterion, the weight of
the criterion would be higher.

IV. EXPERIMENTAL STUDY
An experimental study is designed to evaluate the effective-
ness of the proposed approach. Utilizing 7 imbalanced binary
data sets representing credit approval risk and bankruptcy risk
from the UCI Machine Learning repository [64], the experi-
ment compares the performances of three groups of imbal-
anced classification approaches. Four base classifiers have
been selected from commonly used classification techniques
in financial risk prediction [52]: a decision tree C4.5 [65],
SVM [66], LR [67] and multilayer perceptron (MLP) [68].
The three groups of imbalanced techniques (resampling tech-
niques (RUS and SMOTE), cost sensitive, and ensembles
(bagging and boosting)) are combined with the four base
classifiers.

The experiment was carried out according to the following
process:
Input: 7 binary financial imbalanced classification data

sets
Output: Rankings of 20 classifiers
Step 1: Prepare target imbalanced data sets.
Step 2: Setting cost-matrix C (+,−) = IR, C (−,+) = 1

and then carrying out cost-sensitive classification algorithms
on 10-fold cross-validation using WEKA 3.7 [69].
Step 3: Executing SMOTE (k = 5) [33] and RUS bymeans

of WEKA 3.7 to obtain balanced data set.
Step 4: Carrying out SMOTE and RUS-based ensemble

algorithms on 10-fold cross-validation of the obtained bal-
anced data set by means of WEKA 3.7.
Step 5: Determine the weights of six evaluation criteria

(G-mean, F-measure, AUC, FP rate, FN rate, and time) by
means of entropy method following the procedure described
in Section 3.2 using MATLAB- R2012b.
Step 6: Evaluate classification approaches based on six

evaluation criteria (G-mean, F-measure, AUC, FP rate,
FN rate, and time) using TOPSIS, which is implemented
using MATLAB R2012b to generate a ranking of all the
classification approaches.
END

A. IMBALANCED DATA SETS
This study chose 7 highly imbalanced financial risk-related
binary data sets from the UCI Machine Learning repository.
Table 2 summarizes the data name, number of features, num-
ber of instances, percentage of positive (bankrupt or default)
and negative (normal) instances, and class imbalance ratios
(IR), which is the ratio of the number of instances of the
majority class and the minority class.

B. EXPERIMENTAL SETUP
Four classification algorithms: LR, SVM, MLP, and C4.5
are selected as the base classifiers. All these four classi-
fiers have been implemented in the Weka learning environ-
ment [69] using the default parameters. The Cost-Sensitive
Classifier from the Weka environment [69] was utilized to
provide cost-sensitive versions of the four basic classifiers.
SMOTE-Boost and Under-Bagging are representatives of
ensemble techniques.

The experimental study was conducted using the 10-fold
cross validation strategy. Each data set was divided into ten
folds and each fold has similar number of instances. Then for
each fold, a learning algorithm was trained on the remaining
nine folds and then tested on the current fold. To obtain stable
and reliable results, the 10-fold cross-validation strategy was
repeated 10 times and each time the ordering of instances was
shuffled.

C. RESULTS AND DISCUSSION
1) RESULTS
Table 3 summarizes the average results of all 20 algorithms
on the six criteria. The mean value across all data sets
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generated by each algorithm on each metric is used to rep-
resent the performance of that algorithm. We can observe
that no algorithm achieves the best performances across all
criteria.

The weights of the six criteria used in TOPSIS is summa-
rized in Table 4 based on the entropy approach. Shown in
Table 4, the most important performance measures are AUC,
F-measure, and FN rate. Finally, Table 5 reports the rankings
of classification algorithms generated by TOPSIS method
using the average classification results on the 7 imbalanced
data sets.

Furthermore, some observations are summarized as
follows:

1) SMOTE, as a single or hybrid imbalanced learn-
ing approach, outperforms any other groups of algorithms,
including cost sensitive classifiers, resampling techniques
(RUS), and hybrid approaches (Under-Bagging). SMOTE-
BOOST-classifier and SMOTE-classifier are the top two
ranked groups of algorithms for financial imbalanced
classification.

2) SMOTEBoost-C4.5, SMOTE- C4.5, and SMOTE-MLP
are ranked as the top three classifiers based on their perfor-
mances on the six criteria. The results are in concordancewith
the studies done in [28], [70].

3) The resampling technique RUS is outperformed by
SMOTE, which is in concordance with the study done
in [28], [39]. All the four SMOTE-classifiers rank higher
than the RUS-classifiers, which may due to the removal of
significant samples during the learning process.

4) As a group, the CS-classifiers ranked lower than the
RUS-classifiers, SMOTE-classifiers and hybrid groups of
algorithms.

2) COMPARATIVE ANALYSIS AND DISCUSSION
In this section, we draw a comparison with previous
study [71], which proposed an accurate multi-criteria
decision making methodology based on four evaluation cri-
terion (Wgt.Avg.F-score, CPUTimeTesting, CPUTimeTrain-
ing, and Consistency measures) to empirically evaluate and
rank classifiers.

The basic ideas of the two articles are the similar.
While, Ref [71] cannot evaluate imbalanced classifiers in
financial risk prediction very well because the evaluation
criteria are not comprehensive. There is only one evalu-
ation index: F-score for the accuracy of characterization
in [71]. For example, consider a credit data set where
only 10 companies are bankruptcy and 100 companies are
non-bankrupt; suppose the confusion matrix for two classi-
fiers are shown in Tables 6 and 7 , respectively. Based on
Tables 6 and 7, F-score and FN rate of two classifiers in
given data set are shown in Table 8. According to evalua-
tion criterion F-score [71], we conclude that classifier 2 is
superior to classifier 1. However, in assessing the perfor-
mance of the models, we considered FN rate as more impor-
tant, because the economic cost of classifying a bankruptcy
company as non-bankrupt is higher than that of the

TABLE 1. Confusion matrix for a two-class problem.

reverse classification. Whereas the classifier 1 had a 10% FN
rate, the classifier 2 indicated a 30% FN rate as inferred from
Table 8. This is strong evidence that the only one evaluation
index: F-score for the accuracy of characterization in [71] are
insufficient to evaluate the imbalanced classification prob-
lem about bankruptcy classification. The proposed MCDM
method based on six key criteria (G-mean, F-measure, AUC,
FP rate, FN rate, and time) can well evaluate the problem of
unbalanced classification in financial risk prediction.

D. STATISTICAL SIGNIFICANCE TESTS
In general, the non-parametric tests should be preferred over
the parametric ones because they do not assume normal dis-
tributions and are independent for any evaluation measure.

To verify the significance of the experimental results
obtained by this study and based on the recommendations of
previous research [72]–[74], Wilcoxon test [75] is employed
in this paper. To save the space of this paper, we only take the
process of Wilcoxon test for the top five algorithms in terms
of AUC, F-measure, and FN rate, respectively. For simplic-
ity, the top five algorithms (SMOTEBoost-C4.5, SMOTE-
C4.5, SMOT-MLP, SMOT-LR, SMOTEBoost-LR) derived
by TOPSIS method are denoted by 1-5, respectively. The
Wilcoxon test results are shown in Table 9. It can be seen
from Table 9 that, in terms of AUC, significant differences
are found in cases of 1 vs. 3, 1 vs. 4, 1 vs. 5, and 2 vs. 5 (with
α = 0.01). Significant difference can also be found in the
case of 2 vs. 4, 3 vs. 4, and 3 vs. 5 (with α = 0.05). But,
significant difference cannot be found in the case of 1 vs. 2,
2 vs. 3, 4 vs. 5. In terms of F-measure, significant differences
are found in cases of 1 vs. 3, 1 vs. 4, 1 vs. 5, 2 vs. 3, 2 vs. 4,
and 2 vs. 5 (with α = 0.01), whereas significant difference
cannot be found in the cases of 1vs. 2, 3 vs. 4, 3 vs. 5, and
4 vs. 5. In terms of FN rate, significant differences are found
in cases of 1 vs. 3, 1 vs. 4, 1 vs. 5, 2 vs. 3, 2 vs. 4, and 2 vs.
5 (with α = 0.01), significant difference can also be found
in the case of 1 vs. 2 (with α = 0.05). Whereas significant
difference cannot be found in the cases of 3 vs. 4, 3 vs. 5, and
4 vs. 5.

Through the above analysis, we can draw the conclusions
that significant difference cannot be found based on a single
evaluation criteria for ranking algorithms (1 vs. 2, 2 vs. 3,
3 vs. 4, and 4 vs. 5). In this case, the proposed MCDM-based
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TABLE 2. Description of imbalanced data sets.

TABLE 3. The average classification results based on 7 financial imbalanced data sets.

evaluation approach, which integrates performance values
from multiple evaluation criteria, provides a new perspective.

V. CONCLUSIONS
Default and bankruptcy are rare events compared to normal
accounts and companies functioning well, which indicate that
financial risk data are imbalanced by nature. Many tech-
niques have been developed to deal with the problem of
learning from imbalanced data sets How to select an effective
and appropriate algorithm for financial risk classification is
an importance task. The goal of this paper is to eval-
uate imbalanced classifiers in financial risk prediction by
considering multiple performance measures simultaneously
using a multi-criteria decision making (MCDM) method.

TABLE 4. The criteria weights by means of entropy method.

To ensure the objectiveness of the final ranking of classifiers,
the entropy-based method was used to calculate the criteria
weights from the given evaluating matrix and requires no
input from the decision maker.

An experiment was designed to evaluate the proposed
approach using 7 financial imbalanced binary data sets
from the UCI Machine Learning repository. The experi-
ment makes use of four standard classifiers (i.e., LR, SVM,
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TABLE 5. Ranking result for algorithms using TOPSIS.

TABLE 6. Confusion matrix for classifier 1.

TABLE 7. Confusion matrix for classifier 2.

MLP and C4.5) combined with three groups of imbal-
anced techniques, namely cost-sensitive learning, resampling
(RUS and SMOTE), and hybrid approaches. Six frequently

TABLE 8. F-score and FN rate for classifiers 1 and 2.

TABLE 9. Wilcoxon tests of the top five algorithms in terms of AUC,
F-measure, and FN rate.

used performance metrics for imbalanced learning: G-mean,
F-measure, AUC, FP rate, FN rate, and time were used in
the experiment. TOPSIS, a well-known MCDMmethod, was
applied to rank the imbalanced learning approaches. The final
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ranking results indicate that SMOTE-based ensemble classi-
fiers outperform other groups of imbalanced learning algo-
rithms, SMOTEBoost-C4.5, SMOTE-C4.5, and SMOT-MLP
were ranked as the top three classifiers based on their perfor-
mances on the six criteria.

From the above discussion, the proposed MCDM-based
evaluation approach for imbalanced learning approaches can
make up the shortfall of single criteria evaluation. Hence, it is
interesting topic to establish an assembled algorithm based
on MCDM method to classify the financial imbalanced data
sets in the future. Besides, as future work, the performance
of the classifiers for imbalanced data sets in regard to class
imbalance ratios (IR) is another research, which may provide
a useful guide to select a suitable classification method in
financial risk prediction.
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