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ABSTRACT The development of industry 4.0 has spurred the transformation of traditional manufacturing
into modern industrial Internet-of-Things. The most notable feature during this transition is the improvement
of digitization and intelligence based on the massive data drives. In such a data-driven environment,
the processing, storage, and utilization of the industry data get more and more important. Usually, the tra-
ditional data processing architecture runs as a one-way streamline, which cannot adapt to the different
requirements of the multi-scenario application. This paper proposed a new industrial big data processing
architecture called Phi architecture, which can realize many functions such as batch data processing and
stream data processing, distributed storage and access, and real-time control. Compared with other data
processing architecture, the Phi architecture combined with edge computing and feedback control has the
ability to deal with the different demands in aviation manufacturing. Next, the new architecture is designed
for microservices pattern, which improves the flexibility and stability of the architecture, and makes it
independent operated in multi-scenarios, such as state monitoring of workshop, adaptive data acquisition,
feedback control, and user-oriented information classification. As a proof of concept, the architecture has
been tested in a simulation digital manufacturing workshop. The results verify the improved effectiveness of
the Phi architecture on the data feedback control and real-time processing. And, the development of microser-
vices architecture greatly improves the efficiency, adaptability, and extensibility of the manufacturing
process.

INDEX TERMS Data processing architecture, real-time feedback, edge computing, microservices, multi-
scenario application.

I. INTRODUCTION
In recent years, the rapid development of Industry 4.0 has had
a global impact on the industry and the economy [1]. In the
context of Industry 4.0, data, which is the main carrier of
the digital environment, encompasses large amounts of useful
information, including processing statuses, working condi-
tions, resource utilization rates and so on. This information
can be applied to production monitoring, quality control, and
used to optimize resource allocation. However, devices are
usually equipped with multiple sensors; thus, gigabytes—or
even terabytes—of data can be produced each day. There-
fore, information technology (IT) infrastructure and data
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utilization architectures have vital influences on manufactur-
ing system performance [2].

Given the continuous maturation of big data analysis
(BDA) methodology and the rise of cloud and edge com-
puting, considerable research has been conducted on how
to combine cutting-edge IT techniques with manufacturing.
These efforts have also spawned many new Industrial 4.0 the-
ories, such as data-driven and cloud-based manufacturing.
Simultaneously, new concepts and standards for manufactur-
ing scenarios are continually being proposed, among which
the concept of a cyber-physical system (CPS) plays an impor-
tant role. A CPS manages the relationships between physical
devices and the computing capabilities of interconnected sys-
tems [3], and it can be further developed to leverage big data,
allowing a CPS to achieve the goal of intelligent, resilient
and self-adaptable machines. Correspondingly, a 5-level

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ 83637

https://orcid.org/0000-0001-9707-2366
https://orcid.org/0000-0001-5128-2325


W. Wang et al.: New Data Processing Architecture for Multi-Scenario Applications in Aviation Manufacturing

CPS structure (5C) has been proposed to provide guidelines
for developing and deploying CPSs [4].

In terms of standards, ISA-95 and RAMI 4.0 are two
compelling achievements. On one hand, the ISA-95 standard
focuses on formalizing the interactions between manufac-
turing system and other business processes by specifying
data flows and interfaces using enterprise modeling tech-
niques [5]. On the other hand, the RAMI 4.0 standard is
dedicated to describing the Industry 4.0 architecture from dif-
ferent dimensions. It uses three coordinate descriptionmodels
and represents the interactions between the dimensions [6].

To construct the complex systems enabled by the above
concepts and standards, some advanced software develop-
ment technologies such as the microservices framework have
also been introduced into the Industry 4.0 research system.
The microservices framework divides and encapsulates inde-
pendent operations through functional blocking, and its mod-
ular nature can meet the requirements of many industrial
scenarios [7].

A large number of experiments and applications have
demonstrated that the technologies and architectures men-
tioned above achieve good results in common scenarios.
However, aviation manufacturing, which is a technology-
intensive industry typically equipped with high-end devices,
focuses mainly on multi-variety specifications and has a
small-batch production mode. These characteristics lead to a
flexible manufacturing process but also introduce issues and
challenges in the context of Industry 4.0 that should not be
ignored. The following questions capture these challenges.
1) How should a big data processing architecture be designed
to meet flexibility requirements? 2) How should the infor-
mation generated by BDA be fed back to the device layer to
dynamically adjust strategies such as data acquisition, fault
warnings, and so on?

Lambda architecture (LA) [8] and edge computing are
especially suitable for solving problems under these circum-
stances. Lambda architecture is widely used because it is
capable of performing streaming and batch processing simul-
taneously for massive amounts of data. In addition, edge
computing can be used in the device layer to achieve low
latency and agile data processing. However, the problem is
that there is no clear way to make them interactive.

This study explores how to achieve agile aviation manu-
facturing and makes three main contributions from the per-
spective of the implementation of Industry 4.0.

1. It combines edge computing and Lambda architec-
ture to simultaneously address device layer data with low
latency and process massive global data in a scalable
fashion.

2. A feedback control loop is added in the proposed archi-
tecture between edge computing and LA; thus, the edge
computing strategy can be time-varying, continuously and
automatically optimized, and workpiece specific.

3. The proposed method is implemented and evaluated in
an aviationmanufacturing environment using amicroservices
approach to validate its viability and effectiveness.

The remainder of this paper is structured as follows.
Section II presents related works concerning data process-
ing and computing solutions. Section III presents the details
of the Phi architecture, including its structural components,
implementation scheme and microservices design. The appli-
cation of Phi architecture in aviation manufacturing is dis-
cussed in Section IV. Related experiments and a results
analysis are presented in Section V. Finally, conclusions are
summarized in Section VI.

II. RELATED WORK
A. DATA PROCESSING SOLUTIONS
In the context of Industry 4.0, industrial data is characterized
by diversity, high concurrency and low value, all of which
challenge existing data processing solutions. According to
prior research, the construction of CPSs may be one of the
main influencing factors. ISA-95 and 5C [4] are architectures
for implementing CPSs in manufacturing organizations; their
goal is to improve and deeply integrate physical factories with
cyber computational space and then to realize a transforma-
tion from data to information to value. To extend the exist-
ing 5C architecture, Jiang [9] proposed an 8C architecture
(adding coalition, customer, and content) to assist in building
CPSs for smart factories.

One goal of CPS construction is to break down the barriers
of device independence and information islands to construct
a unified data environment. However, this goal also directly
increased the quantity and complexity of the underlying data
in the factory. Nevertheless, these industrial data doubtlessly
contain valid information, whether directly or indirectly,
a concept that was well illustrated in [10]–[12] from the
perspectives of manufacturing equipment, workpiece, and
internal and external enterprise communications. Therefore,
the key lies in the choice of data processing architec-
ture or methods. Some data processing method problems are
discussed in [13], [14], such as processing delays, incomplete
data, and valuable knowledge extraction.

Currently, the most common data processing tools include
Hadoop, Spark, Storm, and Kafka [15], but those tools have
some limitations. Hadoop is usually applied to batch pro-
cessing, but it does not meet the requirements for stream
processing. Spark is a hybrid data processing tool that can
address both batch and stream processing; however, it also has
memory occupancy and processing delay problems. Storm is
suitable only for stream data processing, and Kafka is mainly
used for rapidmessage distribution, to provide fast processing
support. Due to these limitations, some data processing archi-
tectures that combine the above tools have been proposed.

The Lambda and Kappa architectures (an alternative
scheme to Lambda) have been widely applied in recent years
due to their better real-time and batch data processing perfor-
mances [16], [17]. Hasani et al. [18] used the Lambda archi-
tecture to build a processing platform that achieved process-
ing and analysis of real-time big data and solved the problem
of performing the real-time calculation of arbitrary functions
on arbitrary data. By combining the Lambda architectural
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design pattern with databasemanagement, cost models, query
management and cloud computing, Kiran et al. [19] presented
a cost-effective general architecture that can be applied to
big data and online data processing. A generic, scalable and
fault-tolerant data processing architecture called Ahab was
proposed by Vögler et al. [20]. Ahab combined the philoso-
phy of the Lambda architecture with the cloud platform to
achieve online and offline analysis capabilities. Ahab can
also independently optimize and deploy the computing load.
Batyuk and Voityshyn [21] applied Lambda architecture to
address the streaming data problem of a real-time monitoring
platform, which achieved near real-time processing. To apply
Lambda architecture in a monitoring task, Suthakar et al. [22]
used the Apache Spark ecosystem to optimize the Lambda
architecture. This approach increased the scalability of stream
data processing and achieved better for cumulative computa-
tion performance.

The works mentioned above serve as demonstrations for
applying LA in end-to-end data processing situations; how-
ever, it is the effective use of data processing results that
provides the real value of data processing—especially the
reverse use of results, which can enhance resource interac-
tions and improve CPS construction; however, this aspect is
not addressed by LA.

B. CLOUD COMPUTING AND EDGE COMPUTING
Cloud computing has become a primary data processing solu-
tion in recent years. Cloud computing integrates the discrete
computing resources of enterprises to achieve centralized
management and allocation, and it localizes data processing
tasks to cloud computing platforms; allowing enterprises to
meet their requirements for data processing efficiency and
storage.

Numerous works have focused on cloud computing appli-
cations in manufacturing. For example, Vögler et al. [20]
proposed a cloud-based, distributed, big data analytics frame-
work by integrating the Lambda architecture that workedwell
in the IoT environment. Wan et al. [23] made some contribu-
tions to real-time and offline data processing by proposing a
method that combined cloud computing and data processing
algorithms. And Wang and Ranjan [24] also discussed the
processing requirements of large distributed data sets in an
IoT scenario, and settled on a scheme based on cloud comput-
ing. However, given the real-time data processing needs and
feedback from different manufacturing scenarios, centralized
data processing approaches work less well and introduce
problems similar to those of the existing data processing
architecture (Lambda, Kappa).

Moreover, the increasing data volume and number of com-
puting missions also increase processing pressure on cloud
platforms, which will gradually expose problems caused by
large data processing loads and service response delays.
These issues have also been raised by Satyanarayanan [25].
Corcoran and Datta [26] also realized that cloud plat-
forms will be unable meet real-time operation and low
latency demand requirements and suggested a mobile-edge

computing solution that aims to extend cloud services to the
edge of IoT. To address the above problems, Fu et al. [27]
provided a solution that integrates edge computing and cloud
computing and can better adapt to the challenges such as
data processing and efficient data retrieval in industrial IoT.
In addition, Georgakopoulos et al. [28] provided a roadmap
of cloud computing with IoT for manufacturing that incorpo-
rated edge computing concepts.

Obviously, edge computing applications have worked well
in industrial IoT. Compared with cloud computing, edge
computing effectively alleviates the pressure on cloud data
processing centers, reduces the complexity of data I/O pro-
cesses in cloud computing centers, and improves the real-
time responsiveness of services. The authors of [29]–[31]
discussed the future development trends and opportunities
of edge computing involving real-time data processing and
services, low-latency control, flow control and so on.
Additionally, Martín Fernández et al. [32] proposed an edge
computing architecture focused on edge smart gateways that
provide better control and isolation of running processes
in IoT. Wan et al. [33] proposed an ELBS method based on
fog computing with the goal of achieving a dynamic, flexi-
ble scheduling for smart factories. With fog computing sup-
port, instruction transmission delay was greatly reduced. This
approach satisfied the real-time requirements of dynamic
order analysis and equipment scheduling. Chen et al. [34]
presented an edge computing architecture for IoT-based
manufacturing and illustrated its roles in the fields of
information interaction, data fusion and advanced analytics.
They even provided a reference concerning the cooperation
mechanism between cloud computing and edge computing.
Sun and Ansari [35] and Yu et al. [36] also proposed applica-
tion schemes for edge computing in the IoT, to further demon-
strate the ability to construct a flexible supply of computing
services and data stream processing.

Combined with the contributions and limitations of the
above works, we were motivated to integrate edge computing
into LA. This approach can both satisfy the data processing
requirements and reduce computing center load to guaran-
tee its performance. Moreover, capitalizing on processing
results during the manufacturing process is the main concern.
We provide the details of our approach in the next section.

III. PHI ARCHITECTURE: A NEW LAMBDA
ARCHITECTURE IMPLEMENTATION
To expand the existing industrial data processing solutions,
improve the processing effect and achieve effective utilization
of data processing results, on the LA, we combine edge com-
puting with a feedback loop, forming a new implementation
of LA for aviation manufacturing called Phi architecture.
The composition, characteristics and advantages of the Phi
architecture are described in the following sections.

A. THE CPS OF AVIATION MANUFACTURING BASED ON
5C ARCHITECTURE
The complex manufacturing process and high manufacturing
standards of aviation manufacturing also pose challenges

VOLUME 7, 2019 83639



W. Wang et al.: New Data Processing Architecture for Multi-Scenario Applications in Aviation Manufacturing

FIGURE 1. CPS framework for aviation manufacturing.

and requirements when construction its CPS. Rational CPS
construction is important to an intelligent transformation and
upgrading of industrial enterprises. In current CPS construc-
tion, 5C architecture is the most popular schema and consists
of five levels: connection, conversion, cyber, cognition, and
configuration. Combined with 5C architecture, we provide a
corresponding CPS framework for an aviation manufacturing
workshop.

The CPS framework for aviation manufacturing is com-
posed of four main layers: a device layer, a transmission layer,
a data processing layer, and an application layer. The details
of this framework are shown in Fig. 1.

The device layer, which contains most of the resources and
equipment of the workshop, is the main source of the work-
shop data (other sources include IT systems, parts, and tools).
Under a corresponding data acquisition scheme, the data
and information are obtained that form the main support
for digitalization and visualization. The transport layer is a
collection of various fieldbus protocols that are coordinated
by the gateway to meet data transmission and interaction
requirements. The processing layer is a server cluster that
implements functions such as data processing and analysis,
storage, and data transmission. The application layer, which
includes the workshop management system and the user ser-
vice terminal, is used to visualize the data collection process
and the data processing results.

In contrast to the traditional industrial CPS framework
(Fig. 2), the proposed CPS framework for aviation manu-
facturing makes the following improvements. The transport
layer is further clarified: with the intelligent digital upgrade to
aviation manufacturing, the continuous convergence of vari-
ous heterogeneous devices, software and application systems
in CPS continually increases the complexity of the commu-
nication environment. To achieve unified communications
for different protocols, the corresponding communication

FIGURE 2. CPS framework of traditional manufacturing.

standards and specifications (e.g. OPC-UA) must meet the
interaction needs of underlying devices and enhance the inter-
activity between data. A unified data format is also con-
ducive to improving transmission and processing efficiency.
Moreover, the server cluster is divided into three functional
components: web server, transmission server and operation
server. The web server presents data processing results and
workshop state information in a timely manner. The transmis-
sion server is equipped with message-oriented middleware
with sufficient performance to support real-time data stream
transmission. Edge computing is applied to data-collection
end (device layer), which reduces unnecessary data trans-
missions, thus improving both computational efficiency and
transmission speeds to achieve the real-time service require-
ment of aviation manufacturing.

In brief, this CPS framework for aviation manufacturing is
better able to adapt to future development trends in aviation
manufacturing, and—especially in the era of digitalization,
intellectualization and big data—meet the needs of complex
communication environments and the requirements for mass
data acquisition, transmission and processing.

B. PHI ARCHITECTURE
Based on the CPS framework described above for aviation
manufacturing, advances in aviation manufacturing, such as
high-performance devices, auxiliary software and other func-
tional modules, enable continuous integration and improve-
ment. These will cause the CPS to become increasingly com-
plex. Considering the data processing requirement we focus
on in this paper, different devices and application system
integrated into the CPS will cause a dramatic increase in data
volume and cause the data set to become more diverse and
complex. Obviously, the variety of data types, complexity of
data streams and high concurrency of multiple data sources
are big obstacles for data processing systems in an aviation
manufacturing workshop.

To address the massive data generated during the manufac-
turing process, fulfill some real-time demands for computing
services (e.g. motion control, flow control), and improve the
efficiency of using data processing results, we propose an
improved big data processing architecture for the aviation
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FIGURE 3. The Phi (8) architecture.

manufacturing, known as the Phi architecture, which is illus-
trated in Fig. 3.

The basic structure of the Phi architecture is quite similar
to that of LA. To meet the batch processing and real-time
processing requirements of massive amounts of data gener-
ated during the manufacturing process, Phi provides a batch
processing module (Batch layer) and a real-time processing
module (Speed layer). To provide query support for data
processing views, it also provides a service layer. The detailed
functions in these three layers are listed below.

1) Batch layer. This layer provides management and
storage of the master data set. It periodically con-
ducts simple pre-computing on the master data set
(pre-computing arbitrary query functions). Processing
immutable data sets off-line and storing the processing
results in batch views can reduce the overall data vol-
ume and improve the real-time query performance for
the data results.

2) Speed layer. During an actual manufacturing process,
data is generated continuously, and these data must
be processed in time to service results queries; how-
ever, the batch layer is usually applied to periodi-
cally calculate (recalculate) the main data set, which
can easily affect system performance and cannot meet
real-time demand requirements. However, instead of
recalculating the entire master dataset, the speed layer
can be used to process real-time data incrementally.
Then, the processing results can be updated to the real-
time view, meeting the real-time query requirement for
viewing results.

3) Service layer. This layer is mainly used to respond
to user requests by fusing the results of the real-time
view and batch view into the final data set (usually the

FIGURE 4. The software composition of the Phi architecture.

batch view), thus providing support for the final query
service.

In addition, the Phi architecture integrates some new com-
ponents for aviation manufacturing applications that are dif-
ferent from the Lambda architecture in certain aspects. One
is the integration of edge computing, which offers real-time
calculation at the network edge, and the other is a feedback
loop used to achieve reverse operations by using the data
processing results. The details of both benefits are listed
below.

1) The integration of edge computing can balance the
computing pressure in the cloud and support real-time
responses by services such as low-latency control of
servomotors, trafficmonitoring, and flow control of the
manufacturing data. This system is usually deployed on
a host computer or industrial computer to process data
such as abnormal device control or flow information
from the manufacturing system.

2) The addition of feedback to the Phi architecture sup-
ports reverse operation and transmission to meet the
needs of aviation manufacturing, for example, feed-
back control from the application layer to the device
layer and information customization from the process-
ing layer to the device and application layers.

In summary, the characteristics of the Phi architecture
determine its application in areas related to customized pro-
duction, especially for applications that require closed-loop
and real-time control, such as intelligent manufacturing, pro-
cessing and assembly, logistics and transportation. Combined
with the applications in an aviation manufacturing workshop,
we note that the Phi architecture is better able to adapt to
the data processing and information transmission needs of
the digital workshop. This aspect is important for big data
processing in complex aviation manufacturing environments.

C. INTEGRATING PHI ARCHITECTURE AND BIG DATA
PROCESSING TECHNOLOGIES
The Phi architecture can be integrated with Hadoop, Kafka,
Storm (or Spark), HBase and other components to quickly
build a big data processing system (Fig. 4). For example,
we used Hadoop for the batch layer and Storm (or Spark)
for the real-time processing layer in the same system. The
incoming and outgoing data streams are handled by the Kafka
platform which can support rapid transmissions with high
throughput and low latency. We used Hive to build the data
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FIGURE 5. The design of Phi architecture based on microservices.

FIGURE 6. Microservices multi-scenario combination scheme.

warehouse, which offers functions such as data refining,
query and analysis. Another database (HBase) is used to
store the main data and the resulting views (merged batch
and real-time views) to support the final query service. Edge
computing surrounds the entire data process and is used to
reduce the computing pressure on the data center. Services
are initiated directly from the data end based on requirements,
which reduces data transmission delay and meets real-time
service requirements.

However, the integration of various equipment and
auxiliary manufacturing systems in aviation manufactur-
ing workshop CPSs, increases the difficulties of data pro-
cessing system deployment, maintenance, sustainability and
expansion. By using the microservice system development
approach, the complex structure and functions of the sys-
tem can be segmented and encapsulated, mutual interference
between components can be reduced, and the composability
of different microservices can be improved. The data pro-
cessing system consists of several main modules: batch data
processing, real-time data processing, result queries, edge
data processing, data acquisition, storage and transmission.

As shown in Fig. 5, the data processing system based on
Phi architecture is divided into multiple microservices, such
as an API gateway, account service, data acquisition service,
monitoring service, data transmission service, data process-
ing service, edge computing service, data storage service and
data query service that form the business functions. Such
a microservice-based system is more flexible and supports
modification and expansion according to user requirements.

Combining microservices to form applications is the
primary benefit, because they can improve the system appli-
cability in different scenarios, and abilities such as indepen-
dent deployment and operation also help support that aspect.
Based on the above service module and taking the aviation
manufacturing workshop demo as an example, we list several
different combinations below to suggest possible application
scenarios, as shown in Fig. 6. The scheme (a) shows data
collection and monitoring scenarios, scheme (b) presents
data collection and processing scenarios, scheme (c) displays
data collection and storage scenarios, and scheme (d) denotes
real-time response scenarios for the data acquisition end.
In addition, the data processing system can also be expanded
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to meet additional scenario applications for complex manu-
facturing processes.

IV. PHI ARCHITECTURE APPLICATION IN AVIATION
MANUFACTURING
A. CHARACTERISTICS OF AVIATION MANUFACTURING
Aviation manufacturing has several characteristics that are
different from traditional manufacturing, as discussed in the
following four points.

1) Many parts are large and have complicated structures.
As the performance of modern aircraft continues to
increase, to achieve weight reduction and improve
fatigue life, aircraft structural parts have becoming
increasingly integrated, resulting in individual parts
having increased size and complicated structures. Thus,
higher requirements are continually proposed for parts
processing.

2) Diversified materials. In order to achieve weight reduc-
tion and fuel economy, aircraft structural parts are
developed from a variety of different materials, includ-
ing aluminum alloys, titanium alloys and other com-
posite materials. Moreover, the material ratios differ
depending on the aircraft’s performance requirements.

3) High value and high precision requirements. As a high
value-added industry, aviation manufacturing not only
involves expensive raw materials for parts and com-
ponents, but also has relatively high processing costs,
resulting in higher scrapping costs for parts.

4) Small batches of multiple classes. Manufacturing of
modern aircraft structural components is a typical com-
plex product that entails small batch production and
even single-piece production modes. Achieving high
efficiency, high quality and low-cost manufacturing in
these modes is a huge challenge.

In summary, due to its unique characteristics, the aviation
manufacturing must pay more attention to the flexibility,
precision and yield of the production process than is required
in other traditional manufacturing industries. Such restric-
tions require monitoring and preventive intervention in the
production process.

B. MODEL TRAINING ALGORITHM
In the Industry 4.0 context, many ‘‘data-driven’’ algorithm
applications have similar offline-model training processes.
For example, in temperature compensation and tool wear
prediction, it is necessary to first train the collected data
to construct a model through a specific algorithm; then,
the trained model is used to achieve the corresponding func-
tion. Therefore, the data-to-model step can be stylized and
implemented using the same algorithmic logic. In subse-
quent implementations, the only adjustment needed is to
apply different training algorithms to adapt to different appli-
cation requirements. The offline model training step pro-
cedure is shown in Algorithm 1. In the algorithm, each
real-time stream data instance from Kafka is read, verified,
and then stored in batch_data[N], where N represents the

maximum temporary storage capacity. When the amount
of data exceeds N , batch_data[N] is saved to the Hadoop
file system HDFS. When the model-training condition is
triggered, model_training_trigger becomes true, and any
unsaved items in batch_data[N] are immediately saved to
HDFS and the training_algorithm is launched. The model
trained using the latest full set of data (all_data) denoted as
model modeltrained .

Algorithm 1: Offline Model Training Procedure
Input: Real-time stream data realtime-data
Output: Trained Model modeltratned
Initialization;
while runing do

while sink_runing do
i← 0;
// Clear the cached data clear batch_data[N ];
while i < N do

cur_data← read from realtime_data;
flag← validate(cur_data);
if flag then

if model_training_trigger then
all_data← read from HDFS;
sink_runing← false;
break

else
batch_data[i]← cur_data;
i← i + 1;

end
else

runing← false;
sink_runing← false;
break

end
end
batch-data[N]→ HDFS;

end
// Custom training algorithm
modeltrained ← training_algorithm (all_data);
sink_runing← true;

end

In the algorithm,modeltrained is used to represent themodel
trained by the algorithm training_algorithm based on the
collected data. Different training_algorithm types, such as a
support vector machine (SVM), neural network (NN) or deci-
sion tree (DT) and others. can be applied to complete various
diagnostic and predictive functions.

C. TEMPERATURE COMPENSATION
As mentioned earlier, high precision machining is one of the
manufacturing characteristics in the aviation manufacturing,
but many factors exist that affect the processing accuracy,
including wear, processes, spatial accuracy, thermal deforma-
tions, etc. Therefore, reducing those errors and improving the
processing accuracy is one problem we face in this industry.
Taking thermal compensation for thermal deformation of a
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FIGURE 7. The specific process for intelligent monitoring of tool wear.

spindle as an example, a multivariate linear regression model
is used in this case; the compensation process is shown
in Algorithm 2. In the algorithm, the thermal error data of
spindle is stored in the Y(dataset), the temperature data from
Kafka is read periodically and verified, and then stored in the
X(dataset). When the data acquisition of each cycle is com-
plete, the data are saved to HDFS and function Y = Xb + ε
is triggered at that time. Based on this, we obtain b(the coef-
ficient of each temperature data item). Finally, by inputting
the periodic datasetX to function Y = Xb + ε, the fitted
spindle thermal error value can be calculated. Finally, an error
compensation operation is performed based on that value.

Through Algorithm 2, the error value resulting from the
spindle temperature changes during the machining process
can be fitted; then, the machine coordinate system of the
NC system can be adjusted online by the zero-point drift
method based on the fitted value, to reduce the error.

D. INTELLIGENT TOOL WEAR MONITORING
Tool wear can lead to an interruption in the cutting pro-
cess, causing the workpiece to be scrapped or damage to
the machine tool, both of which result in economic losses.
Intelligent tool damage detection can reduce or avoid such
situations.

There is a strong correlation between tool wear and a
machine’s power signal [37]; consequently, it is possible to
carry out cutting experiments on tools with different degrees
of wear and collect corresponding machine power signals to
establish a relationshipmodel between tool wear andmachine

Algorithm 2: Temperature Compensation Algorithm

Input: X =


1 x11 x12 . . . x1n
1 x21 x22 . . . x2n

· · ·

1 xm1 xm2 . . . xmn

 // Spindle

temperature data
Input: ε // Random error
Input: Y = [y1, y2, y3, . . . . . . , ym−1, ym]T // Spindle
thermal error deformation data
Output: b̂ =

[
b̂0, b̂1, b̂2, . . . , b̂m

]
// Coefficient of each

temperature Xij

Output: Ŷ
[
ŷ1, ŷ2, . . . , ŷm

]
// Predicted spindle thermal

error deformation data
Begin

Initialization
Y = Xb̂+ ε
m∑
i=1

(
yi − ŷi

)2
=

min
∑n

j=1

(
yi − b̂0 − b̂1 · xi1 − . . .− b̂m∗ · xnj

)2
//Solve the minimum of m∑

i=1
(yi−ŷi)

2

for i← to m
for j← to n

ϕ =
n∑
j=1

(
yi − b̂0 − b̂1 · xi1 − . . .− b̂m · xmj

)2
=

0 // Establish function ϕ
∂ϕ

∂ b̂j
= 0 // for each b̂j Solving partial

derivatives, find b̂
end for

end for
0 = XT(Y− Xb̂)
if (XTX−1 == true) then

b̂ = XTX−1XTY //existing unique value
b̂ =

[
b̂0, b̂1, b̂2, . . . , b̂m

]
end if
Ŷ = Xb̂+ ε

Ŷ =
[
ŷ1, ŷ2, . . . , ŷm

]
end

power signals. In addition, machining characteristics and the
part-cutting parameters also affect the power signal; thus,
these should be included in the input to the model. The spe-
cific process for intelligent monitoring of tool wear is shown
in Fig 7. Algorithm 1 is used to train the relational model,
where training_algorithm represents the training algorithm (a
NN in this case), and all_data represents the corresponding
degrees of wear, machining characteristics, cutting parame-
ters and machine power signals.

The cutting power signal of the machine generally has a
high acquisition frequency and is mixed with environmental
noise. If the collected data is uploaded directly to the cloud
and processed, not only will the transmission waste network
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FIGURE 8. Experimental environment overview (a) overall device networking; (b) physical workshop environment; and (c) EtherCAT
module.

bandwidth but the real-time tool monitoring performance
will be affected. Therefore, edge computing is introduced
to solve this problem. The collected power signal is first
down-sampled and denoised at the edge computing node,
and then uploaded to the cloud. Another problem is that the
parameters for the down-sampling and denoising algorithms
used by the edge computing nodes not only differ for different
workpieces but also for the same workpiece over time. Thus,
a method must be provided to notify the edge computing
nodes to update the algorithm parameters, which requires
adding a feedback loop to the Lambda architecture.

V. EXPERIMENT AND VERIFICATION
To demonstrate the superiority of the Phi architecture
in system structure design, data processing performance
and applications in different scenarios, we conducted an
experiment in the digital manufacturing workshop simula-
tion built by our team. The workshop configuration and
the experimental details are explained in the following
sections.

A. EXPERIMENTAL SETUP
To mimic the environment of the aviation manufacturing
workshop, the hardware equipment in our lab includes an
ABB robot, a HuazhongCNCmachine tool, servomotors that
represent moving components such as AGVs (automation
guided vehicles), EtherCATmaster and slave stations (motion
control), a server cluster (Dell server, Intel Xeon Silver 4114
2.2G, 10C/20T, 9.6GT/s, 14 M Cache, 4∗16 GB RDIMM,
2666 MT/s), and TV panel monitors. The lab building and
equipment are shown in Fig. 8(a)-(c):

The server configuration for the simulation workshop
includes the operating system, hardware configuration and
software configuration. Both Linux andWindows 10 are used
as operating systems. The Linux system is used to develop
the microservice architecture, construct the API server, and
so forth, and the Windows operating system is used to deploy
the data acquisition program of the device (due to SDK
limitations of the development system).

The entire software of the Phi architecture uses
Docker as the container for each Microservice, and the
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FIGURE 9. The display of digital workshop.

development framework is the Spring Cloud (Spring Boot),
which can supply related components such as Zuul (API
gateway), Eureka (discovery and registration), etc. Each
microservice container operates in isolation based on the
PID namespace supplied by the Linux kernel. By restricting
the external access API, the routing gateway can proxy user
requests to different services through a gateway address,
which also supports automatic mapping to microservices
registered on Eureka. A restful API is used as a stand-alone
application for implementing microservices data manage-
ment, and it both supplies the API of external calls and is
the basis for Eureka’s functional implementation. The Web
UI development is based on JavaWeb and Thymeleaf.
By using the Restful API interface of each microservice,
different services can be combined to achieve various appli-
cations, such as data acquisition and workshop device status
monitoring, as shown in Fig. 9.

B. INDUSTRIAL MULTI-SCENARIO APPLICATION
VERIFICATION
We combined the Phi architecture with a common industrial
scenario of aviation manufacturing to verify the feasibility
and advantages of the Phi architecture in data processing,
the feedback loop and system structural development. The
validation experiment includes three main parts: 1) on-line
thermal error compensation based on spindle temperature;
2) industrial data monitoring and system throughput testing;
and 3) low latency control of servo motors based-on edge
computing. The specific implementation and results analysis
of the above-mentioned experiment is as follows:

Experiment 1): On-line thermal error compensation based
on spindle temperature

This experiment tests the real-time computing and feed-
back loop of the Phi architecture. By computing the metadata
of the spindle temperature and generating the data processing
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FIGURE 10. Thermal error feedback compensation (a) experimental platform; (b) compensation process.

results quickly, we can use the results stored in HBase to
realize reverse compensation.

Experimental method: Initially, the external temperature
sensor was used to collect the spindle temperature data. Then,
the data processing system computed the thermal error com-
pensation algorithm in a timely manner using those data and
the calculation results were stored (the error compensation
value). Then, through the feedback loop of the Phi archi-
tecture, a script was used to read results automatically and
write the error compensation values through the HncCRDS
API interface of the CNC system (Huazhong CNC) to issue
the NC instructions and achieve an on-line offset of zero
(CNC zero drift) and correct errors caused by spindle thermal
deformation. As a verification experiment, the multivariable
linear regression model (Algorithm 2) was used as the com-
pensation algorithm. The specific experimental process and
platform are shown in Fig. 10(a)-(b).

Experimental results: Combined with the real-time pro-
cessing and feedback loop of Phi architecture, operations
such as reading results and issuing NC compensation instruc-
tions can be implemented much faster, which helps improve
the on-line thermal error compensation of the spindle.
Through the testing, for each temperature reading, from data
acquisition to real-time processing, to updating the calcula-
tion results (temperature compensation values) and reading
the results, to issuing the NC system thermal error compen-
sation instruction, the entire process time cycle is between
100 ms–500 ms. That result further indicates that the real-
time processing and feedback loop of the Phi architecture
has practical value for the on-line thermal error compen-
sation of the machine tool spindle under a soft real-time
standard. Finally, following the usual process of thermal
error compensation experiments, the experiment was exe-
cuted with a sampling period of 0.04 h (data set). The
results of the spindle thermal error compensation are shown
in Fig. 11; and the error after compensation was maintained
at (±5 µm).

FIGURE 11. Spindle thermal error compensation results.

Experiment 2): Industrial data monitoring and system
throughput testing

This goal of this experiment is to achieve a combination
application consisting of the data acquisition service, trans-
mission service and monitoring service. Meanwhile, it tests
the system performance to confirm whether the entire sys-
tem can withstand the requirements of different industrial
scenarios.

Experimental method: Initially, through calling the
API interface of each microservice, we achieved the com-
bination of data acquisition service, transmission service
and monitoring service. Then, we deployed this combination
service into the workshop to collect status data from the
CNCmachine tools and display that status information on the
workshopmonitoring panel. Finally, we added the test dataset
and tools provided by Kafka (kafka-producer-perf-test.sh) to
test the performance of the entire system.

Experimental results: First, the above combination ser-
vice was verified in the aviation manufacturing workshop
simulation. The results showed that the development struc-
ture of the Phi architecture was highly adaptable, as shown
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FIGURE 12. The operational status (a) status monitoring; (b) adaptive
acquisition; and (c) system performance testing.

in Fig. 12(a)-(b). Moreover, by combining the data acqui-
sition service and the Kafka testing tools, we tested the
entire system throughput performance. The results are
shown in Fig. 12(c). System throughput was maintained
at 75,000 msg/s under stable conditions, and system delay
ranged between 35 ms and 40 ms. These results show that
the data processing system can fully meet the data processing
requirements of the aviation manufacturing workshop.

FIGURE 13. Low-latency control of servo motor.

Experiment 3): Low latency control of servo motors based-
on edge computing.

This project verifies the edge computing performance by
initiating the computing service at the data acquisition end,
allowing the collected data to be processed and analyzed in a
timely manner and achieve real-time control under abnormal
device conditions.

Experimental method: By deploying the acquisition pro-
gram for the servo motor on the host computer of the Ether-
CAT module, servo operating information is read in real
time. Due to the computing performance available in the
edge computing module, the motor data can be processed
immediately. The limit value of the motor position is be pre-
set in the module. If abnormal data are read that exceed
the pre-set value, a motor stop command will be triggered
directly through the edge computing module. This experi-
ment achieves low-latency control and verifies the validity of
the edge calculation.

Experimental results:When reading the position data in the
data stream, if the value exceeds the limit, themotor is quickly
shut down by a triggered pre-coded script. In normal condi-
tions, the control process would need to undergo data acqui-
sition, transmission, processing (workshop data processing
center), issuing control instructions and other links. Finally,
to achieve control of the servo motor, that process must be
implemented within 500 ms−2 s (specific times are related
to data complexity and data volume). In this experiment,
we reduced the frequency of the data transmission link by
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using the edge calculation module to process and analyze
the collected data directly at the device-end; consequently,
the data processing efficiency was improved to a certain
extent (the entire control implementation requires between
100 ms and 1s). This result also served to verify the effective-
ness of the Phi architecture edge calculation the experiment
is depicted in Fig. 13.

The above experiment verified that the overall logic of
the feedback loop in the Phi architecture is correct. Com-
pared with the Lambda architecture, the Phi architecture can
achieve real-time reverse control of devices by automatically
reading the data results. Moreover, the edge computing layer
of the Phi architecture can improve the response speed of the
feedback control.

Additionally, the combined application test further
validates the flexibility of the system developed using
microservices compared with a monolithic architecture.
However, the processing speed and feedback control time
fall into the range of ‘‘soft real-time’’; it fails to reach
the ‘‘hard real-time’’ standard. This result is related to the
amount of collected data and device performance; thus, under
certain conditions, system performance could be improved.
In addition, edge computing devices could be configured to
provide better computational efficiency.

VI. CONCLUSIONS
In this paper, we discuss the defects of traditional data pro-
cessing architecture regarding their ability to feedback data
processing results and perform cloud-based data processing.
Then, we propose a new data processing architecture called
Phi architecture that combines feedback and edge comput-
ing to compensate for the shortcomings of traditional data
processing architecture. To improve the stability, flexibility
and expansibility of the system, we adopt a microservices
development approach to implement the Phi architecture.
Finally, we verified the feasibility of the Phi architecture
and the superiority of the system development method by
implementing several experimental test cases in a simulated
digital manufacturing workshop. The novelty and main con-
tributions of this paper are briefly listed below.

1) The most significant feature of the Phi architecture is
that it integrates a feedback loop and edge computing.
Via the feedback loop, the transport layer and the pro-
cessing layer are directly associated with the device
layer, which is suitable for realizing multiple applica-
tion scenarios in aviation manufacturing. The addition
of edge computing supplies low-latency data process-
ing while also reducing unnecessary data transmission.
This new architecture can enable many applications
that require real-time data processing, such as real-
time workshop monitoring and low-latency machine
tool control.

2) The new Phi architecture extends the application scene
for aviation manufacturing. The Phi architecture can
satisfy various industrial application scenarios, such as
real-time and batch flow monitoring of manufacturing

data, low latency equipment control, on-line compen-
sation during the manufacturing process, hierarchical
industrial data management and flow control.

3) Drawing lessons from the development model of social
big data, the Phi architecture integrated new data pro-
cessing technologies such as Hadoop, Spark andKafka.
These technologies can effectively solve the batch pro-
cessing and data storage issues, meet the real-time
processing demands of streaming data, and guaran-
tee the real-time transmission of massive data. The
microservices development approach reduces internal
interference and enhances stability in complex indus-
trial environments. Characteristics such as independent
development and deployment and API interactions also
help in supporting multi-scenario applications in indus-
trial environments.

4) The experiments with thermal error compensation and
low-latency application control indicated that the feed-
back and edge computing features of the Phi archi-
tecture are justified and effective. The real-time moni-
toring implementation demonstrates the architecture’s
real-time processing capability and the feasibility of
creating combined applications with the Phi architec-
ture. Generally, Phi architecture provides a better data
solution for intelligent digital construction of an avia-
tion manufacturing workshop.
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