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ABSTRACT Indoor image features extraction is a fundamental problem in multiple fields such as image
processing, pattern recognition, robotics, and so on. Nevertheless, most of the existing feature extraction
methods, which extract features based on pixels, color, shape/object parts or objects on images, suffer
from limited capabilities in describing semantic information (e.g., object association). These techniques,
therefore, involve undesired classification performance. To tackle this issue, we propose the notion of high-
level semantic features and design four steps to extract them. Specifically, we first construct the objects
pattern dictionary through extracting raw objects in the images, and then retrieve and extract semantic
objects from the objects pattern dictionary. We finally extract our high-level semantic features based on the
calculated probability and delta parameter. The experiments on three publicly available datasets (MIT-67,
Scene15, and NYU V1) show that our feature extraction approach outperforms the state-of-the-art feature
extraction methods for indoor image classification, given a lower dimension of our features than those
methods.

INDEX TERMS Image classification, feature extraction, image representation, objects pattern dictionary,
semantic objects.

I. INTRODUCTION
Image recognition and classification have remained an active
research field. It has a wide range of applications [1] such
as robotics, object recognition, object localization, video
surveillance, and so on. To perform the task of image
recognition and classification, we usually need to represent
each image by a set of features. Generally, there are three
categories of image features: low-level, middle-level, and
high-level features.

Low-level features [2]–[10] are typically extracted using
pixels, colour intensity or texture of the image. These features
lack the spatial information on the image, thereby deteriorat-
ing the classification accuracy, especially for scene images
(indoor/outdoor images). To improve the classification per-
formance of low-level features, middle-level features were
proposed. Middle-level features [11]–[14] contain spatial
information that yields features of certain parts or shapes
on the image. Indoor images often involve one or multiple
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objects which can intuitively assist in recognizing the cate-
gories of images. Thus, the object-level information for the
objects on images could enhance the classification accuracy.
The middle-level features are limited in depicting objects on
images while high-level features [15]–[17] including objects
can do so. High-level features are considered as the prominent
features for the images, including objects on indoor/outdoor
images [15]–[17]. In other words, high-level features can
represent an image with the help of object details. Despite
that high-level features are more powerful than middle-
/low-level features, they still have limited performance for
indoor images which often involve multiple objects with
associations.

Domain-specific features are the specific types of features
that are designed at the specific domain. In our work, the fea-
tures representing semantic objects and their associations
are domain-specific features. Domain-specific features are
important to solve the specific classification problem. As an
example, most of the low-level features, which are based on
color or intensity as their features, have poor performance for
indoor images involving multiple objects [2].
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FIGURE 1. Two library images that look dissimilar.

Indoor images are challenging because they usually
include associated objects. For instance, two indoor cate-
gories library and kitchen may contain similar table and desk
objects, but how can we differentiate the images? Similarly,
we can hardly find the similarity using traditional features
such as [2] if two images of the library category have different
structures and the same types of objects (e.g., Fig. 1). As a
result, it is difficult to classify indoor images. In addition,
recent existing methods such as [16], [18] hardly solve the
inter-class similarity and intra-class dissimilarity issues The
recent work called objectness [17] considered objects and
their associations to some extent for indoor images. However,
their research yielded high dimensional features which create
a burden in image classification.

Motivated by the above issues, we introduce the notion of
semantic features that are calculated based on the semantic
objects. General syntactic features may not solve these issues
because the semantic meaning varies in different scenarios.
The context, rather than objects, can define their separability
in such cases. For example, the presence of books and tables
in two different scenarios like kitchen and library would
make machine ‘‘confused’’ in classification. While domain
or context-based objects (i.e., semantic) can help enhance
classification in such cases. Semantic objects are the repre-
sentative objects which are typically extracted from the object
pattern dictionary of the corresponding category [17]. These
objects are retrieved by mapping raw object tags of the input
images with the co-occurrence pattern of raw object tags in
the corresponding object pattern dictionary. Note that raw
object tags are the deep tags which are extracted from the
ImageNet pre-trained deep learning model. When retrieving
the semantic objects for the raw objects through pattern
dictionary, we can detect their co-occurrence patterns in the
corresponding category with the help of rules we designed.
Suppose we extract the semantic objects like books and chairs
from the image, the co-occurrence of books and chairs will be
higher in the library category than other categories. Similarly,
the co-occurrence pattern of microwave and bread is higher in
the kitchen than other categories. The association information
of objects can help extract meaningful features (i.e., seman-
tic) on images. Also, the introduced semantic features can
also alleviate inter-/intra-class (dis)similarity issues, because
we can always extract meaningful information for whatever
types of global layouts (similar or dissimilar).

To extract semantic features, we propose two main steps
in our proposed method. We first design the object pattern

dictionaries for each category and then extract the semantic
objects of each image according to their probabilities in the
category. The rules are defined to exploit the co-occurrence
patterns for the corresponding dictionaries. After the extrac-
tion of semantic objects with their probabilities in the corre-
sponding category, we calculate semantic features by using
the probability and delta parameters in various categories.
This is based on the motivation that the importance of objects
differs in different categories. For example, the importance
of book and desk is higher in the library than other categories
such as restaurant.

The main contributions of this paper are summarized as
follows.

1) We design the object pattern dictionary which encodes
the associations of indoor raw objects for each category.
With the help of this dictionary, the semantic objects of
the candidate objects for each image are calculated by
mapping the candidate objects of the image with the
dictionary. Four propositions are proposed to handle
this procedure.

2) We calculate the high-level semantic features with the
help of semantic objects. The computed features usu-
ally have a low dimensional size. We perform a fusion
of the probability and delta parameters to explore the
prominent high-level semantic features.

3) The introduced high-level semantic features are tested
on three different publicly available datasets (MIT-67
[19], Scene15 [20], and NYU V1 [21]) for the task
of classification. Experimental results show that our
features are effective and outperform existing features
in terms of classification accuracy.

II. RELATED WORK
Low-level features are extracted based on the pixels
and color on the images. Some popular low-level fea-
tures are Scale-Invariant Feature Transform (SIFT) [2],
Generalized Search Trees (GIST) [3], [4], Histogram of Gra-
dient (HOG) [5], CENsus TRansform hISTogram (CEN-
TRIST) [6], multi-channel (mCENTRIST) [7] and OTC [9].
Since these features [2]–[7], [9], [10] exploit the local infor-
mation on the image, they provide neither the global struc-
tural information nor the object information. They may not
work properly if the image feature extraction needs global
structural details of the image. As a result, the classification
accuracy of those features would also be low. The classifica-
tion accuracy can be improved, especially for indoor/outdoor
images, if we can represent an image in a different way such
as edges, shapes, and parts [22]. This leads to middle-level
features.

Middle-level features are extracted from the intermedi-
ate layers of the deep learning model. They can also be
extracted by the traditional methods using parts or regions
[11]–[14] on the image. Recent extraction methods of deep
learning based middle-level features are bilinear [23], Deep
Un-structured Convolutional Activations (DUCA) [24], Bag
of Spatial Parts (BoSP) [18], Locally Supervised Deep
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Hybrid Model (LS-DHM) [25] and so on. In the bilinear
approach, the middle-level features from two deep learning
models were fused with the help of the outer product to
extract the final features of the image. These features were
used for the classification. Similarly, in DUCA, the features
of the 7th layer of the deep learning model were used as the
middle-level features which showed that the features have
higher discriminability in the classification than the low-level
features. The BoSP model considered the features of pool-
ing layers (4th and 5th layers) as the middle-level features.
Last but not the least, another method called LS-DHM was
proposed, which exploited a hybrid model for the extrac-
tion of the middle-level features with the help of 4th layer
of deep learning model in a 7-layers AlexNet [26]. These
features are extracted based on the lines, segments, shapes,
and parts of the objects in the image. Thus, the classification
accuracy using these features is higher than the low-level fea-
tures because they are extracted at a higher level beyond the
pixel and textural level. These features also provide certain
semantic information of the objects in the image. Different
hierarchical layers provide different types of features in deep
learning. We obtain more semantic information related to
objects of the image while extracting features from the inter-
mediate layers [18], [25].

Spatial units, extracted from their intermediate layers, are
fundamental in feature maps of deep learning models. For
instance, if we have a feature map of 7*7*512 size extracted
from the intermediate layers, the number of spatial units is
49, each with 512-D feature size. Although the intermediate
layers provide more semantic information with the help of
their spatial units on different feature maps, these features can
hardly obtain full semantic information of the objects in the
image. This demands the use of features in a higher level (i.e.,
high-level features).

We retrieve the high-level features from the top-layers
(probability layers and FC-layers) of the deep learning
model. Similarly, these features can also be extracted based
on the traditional methods like Object Bank [8], [15] in which
the features are extracted with the aid of object properties.
Regarding indoor/outdoor images, objects-based features are
very important because of the presence of objects and their
associations in the image. It is very difficult to represent these
associations with the help of low-level and middle-level fea-
tures. Since high-level features are based on objects, we intro-
duce prominent features related to the objects (i.e., high-level
semantic features). Recent high-level features are GMS2F
[16] and Objectness [17].

III. PROPOSED METHOD
The proposed method comprises the following steps, namely:
A) objects pattern dictionary construction, B) seman-
tic objects extraction, C) probability and delta parameter
calculation, and D) extraction of our high-level semantic
features. For image classification, the high-level semantic
features of the images are normalized in the attribute level
before feeding them into the Support VectorMachine (SVM).

Sections III-A, III-B, and III-C are the processing steps for the
extraction of semantic objects and Section III-D is the feature
extraction step.

A. OBJECTS PATTERN DICTIONARY
We design a domain-specific dictionary (i.e., objects pattern
dictionary) which helps to explore the pattern of the objects
occurring in the indoor images. Quite different from the Nat-
ural Language Processing (NLP) dictionary [27], [28] and the
sparse coding dictionary [29], our dictionary demonstrates
the relationship of indoor objects in the indoor scenes.. The
objects pattern dictionary is to extract the semantically related
objects on the image under the corresponding category of
indoor scene images. To construct the objects pattern dictio-
nary for each category, we select a fixed number of images
per category and perform two steps: image slicing, and raw
objects extraction and dictionary building.

1) IMAGE SLICING
We slice each image into different sub-images to focus on
the objects information. With the assistance of different sub-
images, different objects and their frequencies are recorded.
The occurrence of these frequencies of objects in the image
help to reveal the semantic relationship of objects. Let Ik be
the k th image. Then, the sub-images of the k th image are rep-
resented by {Skl }

n
l=1, where n is the number of sub-images per

image. The size of the dictionary depends on the number of
sub-images per category. We construct three different sizes of
the dictionary to evaluate the robustness. For MIT-67 dataset,
we randomly select 100 images per category and slice each
into different numbers of sub-images, such as 9, 16, and 25.
The number of sub-images per image determines the number
of objects in the dictionary (i.e., dictionary size). The 9,
16 and 25 sub-images per image will yield the dictionary
sizes of 9000, 16000 and 25000, respectively. We re-scale
the original images into a suitable size before slicing. Fig. 2
demonstrates the slicing of the an image into 9 sub-images to
extract the raw objects.

2) RAW OBJECTS EXTRACTION AND
DICTIONARY BUILDING
After slicing every image into sub-images, each sub-image
will be re-scaled to feed the pre-trained deep learning model,
Inception V3 [30] for the extraction of the names of the

FIGURE 2. Slicing of the image.
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involved objects. This pre-trained model was trained with the
ImageNet [31] dataset that contains 1000 object categories.
We choose Inception V3 because of three reasons: a) it has
a deeper architecture than VGG-Net and AlexNet and has
the capability to produce more semantic information on the
image through its deeper layers, thereby helping to extract
the more accurate names of objects. b) The computational
complexity of this model is found to be lower than VGG-Net
and other state-of-the-art deep architectures [30]. c) The error
rate of this model is lower than the state-of-the-art deep learn-
ing models such as GoogleNet, VGG-Net, and Inception-
V2 [30]. The output of the multinomial distribution of deep
learning model is shown in (1).

P(y = c|z) =
ezk∑
j e
zj

, (1)

where z is themultinomial probabilitywhich is extracted from
the Softmax layer and c is one among 1000 categories for the
ImageNet based pre-trained deep learning models. Among
the 1000 objects, we mainly consider the top ten raw objects
with high probability scores in this work. We observe the
number of objects in indoor images lies between 5 and 10.
So, we prefer the top 10 raw objects. The rest of the objects
are ignored as they are less related to the images. Selecting
the ‘‘best’’ objects from the image helps to exploit the distin-
guishable features. Fig. 3 shows the extraction of the top ten
raw objects of the sub-images based on the pre-trained Incep-
tion V3 model. We just use the symbolic diagram to show
Inception V3 model in Fig. 3 for the illustration, although it
has deeper architecture. After the extraction of raw objects,
our objective is to design the semantic dictionary, which is
named objects pattern dictionary.

To design this dictionary, we construct a raw dictionary
first to list the raw objects of the indoor images using con-
catenation operation. Algorithm 1 shows how to design a raw
dictionary using the objects of the sub-images extracted by
the operation in Fig. 3. We denote the number of categories
bymth, the number of images by nth and the number of objects
by pth . Similarly, I ikoj

represents the object oj for the ith

category on the k th image, and Di is the raw dictionary of ith

category. I ikoj
is extracted using sub-images {Skl }

n
l=1 of the k

th

image and its output order for each category. Here, the raw
dictionary is defined as the list of ordered objects collected
from some indoor images of the corresponding category.

FIGURE 3. Block diagram for the extraction of raw objects of the image.

Algorithm 1 Raw Dictionary

Require: Set of objects for each category I ikoj
Ensure: Raw dictionary for each category Di
1: for i = 1 to m
2: for j = 1 to n
3: for k = 1 to p
4: Di←

⋃
i,j,k I

i
koj

5: end for
6: end for
7: end for

Algorithm 2 Objects Pattern Dictionary
Require: Raw dictionary Di
Ensure: Objects pattern dictionary Ci
1: for i = 1 to m
2: for k = 1 to n
3: Occurrence of objects i.e., [ok , ok+1] and [ok−1, ok ]
4: end for
5: end for
6: for i = 1 to m
7: for j = i to n
8: Ci←Sort Descending order.
9: end for
10: end for

The raw dictionary is designed according to the objects’
output order of the Inception V3 model. The objects are
concatenated exactly in the same order as obtained from
Inception V3 model. This is helpful to show the relationship
of the objects in the category.

While assembling those objects, the order shows certain
associations among objects in the image. Furthermore, the list
contains nine thousand objects in total if we consider one
hundred images per category. The size of the dictionary is
determined with the number of images available for different
datasets. For instance,MIT-67 and Scene15 contain sufficient
images to make dictionary using 100 images per category.
It does not apply to NYU V1 dataset as some categories in
NYU V1 dataset contain less than 100 images. After the con-
struction of the raw dictionary, we refine it further to design
the objects pattern dictionary. The objects pattern dictionary
is based on the semantic relatedness of the objects. To explore
the semantic relatedness of the objects, we investigate the
object co-occurrence pattern property for those images.

Object co-occurrence is the main component of the objects
pattern dictionary. To detect the co-occurrence of the objects
in the image, we study the adjacent object pairs and their
co-occurrence in the image of the category. In order to solve
the co-occurrence problem, we design Algorithm 2 to extract
the frequency (i.e., the degree of relationship) of the adjacent
pairs of objects. Here, Di and Ci represent the raw dictio-
nary and the objects pattern dictionary for the ith category,
respectively. For each category, the objects pattern dictionary
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is designed based on the objects and orders of the raw dictio-
nary. The objects are selected using forward and backward
directions. Inspired by the 2-gram model [32] in Natural
Language Processing, we utilize the adjacent pair of objects
which co-occur in the image. If they have high-frequency
pairs in the categories, a higher degree of relationship exists
between the objects. Unlike the 2-gram model that considers
only the previous gram, we take the previous and next gram of
the corresponding object as the semantic objects to design the
objects pattern dictionary. For example, if we take an object
oi, then its relationship can be shown with lower indexed
object oi−1 and higher indexed object oi+1. The general
structure of the objects pattern dictionary (Ci) which shows
the semantically related objects for the particular category is
shown in (2).

Ci =



{o1, o2} → n1
{o2, o3} → n2
{o4, o5} → n3

.

.

.

{om, on} → nk


, (2)

where n1, n2, n3 . . . nk indicate the frequency of adjacent
pairs obtained from the raw dictionary, Di. For example,
n1 = C{o1, o2} where C is the count of object pair in the
raw dictionary (Di). The semantic relationship of objects
and their occurrence are stored in the key-value pair format.
We will apply our proposed propositions (Section III-B) on
the objects pattern dictionary, which contains the order pat-
tern of objects, to extract the semantic objects for the image.
This domain-specific dictionary is to extract the semantically
related objects for those types of images.

B. SEMANTIC OBJECTS EXTRACTION
After the design of objects pattern dictionary for each cate-
gory, the semantic objects extraction step needs to be con-
ducted for each image under the corresponding category.
In this step, we retrieve the semantic objects from the objects
pattern dictionary of the corresponding candidate objects in
the image. To extract the semantic objects of the image,
we slice every image into different sub-images (such as 9, 16,
and 25) to extract the raw objects. The highly frequent raw
objects of the image from multiple sub-images are selected
as the candidate objects to map the corresponding objects
pattern dictionary.

We propose four propositions to facilitate the extraction of
the semantic objects. Each proposition is stated and proved.

1) PROPOSITION 1
If o1 and o2 are co-occurring in the multiple sub-images Ij,
then they can be used interchangeably.

Proof: If two objects are not co-occurring in the sub-
images, we can say that these objects are unrelated to each
other. For instance, if two objects o1 and o2 appear together,
we say that one’s presence is related to others presence.

Algorithm 3 Semantic Objects Extraction
Require: Objects pattern dictionary Ci.

Candidate objects of the image I ikoj
Ensure: Semantic objectsWCi

koj
1: for i = 1 to n
2: for j = 1 to m
3: WCi

koj
← I ikoj

8Ci
4: end for
5: end for

If these objects are not co-occurring in the sub-image, we say
that they are mutually exclusive (the presence of one object
is not related to other objects presence). This claims that the
co-occurring objects unveil their associations in the image.

2) PROPOSITION 2
If two pairs of objects (o1, o2) and (o1, o3) are co-occurring
in the multiple sub-images Ij, there exists the relationship
between o2 and o3.

Proof: If two objects o1 and o2 are co-occurring in the
sub-images frequently, we can claim that they are correlated
with each other. Similarly, if the objects o1 and o3 are also
co-occurring in the sub-images, then the associations between
them can be claimed. Furthermore, from these two associa-
tions, we see that o1 is correlated with both o2 and o3. Hence,
we can prove that o2 and o3 are related to each other.

3) PROPOSITION 3
If (o1, o2) is co-occurring in the image sub-images and (o1,
o3) and (o2, o4) are also occurring, it can be proved that o3
and o4 are related.

Proof: If two objects are co-occurring in the sub-images,
the occurrence shows the relationship clearly between them
which can be proved from the Proposition 1 that the usage
of one in place of another makes no difference. In the above
objects pair, the first pair shows that o1 is related to o2 and
they can be used interchangeably. Similarly, in the second
pair (o1, o3), o1 and o3 are related. Furthermore, the pair (o2,
o4) also shows that o2 and o4 are also related. In this way,
it can be proved that o2 and o3 are related to each other from
Proposition 2.

4) PROPOSITION 4
If (o1, o2) and (o2, o3) are co-occurring in the image, it shows
the relationship between o1 and o3.

Proof: If (o1, o2) show that the two objects are related
to each other, they can be used interchangeably. It shows the
relationship between these two objects. Similarly, the pair
(o2, o3) shows that there exists a relationship between these
objects in the image. Looking in both pairs, there will be the
occurrences of objects (o1, o2, and o3) in the sub-images,
which proves that o1 and o3 are related to each other.
In Algorithm 3, 8 represents the mapping function of the

selected raw objects with the objects pattern dictionary to
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produce semantic objects of the image. Mathematically, it is
written as 8 : I × C → W . This function applies the
four propositions listed above. The 8 function can be any
proposition we proposed. In the 8 function, I represents
the notation for the image, C represents the objects pattern
dictionary, and W represents the extracted semantic objects.
Similarly, WCi

koj
is the list of semantic objects for the objects

oj of Ik under Ci object pattern dictionary.
For explanation purposes, let the image Ik contain two

candidate objects in I ikoj
such as o1 and o2 which uses objects

pattern dictionary Ci. We search the related objects of o1
in Ci with the aid of the proposed propositions, and extract
the co-occurring pairs. We select highly frequent co-occurred
objects that are related to the candidate objects of the image
under the corresponding category. For instance, let us con-
sider a dictionary fromEq. (2) as an objects pattern dictionary.

W {o1} = {o2, o3}(Proposition 1, and Proposition 4),

W {o2} = {o3}(Proposition 1),

finally,W {o1, o2} = {o3},

where we only select the unique objects that does not belong
to the raw objects of the image. The extracted semantic
objects are stored in WCi

koj
. Here, o3 is the semantic object.

We use a number of candidate objects to extract the corre-
sponding semantic objects in the image.

C. PROBABILITY AND DELTA PARAMETER CALCULATION
After the extraction of semantic objects of the image,
the probabilities and delta parameters of the semantic objects
need to be calculated. The raw dictionary is used to calcu-
late the probabilities. Denote each object by oj and the raw
dictionary by Di.

V =
⋃
i,j

1ij ∗ p(oj|Di) (3)

1ij =
f Dioj

c(okDi )
(4)

p(oj|Di) is the probability of the object (oj) in a different
dictionary (Di). Similarly, f Dioj , c(ok

Di ) and 1ij are the fre-
quency of an object (oj), the total number of objects and
the delta parameter value of the jth object, in the dictionary
(Di) The fusion of the probability and delta parameter is
performed via Eq. (3). The delta parameter is the primary
factor that helps distinguish the images having inter-class
similarities. We design six different types of delta parameters
in our experiment.

1) NORMAL DELTA PARAMETER
This is the normal delta parameter defined in Eq. (4). This is
a normal probability function of the objects belonging to the
category.

2) AVG DELTA PARAMETER
The average delta parameter measures the impact of normal
probability with respect to the total probabilities of all seman-
tic objects. It is shown in the Eq. (5).

1ij =
p(oj|Di)∑
i,j p(oj|Di)

(5)

3) NORMALIZED DELTA PARAMETER
We see the normalized delta parameters in Eq. (6). To make
probability non-zero and divide by zero exception handling,
we add 1 to all the frequency count operation if the dividing
by zero exception occurs.

1ij =
p(oj|Di)
4
√
p(oj|Di)

(6)

4) MULTI-PROBABILITY DELTA PARAMETER
This delta parameter is the result of multiplying the normal
probability value with the frequency of the objects in the cor-
responding category. The multi-probability delta parameter is
defined in Eq. (7), where f (oj) represents the frequency of an
object, oj.

1ij = p(oj|Di) ∗ f (oj) (7)

5) ROOT-BASED DELTA PARAMETER
This type of delta parameter is obtained by taking the square
root of the normal probability. Themain objective of this delta
parameter is to test the efficacy of increased normal proba-
bilities. The square root of probability between 0 and 1 gives
higher values. The root-based delta parameter is shown by the
Eq. (8).

1ij =
√
p(oj|Di) (8)

6) DECIMAL SCALING OR DIVIDE DELTA PARAMETER
In this parameter, the probability score is made smaller than
the original value. The number of decimal values increases
with the help of this parameter. This type of delta parameter
is to study the effect of lower probability scores. To perform
the decimal scaling delta parameter, we use Eq. (9).

1ij =
p(oj|Di)
10k

, k = 0, 1 . . . .n (9)

D. EXTRACTION OF HIGH-LEVEL SEMANTIC FEATURES
The high-level semantic features are extracted by the help
of Eq. (3), which is the product of the probability and delta
parameter. Six different delta parameters (Eq. (4) - Eq. (9))
are tested one by one to choose the best delta parameter in
Section V-F. The resulting features have a higher classifi-
cation accuracy of indoor images involving inter-/intra-class
structural dissimilarities. The extraction of semantic objects
and high-level semantic features extraction flow can be seen
in Fig. 5.
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FIGURE 4. Detailed diagram for the extraction of high-level semantic features and classification by sequential minimal optimization (SMO)
based support vector machine.

IV. ANALYSIS OF PROPOSED METHOD
We use the pre-trained deep learning model to extract the
objects only as of the first step of the research. Our method
takes more time complexity in objects pattern dictionary
construction and semantic objects extraction step. We study
the time complexity of each operation while executing the
proposed method. The time complexity of the raw dictionary
module is approximately quadratic for m categories since
it needs p objects to form the dictionary from n images
of each category. As a result, the complexity is O(nmp).
In the objects pattern dictionary module, we need to find
the adjacent objects occurring together. We need to track
the adjacent objects and sort them. The worst complexity
for dictionary construction is O(n(m − 1)), and for sorting,
the complexity does not exceed O(nm2). The extraction of
semantic objects is the most expensive, where we need to
search the objects pattern dictionary in the backward or for-
ward direction, depending on the situation. If the proposition
is simple like Proposition 1, the complexity is O(nk(m− 1)).
Here, k is the number of candidate objects of the image for
the extraction of semantic objects. We set a lower value of
k , so that the complexity does not go higher. For the worst
case, we should find the semantic objects moving in both
directions using Proposition 2, 3 or 4 and the complexity is
O(nkm2). Similarly, for the delta parameters and probabil-
ity calculation, the complexity is O(sn), where s represents
the extracted semantic objects. It is better to analyze the
performance in terms of the worst cases because sometimes
we need to perform expensive search operations of semantic
objects. The overall time complexity of our approach is not
greater than O(nmp)+O(n(m− 1))+O(nm2)+O(nkm2)+
O(sn). Here, m is higher than other values, s is a constant
equal to 5 and k is also a constant value which can be
adjusted by users. Now the worst complexity of the algorithm
becomes O(m3). The size of objects pattern dictionary m
is the main driving factor of the complexity. For training
and testing using the SVM, the complexity is determined
by the number of categories and dimension of the feature
instances.

FIGURE 5. Block diagram of the proposed model for the extraction of
high-level semantic features. The dictionary in the diagram represents
the raw dictionary for each category. The final features size is a
number of semantic objects times number of categories
on the dataset.

V. EXPERIMENTS AND ANALYSIS
A. DATASETS
We conduct experiments on three popular datasets: MIT-67
[19], Scene15 [20] and NYU V1 [21] datasets. Among these
datasets, the MIT-67 and NYUV1 are indoor scenes datasets,
whereas the Scene15 is a combination of indoor and outdoor
scenes. As suggested in [33], we use the same number of
images for the NYU V1 dataset. We extract the proposed
features and perform classification using the given train/test
split ratio of each dataset.

1) MIT-67
MIT-67 includes 15, 620 images for 67 classes (categories)
in total. The MIT-67, the biggest dataset used in this work,
has been used in many previous methods such as ROI with
GIST [19], MM-Scene [34], Object Bank [15], RBoW [13],
BOP [12], OTC [9], ISPR [11], CNN-MOP [35], DUCA
[24], BoSP [18], Bilinear [23], G-MS2F [16], VSAD [36],
Objectness [17] and so on. In the experiment, we design
10 sets of train/test dataset. For this, we select 100 images
randomly from each category and split them into the 8 : 2
ratio (train/test ratio) to use in the experiment which is the
standard protocol for this dataset. We repeated this tech-
nique 10 times to design 10 sets train/test data for the
experiment.
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2) SCENE15
This dataset includes 15 categories, where some cate-
gories are outdoor. It contains 4, 485 images in total. The
Scene15 dataset has been used in methods like GIST-color
[4], SPM [14], CENTRIST [6], OTC [9], ISPR [11], G-MS2F
[16], DUCA [24], Objectness [17] and so on. This dataset
does not provide pre-defined split of train/test set, however,
it suggests to follow the standard rule to design train/test
splits as previous researchers did.While selecting the training
and testing images for the research, we choose 100 images
randomly for training and remaining images for testing per
category, which is a standard protocol for this dataset.We ran-
domly design 10 sample sets for this dataset in this way for
the research.

3) NYU V1
We choose this dataset instead of NYU V2 dataset, which
is RGBD dataset because our goal is to focus on RGB, not
with the depth. It comprises of 2, 284 images and 7 indoor
categories. The NYU V1 dataset was used in works such as
BoWwith SIFT [21], RGB with LLC [33], RGB-LLC-RPSL
[33] and DUCA [24]. For the experiments, we take 6 : 4 as
the train/test split ratio for each category.We randomly design
10 sample sets for this dataset as well.

B. IMPLEMENTATION DETAILS
Firstly, the sub-images are generated by the image slicer
library of the Python programming language [37]. Each input
image should be in 3-channel (RGB) format and feed into
the pre-trained deep learning models. The images from two
datasets (MIT-67 and NYU V1) are already in 3-channel
format, while the images of Scene15 dataset are in grayscale
format. We use keras [38] to convert grayscale images into
the 3-channel format. Their algorithm repeats three times to
get a 3-channel image for a grayscale image. The objects
are then extracted by the Inception V3 model implemented
on the popular keras [38] library in R [39]. These objects
are processed to get semantic objects. The proposed feature
extraction operations based on semantic objects are imple-
mented using Python.

To evaluate the proposed features for classification,
the SVM based on SMO [40] is used under Weka [41].
We choose SVMbecause it gave a promising result than other
machine learning algorithms on our dataset. We employ a
10-fold cross-validation approach for trainingwith the default
parameter setting of the SVM algorithm available in Weka.
The detailed flow is illustrated in Fig. 4. We also do the
ablation study for three key elements: dictionary size, number
of sub-images and delta parameters.

C. COMPARISON WITH STATE-OF-THE-ART FEATURES
The quantitative comparisons of the proposed features
with previous features are listed in Tables 1, 2 and 3.
Tables 1, 2 and 3 represents the performance on the MIT-67,
Scene15 and NYU V1, respectively. For fair comparisons,

TABLE 1. Comparison of our proposed features with features from the
state-of-the-art approaches on MIT-67.

TABLE 2. Comparison of our proposed features with the features from
state-of-the-art approaches on scene15.

TABLE 3. Comparison of our proposed features with features from the
state-of-the-art approaches on NYU V1.

we utilize the same dataset and use the reported performance
results of the previous approaches. To estimate the classi-
fication accuracy on each dataset, we design 10 samples,
each of which has a train/test split. The average accuracy of
samples on each dataset is used to compare with the state-
of-the-art features. Compared with those existing features,
we obtain noticeably higher classification accuracies on all
datasets used in the research.

While observing in Table 1, we see that our proposed
features yield a substantially higher classification accuracy
on MIT-67. At the very beginning of the research on this
dataset, the GIST [19] approach with the traditional low-level
feature representation by ROI gives only 26.1%. Object
Bank [15], RBoW [13], BOP [12], OTC [9] and ISPR [11]
provided accuracies of 37.6%, 37.9%, 46.1%, 47.3%, and
50.1%, respectively. The features based on traditional com-
puter vision methods do not show promising results. These
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research works focused on the handcrafted technology, have
larger feature dimensions for the representation of the image.
Their features simply rely on the low-level components such
as colors or pixels of the image which may be not suitable
for the images. The classification accuracy surges higher
after adopting CNN-based techniques. The CNN-MOP [35]
approach obtains an accuracy of 68%, which is over twice
the accuracy produced by ROI with GIST. With the help of
middle-level features based on deep features, the accuracy is
improved drastically in classification because of the repre-
sentation using parts of the objects in the image. The features
extracted by DUCA [24] approach outperforms the normal
CNN-MOP approach, which follows the proper step-wise
operations of the feature extraction. This approach yields an
accuracy of 71.8%.

BoSP [18], which again considered middle-level features
with spatial pooling layers, produces an accuracy of 78.21%.
These features have a lower dimensional size than the previ-
ous features. The middle-level features from Bilinear [23],
high-level features G-MS2F [16] and Objectness [17] give
79%, 79.63%, and 86.76%, respectively. This shows the
effectiveness of high-level features on the MIT-67 dataset
based on deep learning models. However, these features still
suffer from a high dimensional cost for image representation.
By contrast, our high-level semantic features enable a lower
feature size while a significantly improved accuracy (94.1%).

Similarly, we see the promising accuracy of our proposed
features on the Scene15 dataset. The accuracies of all fea-
tures are listed in Table 2. The low accuracy is obtained
by the GIST-based low-level features which have a higher
dimension. The features extracted by the traditional methods
such as SPM [14], CENTRIST [6] and OTC [9] yield accura-
cies of 81.4%, 83.9% and 84.4%, respectively. Furthermore,
middle-level features extracted by ISPR [11] show a promis-
ing result in terms of classification accuracy of 85.1% due
to the part based representation of objects in the image. The
accuracy is improved significantly with deep learning based
features which involve hierarchical features of the image. The
middle-level features from DUCA [24] approach provides an
accuracy of 94.5%. The high-level features extracted by G-
MS2F [16] generates an accuracy of 92.90%. Our proposed
features yield an average accuracy of 98.9% which is the
highest among the state-of-the-art features.

Table 3 also shows that deep learning based features can
produce promising results in image classification for the
NYU V1 dataset. We noticed that the accuracy increases
with the quality of the features set designed. The Bag
of Visual Words (BoVW) approach with SIFT [21] fea-
tures has a 55.2% accuracy. The features based on deep
learning yields higher quality. Similarly, our proposed fea-
tures outperform all these existing features by achieving an
average accuracy of 96.5%. Three datasets involve various
images which have an impact on designing features, thereby
affecting the classification performance. Some images from
different categories are similar in nature, as shown in Fig. 6
for MIT-67 dataset. The cross-class similarity deteriorates

FIGURE 6. Sample images from MIT-67 dataset [19].

FIGURE 7. Sample images from Scene15 dataset [20].

FIGURE 8. Sample images from NYU V1 dataset [21].

the classification performance. Fig. 6 shows the images
of four categories i.e., bookstore, library, restaurant, and
bakery. We see the structural similarity of bookstore and
library images. However, the structural dissimilarity of the
images within the category can be also seen. Furthermore,
the Scene15 dataset (Fig. 7) has some challenging complex
images having intra- and cross-class structural barriers. Sim-
ilar to the MIT-67 dataset, this dataset also contains many
images having such complexities.

We also see the intra-class structural dissimilarity of the
images in Fig. 8 for theNYUV1 dataset. However, the images
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FIGURE 9. Comparison of six delta parameters on three datasets in terms of classification accuracy.

TABLE 4. Classification accuracy (%) of 10 different samples of each
dataset.

of this dataset contain fewer obstacles for the categories,
compared to other datasets. Whatever types of datasets used
in the experiments, each dataset has its own obstacles for the
calculation of the proposed features. To generalize and ensure
the quality of the proposed features under these obstacles,
an intuitive way is to average the classification accuracy
of more sample splits on each dataset. We conduct a more
in-depth experiment on each sample of each dataset to further
evaluate the classification accuracy. The accuracies of each
sample for different datasets are listed in Table 4. It shows
the stability of the proposed features on each dataset. The
average accuracies for 10 samples of MIT-67, Scene15, and
NYU V1 dataset are 94.1%, 98.9% and 96.5%, respectively.

D. ABLATIVE ANALYSIS OF DICTIONARY SIZE
The number of objects in the dictionary determines the size
of the dictionary. We design three different sizes of dictio-
naries to evaluate the separability of the proposed features
on the MIT-67 dataset. Three different sizes of dictionar-
ies are 9, 000, 16, 000, and 25, 000. These dictionaries are
used to construct the objects pattern dictionaries. We extract
semantic objects based on those object pattern dictionaries
of the corresponding category and calculate the proposed
features using those objects. Here, we use the corresponding
numbers of sub-images for each dictionary in extracting
the proposed features. For instance, on the 9, 000-size,

TABLE 5. Classification accuracy (%) of 10 different samples of
MIT-67 dataset for three different size of dictionaries.

16, 000-size, 25, 000-size dictionary, we use 9, 16, and 25
sub-images per image, respectively. We design 10 sample
split sets for the evaluation of the dictionary size. Table 5
enlists the classification accuracy of the proposed features
under different dictionary sizes in the experiment. While
performing the individual dictionary size evaluation with the
corresponding number of sub-images (3x3 sub-images for
9000-size dictionary, 4x4 sub-images for 16000-size dictio-
nary, and 5x5 sub-images for 25000-size dictionary), we
notice that the 16000-size dictionary obtains the best accuracy
result in the classification.

E. ABLATIVE ANALYSIS OF THE NUMBER
OF SUB-IMAGES AND DICTIONARY SIZE
To analyze the effectiveness of the number of sub-images, we
exploit the relationship between the number of sub-images
and the dictionary size for the proposed features. The num-
bers of sub-images per image used are 9, 16 and 25,
respectively. Firstly, the semantic objects of each image
are extracted using the corresponding dictionary. For exam-
ple, for the images with 9 sub-images, we extract seman-
tic objects using the 9, 000-size dictionary. The extracted
semantic objects of each image are then utilized to respec-
tively calculate the proposed features under three different

84976 VOLUME 7, 2019



C. Sitaula et al.: Indoor Image Representation by High-Level Semantic Features

TABLE 6. Classification accuracy (%) of different samples of
MIT-67 dataset for three different number of sub-images with three
different size of dictionaries.

dictionaries. Also, we design 10 sets of train/test data. The
effectiveness of the number of sub-images is demonstrated
in Table 6. The experiment reveals that the 9, 000-size dic-
tionary is suitable for the proposed features extraction of
these images. All three sub-images (9, 16 and 25) per image
perform well on this 9, 000-size dictionary for extracting
the features for the classification. This finding between the
number of sub-images and the dictionary size helps to explore
highly separable features for such type of images during the
feature extraction.

F. ABLATIVE ANALYSIS OF DELTA PARAMETERS
We design six different types of delta parameters as the
multiplier factors with the probability scores of the seman-
tic objects in different categories. Since this parameter
plays a crucial role in the design of the proposed features,
we experiment them one by one on three datasets. We utilize
the dictionary obtained from 3 ∗ 3 sub-images per image
(e.g., 9, 000 for MIT-67 dataset) and corresponding semantic
objects to evaluate the parameters (which is inferred from the
Section V-E). The details about these parameters are elab-
orated in Section III-C. We use 9 sub-images per image to
analyze the delta parameters. We design the features based on
each delta parameter on three datasets. To test the robustness

TABLE 7. Average classification accuracy (%) of six delta parameters on
MIT-67, scene15, and NYU V1.

of the delta parameter, we design one set of data for each
dataset by following the corresponding training and testing
ratio. The accuracies are represented by the bar graph (Fig. 9).

While observing the individual classification accuracy
in Fig. 9, the accuracy of the normal delta parameter is
higher than other delta parameters on MIT-67, Scene15, and
NYU V1. However, the accuracy of divide delta parameter is
the same as the normal delta parameter in terms of classifica-
tion accuracy on the MIT-67. The root-based delta parameter
becomes worst for MIT-67 and Scene15 dataset. This result
shows the robustness of the normal delta parameter.

Furthermore, we consider the average classification accu-
racy of each delta parameter on three datasets. The average
accuracy of the proposed features that use a normal delta
parameter on all three datasets is 95%, which is the highest
accuracy. The lowest accuracy reported is the root-based delta
parameter which achieves only 91.6%.

VI. CONCLUSION
We have proposed the high-level semantic features concept
and designed a set of steps to extract them for the representa-
tion of the indoor images. The proposed features outperform
the state-of-the-art features, in terms of indoor image clas-
sification. Our features have a lower dimension and higher
separability than the existing features, thereby achieving
higher classification accuracies. It has demonstrated that the
semantic objects are important clues for extracting the image
features with high separability. We believe this work will
arouse new insights in the future.
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