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ABSTRACT This paper proposes and assesses three different control approaches for the hydrocarbon natural
gas (HCNG) penetrated integrated energy system (IES). The three control approaches adopt mixed integer
linear programing, conditional value at risk (CVaR), and robust optimization (RO), respectively, aiming
to mitigate the renewable generation uncertainties. By comparing the performance and efficiency, the most
appropriate control approach for the HCNG penetrated IES is identified. The numerical analysis is conducted
to evaluate the three control approaches in different scenarios, where the uncertainty level of renewable
energy (within the HCNG penetrated IES) varies. The numerical results show that the CVaR-based approach
outperforms the other two approaches when renewable uncertainty is high (approximately 30%). In terms of
the cost to satisfy the energy demand, the operational cost of the CVaR-based method is 8.29% lower than the
RO one, while the RO-based approach has a better performance when the renewable uncertainty is medium
(approximately 5%) and it is operational is 0.62% lower than that of the CVaR model. In both evaluation
cases, mixed integer linear programing approach cannot meet the energy demand. This paper also compares
the operational performance of the IES with and without HCNG. It is shown that the IES with HCNG can
significantly improve the capability to accommodate renewable energy with low upgrading cost.

INDEX TERMS Conditional value at risk, HCNG, integrated energy system, mixed integer linear program-
ing, robust optimization.

NOMENCLATURE n Device operation efficiency
Symbol  Quantity 7 Binary variable
At Length of the time interval (h). 3 Value at risk
a Confidence level. o! Standard deviation
B Factor of the CVaR. ! Uncertainty fluctuation
SEL Energy consumed by electrolyzer when ¢! Intermediate variable of calculating
generating 1Nm? Hydrogen (kW - h/Nm?) CVaR
SHFC Energy generated by Fuel Cell Battery ) Uncertainty
when3consuming INm® Hydrogen (kW - r! Robust control factor
b/Nm”) . . Q Uncertainty set
e Volume fraction of hydrogen in the gas i . .
. Cyin Minimum system operation cost per
mixture . Monte Carlo simulation (¥)
ghnax Max volume fraction

c;n.d.b Electricity unit price bought from grid

The associate editor coordinating the review of this manuscript and (¥/kW) .
approving it for publication was Wei Wei. C grid.b Electricity consumption cost (¥¢)
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Corid.s Electricity unit price sold to grid ((¢/kW) org Rated hot water power generated by elec-
Corid s Revenue obtained from selling surplus tric boiler (kW)
electricity to grid (¥¢) Okc Cooling power generated by electric
cn Natural gas unit price (¢/Nni> cooler (kW)
Cf < Cost of t%uyin g ngtural(gas (¥ )) or& Rated cooling power generated by electric
COPgc Coefficient of performance of electric cooler (kW)
refrigerator OHE smoke SMOKe power consumed by heat
COPpp ¢ Cooling coefficient of performance of 0 g(changer (kW) 4 be b
heat pump HE water ot water power generate y heat
COPyp Heating coefficient of performance of - exchanger (kW)
heat pump HE water Ratﬁd hot \Zvlfl\t;r) power generated by heat
: : _ exchanger
Crer S;/tsitoef CZS: r(;tl)o n cost when running eval OHFc Hot water power generated by fuel cell
Epin Expected minimum system operation cost (SOFC only) (kW)
Ep Expectation of uncertainties Qnp.c (Ck%(\)]l)mg power generated by heat pump
EZW g?)?l‘:vlﬁ;:f:aék(\z\il) TP . Rated cooling power generated by heat
LHV Lower heating value of gas mixture pump (kW)
(KI/Nm?) ) (Pll(%vat)lng power generated by heat pump
Lia Heating Load (kW) onEy, Rated heating power generated by heat
MN Value of methane :
: : pump (kW)
N Numb.er. of Mote—Ca'lrlo Simulation R Electrical power ramping constraint of
Pcyp Electricity generation power of CHP CHP (kW/h)
(kW) Revar Value of CVaR
Pthp Maximum electricity generation power of rt Uncertainty level of uncertain variable
CHP (kW) P Time
P’gﬁp Minimum electricity generation power of Veb Flow rate of gas mixture (Nm3/h)
CHP (kW) VH, Volume of hydrogen in hydrogen storage
Pep Power consumed by electric boiler (kW) tank (Nm?)
Prc Power consumed by electric refrigerator V;Zax Capacity of hydrogen storage tank (Nm?)
(kW) VH,.CHP Flow rate of hydrogen in CHP (Nm?3 /h)
Prr Power consumed by electrolyzer (kW) VEH, HFC Flow rate of hydrogen in fuel cell
Pgrid b Power bought from grid (kW) (Nm3 /h)
P Z%-b Maximum power bought from grid (kW) VZ%{FC Maximum flow rate of hydrogen in fuel
Pgrias Power sold to grid (kW) cell (Nm?> /1)
P?f;j_x Maximum power sold to grid (kW) Vhst i Output flow rate of hydrogen generated
Prrc Fuel cell generation power (kW) by electrolyzer (Nm?> /h)
Pup Power consumed by heat pump (kW) Vi Maximum output flow rate of hydrogen
Ppy PV generation power (kW) generated by electrolyzer (Nm3/ h)
PR Maximum PV generation power (kW) Vhst.o Output flow rati ?If\lhyg;}?;gen from hydro-
Pw Wind generation power (kW) gen storage tank (Nm
pax Maxirfum wind ;neration power (kW) v Maximum output flow rate of h3ydr0gen
QOac Output power of absorption chiller (kW) from hydrogen storage tank (3Nm /M
orax Rated output power of absorption chiller :’r’né; . E/}zjcvi;ii;()fgllzxral ziis ((I)\im n/a }tll)lral s
(kW) ng
OAC .smoke Smoke power consumed by absorption (Nmé( h) .
chiller (kW) x Decision variable
. Y Real number used to calculated standard
OAC.water Hot water power consumed by absorption deviation
chiller (kW)
OcHP.smoke Smoke power generated by CHP (kW)
QOcHp.water ~ Hot water power generated by CHP (kW) I. INTRODUCTION
OkB Hot water power generated by electric The Integrated Energy System (IES) is considered as an

boiler (kW) emerging energy system concept that has great potential on
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breaking the barriers and bridging different types of energy
systems. Especially for the industrial park or area with con-
siderable amount of heating/cooling demand and renewable
energy resources, the IES has been proved as an efficient
system for mitigating surplus renewable energy and provid-
ing high quality heating and cooling energy. The intension
to convert a conventional energy system to an IES can be
frustrated in specific areas due to the limited transportation
capability of natural gas pipeline network and the congestion
in the electricity power network. A more common way to
upgrade an existing energy system is either to adopt energy
storage system or expand the capability and scale of the
energy network. However, such method can be very expen-
sive and time consuming. With the proliferation of renewable
energy resources and clean vehicles, the energy demand of
end users can become harder to predict, which can lead to
greater uncertainty level in the energy system. To give more
credit when justifying the benefits of converting an existing
energy system to an IES rather than using common system
upgrading methods, it is important to show that the IES can
accommodate the uncertainties in renewable resources and
end user loads without the need to expand the existing gas
pipeline network and the electric network.

Power-to-gas (P2G) technology is a conventional method
to convert surplus electricity to gas fuel [1]. The converted gas
fuel can be natural gas (through methanation) or hydrogen
(through electrolysis). The P2G technology using metha-
nation is commonly used for large-scale natural gas pro-
duction [2] whilst the P2G technology using electrolysis is
more usual in medium or small scale hydrogen production
aiming to satisfy the local hydrogen demand [3]. The pro-
duced hydrogen can be directly used as the fuel for fuel-
cell vehicle. It can also be injected into the gas pipeline to
produce Hydrocarbon Natural Gas (HCNG) [4]. Due to the
limitations of the compressor, the hydrogen content of HCNG
cannot be too large [5]. Researches have proved that the
HCNG can be used as the fuel for combustion engines, gas
turbines and home appliances if the proportion of hydrogen is
below certain percentages [6]-[10]. Reference [6] conducted
the experiment of using HCNG to power the CHP, and the
CHP still had satisfactory performance when the hydrogen
proportion reached 8%. Reference [9] evaluated the effect of
hydrogen percentage (i.e. from 0% to 30%) within the HCNG
on CHP, and it was discovered that the CHP heat recovery
efficiency was improved as the percentage of hydrogen raised
and at the same time the CHP system could still work without
any failures. CHP is the core equipment within the IES, and it
is considered as the major alternatives to traditional electricity
generators. Using HCNG as the fuel for CHP can potentially
reduce the natural gas consumption. In addition, the hydrogen
is easy to produce and store, which makes it easier for the IES
to accommodate more surplus energy generated by renewable
generators, in both short and long-term period. Considering
the global commitment to reduce CO, emission, the HCNG
penetrated IES can be the development direction of IES,
and the investigation of how a HCNG penetrated IES can
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be to effectively operated is valuable. The use of HCNG
as a fuel in the engine will significantly reduce emissions
of THC, CO, CO, and CHy4, but will increase NOx emis-
sions [11]-[14]. And NOx can be processed to meet emission
standards [12], [14].

A number of previous studies were carried out on the oper-
ational optimization of IES. Reference [15] proposed an inter-
val optimization approach for gas-electricity IES taking into
account the demand response scheme and renewable uncer-
tainties. Wei Gu and Jun Wang designed an integrated energy
system optimization method which combines the thermal
inertia of the regional heat network and the thermal inertia of
the building to improve the utilization of wind power [16].
The interval based optimization approach mitigated the
effects of worst scenario on the overall optimization, com-
pared to the robust control. In [17], an operational optimiza-
tion approach for heating-electricity IES based on heating
inertia was presented. It has proven that the increased heat-
ing storage capability of a heating network would increase
the operation flexibility of a CHP, which is a valuable
lesson for the HCNG penetrated IES optimization (where
the stored object is hydrogen instead of heat). Dolatabadi
and Mohammadi-Ivatloo designed a conditional-value-at-
risk (CVaR) based optimization approach for scheduling the
operation of energy hub (a system coupling among different
energy networks, similar to IES) [18]. Such methodology
has shown good performance on mitigating the risk of load
forecasting volatilities and energy price fluctuation. Refer-
ence [19] proposed a risk-averse optimal operation strategy
for multiple-energy carrier system (similar concept to IES),
using CVaR method to quantify the risk associated with
loads uncertainties. With regard to the operation schedul-
ing problem of energy system, the risk-accounted optimiza-
tion approaches (e.g. CVaR, Robust Optimization, Interval
Optimization) have been demonstrated as efficient ways to
mitigate the risks caused by the uncertainties in renewable
generation, load and price [20]-[24].

To the best knowledge of authors, there are little research
that has been conducted on the operational optimization of the
HCNG penetrated IES, as well as the mathematical modeling
of the CHP using HCNG as the fuel. In the foreseeable future,
increasing number of clean vehicles, renewable generators
and real-time pricing schemes will be deployed and it will be
necessary to identify methods to mitigate such uncertainties
within the energy system. An expectation of using the HCNG
penetrated IES is that it can provide appropriate risk miti-
gation capabilities through the use of flexible injection and
storing of hydrogen. To demonstrate the advantages HCNG
penetrated IES.

In this paper, the detailed model of HCNG penetrated IES
is developed and such system can produce and use hydrogen
to absorb extra wind and PV energy whilst at the same
time reduce the carbon emissions. In order to mitigate the
influence of uncertainties in renewable generation and loads,
three planning strategies are developed and tested in this
paper. Furthermore, two hydrogen fuel cells are applied in
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FIGURE 1. System Infrastructure of a Hydrogen penetrated IES.

the HCNG penetrated IES model and their impact on the
planning results are also investigated. After that, an opera-
tion planning method is proposed which can optimize the
electrical and thermal efficiency of the CHP that is related to
the change of the hydrogen concentration in the gas mixture.
Finally, to validate the performance of the proposed model
and algorithm, two kinds of deviations from the predicted
values are used for numerical analysis and comparison. The
main contributions of this paper can be concluded as below.
(1) In this paper, the quantitative mathematical model of
CHP considering the influence of hydrogen concen-
tration change in fuel is given, as well as the models
of other refrigeration equipment, heating equipment
and hot water equipment in the HCNG penetrated IES.
The operation constraints of these facilities and the
interaction with the power grid are also considered.
(2) The relationship between the change of load electro-
thermal ratio and the hydrogen proportion of CHP fuel
is studied. In addition, the performance of the CVaR
model, robust optimization (RO) model and mixed inte-
ger linear programing is compared.
(3) The optimization results of CVaR, RO and mixed inte-
ger linear programing based approaches are compre-
hensively analyzed from the perspective of expectation
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of running cost, resistance of uncertainty and running
time of the program.

The remainder of this paper is organized as follows:
section 2 describes the mathematical model of the HCNG
penetrated IES whilst section 3 presents three optimization
methods for day-ahead economic dispatch. Section 4 dis-
cusses the advantages and disadvantages of the three opti-
mization schemes under different fluctuation conditions.

Il. SYSTEM MODEL
A. HCNG PENETRATED IES
This paper presents and compares three day-ahead control
approaches for the hydrogen penetrated IES. Compared to
the traditional IES, a hydrogen penetrated IES employs
hydrogen generation (e.g. electrolyzer), hydrogen storage
(e.g. hydrogen tank) and hydrogen consumption (e.g. fuel
cell or HCNG). Figure 1 presents a typical hydrogen pene-
trated IES. Apart from the aforementioned hydrogen related
components, such system also has the gas related compo-
nents, smoke recycling components, electricity based com-
ponents and cooling components, and all of them within the
system are connected by different energy—carrier busbars.
Most of CHPs can take natural gas mixed with hydrogen
of certain percentage without any upgrading and this paper
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focuses on the hydrogen related components within the IES.
The generated hydrogen is mixed with methane and used as
the fuel for CHP. For the IES involving renewable energy
resources such as solar and wind turbines, the hydrogen
related devices can help the system operator to store the
surplus electricity by transforming electricity to hydrogen.
The stored hydrogen can be injected into the gas pipeline,
which can contribute to the electricity and heat generation
of CHP when there is a shortage in electricity and heat.
As hydrogen is a carbon-free fuel and can be stored for long
term (seasonally or even yearly) in a tank, it is considered as
one of the potential replacements for the future fuel.

Note that all types of gas mentioned and discussed in this
paper are measured in volume under normal condition and the
unit is Nm?.

B. CONSTRAINS OF ENERGY-CARRIER BUSBARS

The hydrogen penetrated IES incorporates multi-type energy
busbars in one single system. The system should satisfy
the constraints of different energy-carrier busbars, which are
defined by equations (1) — (4).

Equation (1) indicates the balancing constraint of the elec-
trical busbar and equation (2) shows the balancing constraints
of the hot water busbar. The balancing constrain of the smoke
busbar is presented in equation (3) and the balancing con-
straint of the air busbar is illustrated in equation (4).

Lg + Pgria.s + Pup + Pec + Per + Pep
= Ppy + Pw + Pgria.b + Puarc + Pcup (D
LHW + QAC.water

= Onrc + OHE water + QCHP water + OEB (2)
QAC smoke + QHE .smoke

= QCHP.xmoke (3)
Lca + Lta
= Qnp.c + Qur.n + Orc + Oac 4

C. CHP MODEL USING HCNG AND ITS

ASSOCIATED CONSTRAINTS

The fuel used by CHP in the hydrogen penetrated IES is
the HCNG which is a mixture of methane and hydrogen.
The volume proportion of hydrogen ¢ in the gas mixture is
constrained by the volume of methane or Methane Number
(MN) [6]. The detailed constraints of the hydrogen within the
HCNG are given as below.

Vgb = Vng + VH,.CHP )
M9 — (100 — MN) /100 6)
& = VH,.CHP/Vab @)
0<e<e™™ )

0 < vpg < V" ©)

Equation (7) is a nonlinear equation, which will dra-
matically increase the optimization complexity for the day-
ahead control of hydrogen penetrated IES. Thus, equations
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(7) and (8) are rewritten as equation (10). The optimized
proportion of hydrogen within the gas mixture in various time
intervals can be derived from equation (7).

0 <vu,cap <" -vgp (10)

To illustrate the influence of the hydrogen injected into
the methane, the electricity generation power, hot water out-
put power and smoke output power generated from HCNG
can be calculated based on equations (11) — (13), respec-
tively. Assume the smoke output power is 10% of the total
power produced from HCNG. Note that Lower Heating
Value (LHV) is used when calculating power generated
from HCNG.

Pcup = vgp - LHV - ncpp.. /3600 (11
OcHP.water = Vgb - LHYV - ncup.water /3600 (12)
OcHp.smoke = Vgb - LHV - 10%/3600 (13)

According to [6], when the volume proportion of hydrogen
in the mixed gas changed, the electricity-heat efficiency of
the CHP would correspondingly change. Based on the exper-
imental results given in [6], the efficiency change of the CHP
using mixed gas could be reflected by equations (14) — (16).

ncup.e = 1.1256% — 0.0663¢ + 0.3059 (14)
NCHP.water = —2.9838% — 0.0488¢ + 0.6133  (15)
LHV = —24850.6¢ + 35691 (16)

Since equations (11) — (13) are nonlinear equations, it will
be sophisticated to optimize the scheduling of the CHP oper-
ation. To reduce the calculation complexity, the output power
model of the CHP is simplified and the relationship between
the output power values and the flow rate of natural gas and
hydrogen is shown in linear equations (17) — (19).

Pcyp = 3.031v,g + 1.019vy, cup (17

OcHP water = 6.086v, — 0.5331vy, chp (18)
OCHP.smoke = 0~9914vng + O~3012VH2.CHP (19)

For the CHP, the electric power constraints and power
ramping constraints are presented in equations (20) — (22).
The binary variable pcyp is used to indicate the operating

status of the CHP where 1 means operating whilst O denotes
not operating.

P - jicup < Penp < PSS - jicup (20)
—R-At < Plyp— Plyp <R - At (21)
wucup € {0, 1} (22)

D. OTHER DEVICES MODEL AND

OPERATION CONSTRAINTS

1) CONSTRAINTS OF HYDROGEN STORAGE TANK

In the proposed IES system, the hydrogen is stored in high
pressure tank(s) under normal temperature. More specifically,
the hydrogen will first be generated from the electrolyzer
and subsequently compressed and injected into the hydrogen
storage tank. Due to the negligible magnitude, the electrical
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power consumed by the air pump (of the gas pipeline) and
compressor will not be considered in the modeling. The
stored hydrogen will be consumed by the CHP and fuel cell
to generate energy in different formats (e.g. electricity and
heat). Equations (23) — (26) show the relationship between
the hydrogen volume in the storage tank and the flow rate in
different devices as well as the associated constraints.

Vi, = Vi, + Visti - At — Vo - At (23)
0<Vy, =Vg" (24)
Vist.o = VHy.HFC + VH,.CHP (25)
0 < Vist.o < Vit (26)

2) CONSTRAINTS OF ELECTROLYZER AND FUEL CELL

Even though the electrolyzer consumes electricity to generate
hydrogen whilst the fuel cell uses hydrogen to generate elec-
tricity, they cannot operate simultaneously to maintain a con-
tinuous loop where electrolyzer takes electricity from the fuel
cell and the fuel cell takes the hydrogen from the electrolyzer.
This is because there will be loss in both processes. Therefore,
two binary variables wg;, and uypc are used to indicate the
device operating status: 1 as operating and 0 as not operating.
No heat energy could be retrieved from a conventional fuel
cell during the electricity generation process. However, if a
Solid Oxide Fuel Cell (SOFC) is used, the resulted heat
from electricity generation could be captured and reused.
Assume the heat generated from SOFC is used to boil the
water and the resulted hot water power is 80% of electricity
power counterpart of SOFC. The power relationship and
constraints of the electrolyzer and fuel cell are presented by
equations (27) to (33).

Pgr = Visti - SEL (27)

Pyrc = Vi, HFC * SHFC (28)

Onrc = 0- Pyrc or Qurc = 0.8 - Pyrc (29)

0 < vpgi < Vi LEL (30)

0 < vh, HFC < Vi, grc * HHFC (31)

MEL + pFrc <1 (32)
MEL, harc € {0, 1} (33)

3) CONSTRAINTS OF ELECTRIC BOILER AND

HEAT EXCHANGER

Electric boilers and heat exchange devices are all devices that
provide hot water power, and the constraints are presented by
equations (34) to (37).

Qrp = PEp - nEB (34)

0 < Qg < OFg" (35)

OHE water = QHE smoke * MHE (36)
0 < QHE.water < QHE water 37

4) CONSTRAINTS OF COOLING AND HEATING DEVICES
The cooling and heating system consist of absorption chiller,
heat pump and electric cooler. In terms of the absorption
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chiller, it will use the energy from smoke and hot water to
drive the cooling process. For the heat pump, it can consume
electricity to implement either cooling or heating process.
In principle, the cooling process can be achieved by the
absorption chiller, heat pump and electric cooler whilst the
heating process can only be implemented by the heat pump.
Two variables . and uj are employed to denote the working
status of the cooling and heating process; . becomes 1 when
cooling process starts and wj turns 1 when heating process
begins. The power relationship among the absorption chiller,
heat pump and electric cooler and the constraints are defined
in equations (38) to (48).

@ Absorption chiller

Oac =nac - (QAC.smoke+QAC.warer)  (38)
0<0ac < O4¢" - e (39
QAC.smoke» QAC.water > 0 (40)

@ Heat pump

Pup = Qupn/COPppy + Oup.c/COPp,.  (41)
0 < Qur.h < OfFs - i (42)
0 < Qnpr.c < Ofp. e 43)

@ Electric cooler

Orc = COPgc - Pgc 44)
0 < Qec < Q& - e (45)

@ Cooling and heating process variables
M, pe € {0, 1} (46)
Note: if the heating load L;, = 0,
un =0 (47)
Note: if the cooling load L., = 0,
we=0 (48)

E. CONSTRAINTS OF ELECTRICAL POWER FLOW

By default, the IES system either purchases or sell electricity
from/to the power grid at any given period and there will
be no simultaneous bi-directional electrical power flow. Two
variables ©p and g can be used to represent the electricity
buying and selling process: (1 = 1 means the IES system is
buying electricity from the grid and uy = 1 suggests selling
electricity to the grid. The constraints of electrical power flow
are shown in equations (49) to (52).

0 < Pgriab < Pgyigp Hb (49)

0=< Pgrid.s = Zl;;;;s © M (50)
mp+ps <1 (51)
:ubv :uS € {07 1} (52)
87797
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Ill. SYSTEM DAY-AHEAD ECONOMIC DISPATCH

The day-ahead economic dispatch of the system described in
this paper is to predict the output and load data of renewable
energy in each period of the next day in the previous day.
The optimization algorithm aims to minimize the 24-hour
system operation cost. In general, a single day is divided
into 24 time slots and all devices of the IES system will be
dispatched based on the forecast of system electrical load, hot
water load, (air) heating and cooling load, wind generation
and solar generation. In this section, six groups of forecast
data will be used as a benchmark for system planning. It is
worth noting that there will be error between the actual and
forecast data and CVaR and RO approaches are proposed to
reduce the impact of the error and improve the accurateness
of the algorithm.

A. DETERMINISTIC METHOD: MIXED INTEGER

LINEAR PROGRAMING

Without considering the uncertainty of the predicted value,
that is, without considering the risk caused by the differ-
ence between the actual value and the predicted value. The
system operation cost can be divided into three categories:
cost of buying natural gas (C,), electricity consumption cost
(Cgria.») and revenue obtained from selling surplus electricity
to grid (Cypig.5), where the unit price of purchasing natural gas
and selling surplus electricity are fixed. On the other hand,
there are three price bands when buying electricity from grid,
depending on the time of buying. Equations (53) to (55) show
how the cost value of each category can be derived.

2%
e () 6
24
Cgrid.b = Zt:l (Pfqrid.b At C;rid.h) (54)
24
Cgria’.s = Cgrid.s * Zt:l (P;rid,s : Al‘) (55)

Mixed integer linear programing needs to meet the equip-
ment operation constraints and strictly meet the bus energy
balance constraints. The objective function to minimize the
system operation cost and subjected to various constraints can
be expressed as

Objective: min (Cpg + Ceria.b — Cerid.s)
Constraints: (1) ~ (6), (9), (10), (17) ~ (55)

B. UNCERTAINTY METHODS

In the system described in this paper, all predicted values
are uncertain. The output of PV and wind power is affected
by the weather and the load is affected by people. These
uncertainties lead to the uncertainty of the operation of all
equipment in the system. In the current planning, there will
be a risk that the output cannot meet the load demand and
the system operation cost is too high. To this end, the CVaR
model and the robust optimization model are separately built
to plan the system and reduce the risks.
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1) UNCERTAINTY METHOD 1: CVaR MODEL

Since there is no historical data, a simple Monte Carlo sim-
ulation method is used here to calculate CVaR. It is assumed
the number of Monte-Carlo simulations is N and the confi-
dence level is «. All known values will follow the normal
distribution with expected uncertainty of Ep and standard
deviation of o’ The forecast values at a later time slot would
be less accurate that those at an earlier slot. Assume Y is a
real number greater than 24, ¢’ can be calculated as:

o' =t-Ep/Y (56)

When generating a random number based on the proba-
bility distribution of the uncertainty, it is necessary to satisfy
that all the uncertainties w are positive values, and that the
power of the photovoltaic and wind power does not exceed
the maximum value.

®>0 (57)
wpy < Ppy’ (58)
oy < P (59)

The calculation method of the system running cost Cliiill
for each simulation is the same as the objective function of
Deterministic method, and the expectation of the system run-
ning cost is the average value of each simulation running cost,
which are expressed in equations (60) and (61), respectively.

i i i i
CBill - Cng + Cgrid.b - Cgrid.s

N .
Egn =) _ Chu/N (61)

In this paper, the objective function of CVaR is defined as
the CVaR whose operating cost exceeds the expected oper-
ating cost. In conventional CVaR method, a prerequisite is
the value of VaR which make it much more complex to solve
the equation. According to [25], the CVaR could be derived
without knowing the value of VaR. This approach is applied
in this study to obtain the CVaR when the actual system
operation cost exceeds the expected value. Two intermediate
variables & and ¢’ are used to calculate CVaR and £ represents
VaR. The proposed objective function is equivalent to CVaR,
shown in equations (62) to (64).

(i=1,2,....,N) (60)

. . . N [
Objective: min & + Zt_l @'/IN-(1 —a)] (62)
Constraints: ¢' > Ch.y — Epint — & (63)
¢ >0 (64)

After combining CVaR, the objective function of the sys-
tem planning is changed to the sum of expected operation
cost and CVaR (when the operation cost outnumbers the
expected value). At this point, it becomes a multi-objective
plan. We need to define the weight of the CVaR. The weight
coefficient 8 of the CVaR is in the range of 0 and 1.

0<p=1 (65)
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The CVaR model also needs to meet the energy bus con-
straints and equipment operation constraints. Unlike the com-
mon optimization, the known quantities of each simulation
in the CVaR model are different. Each energy bus cannot
take the equal sign, and the inequality is used to satisfy the
supply. At the same time, the constraints (60) and (61) for
solving CVaR shall also be satisfied. The objective function
and constraints of the CVaR model are:

Objective: Egji + B - Rcvar
Constraints: (1) ~ (6), (9), (10), (17) ~ (61),
(63) ~ (65)

2) UNCERTAINTY METHOD 2: ROBUST

OPTIMIZATION MODEL

In this paper, a single-stage robust optimization model is
used, without knowing the probability distribution of uncer-
tain quantities. Instead, the robust optimization model is built
by describing the fluctuation of parameters through an uncer-
tain set, such as load, wind power and photovoltaic power
generation. The uncertainty fluctuation is denoted as Ep. The
amplitude of the fluctuation is 7/, and the uncertainty of
defining the uncertainty is ', which is used to control the
amplitude of the uncertainty fluctuation. Similar to Uncer-
tainty method 1, the uncertainty in the robust optimization
model must also be a positive number. The value of photo-
voltaic and wind power should be less than the maximum
value. Then the uncertainty set of the uncertainty w can be
expressed as

_ Ep—rt t' <w<Ep+r" 1,
2= {w| w >0, wpy < Py, ow < Py (66)
0<r<l1 (67)

Because robust optimization with box set tends to be
conservative, a robust control factor '’ is introduced.
Equation (65) states that the control factor I'? is equivalent
to the sum of uncertainty level r’ for all uncertain variables
and the robustness can be altered by manipulating the magni-
tude of I'".

U =rly +rp+rl,+r,+riy +rpy (68)

The decision variable is represented by x. f and g are
functions of x where f is identical to the objective func-
tion of Deterministic method and g is a set of common
planning constraints and uncertainty constraints as described
in (66) ~ (68). The busbar constraint is also changed so that
the supply will be either greater than or equal to the demand.
o is the uncertainty whilst Q is the uncertainty set. The
objective function and constraints of the robust optimization
can be presented as:

Objective: min max f (x, )
X w

Constraints: g (x, w) < OVw € Q
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TABLE 1. Major parameters of devices in HCNG penetrated IES.

Device Parameter Value
Upg* 50
MN 80
CHP PIE 150
PIHn 30
R 50
6 1
Fuel Cell e
VH,.HFC 10
0.85
Heat Exchanger m:fux
30
HE.water
. COPg. 4
Electric Cooler
[ 50
Electrolyzer Ok, 5
Grid P, 100
P 100
0.95
Electric Boiler Nes
4 50
Absorption Nac 0.8
Chiller X 100
Hydrogen Storage V¥ 80
Tank vy 10
vz 20
COPyp.. 3.85
COPypp, 4
Heat Pump max
HP.c 50
Hph 50

150

2

PowerkW _

0 25 0 5 10 15 20 25 0 5

10 15 10 15 20 25
Timefh Timerh Time/h

FIGURE 2. Load forecasting, PV wind power output forecast and
time-of-use electricity price.

IV. CASE STUDIES

Table 1 lists the parameters of each device within a HCNG
penetrated IES. The unit price of buying natural gas and
selling electricity is ¥3.1/Nm> and ¥0.1/Nm?, respectively.
Figure 2 illustrates the three price bands and the correspond-
ing time periods, when electricity is purchased from grid.
The forecast load, wind generation and solar generation are
plotted in Figure 3 and Figure 4. For the hydrogen storage
tank, the initial amount of hydrogen being stored is 10 Nm3.
The fuel cell used in the case study is the conventional
model which means the heat produced from the electricity
generation process will not be reused. Analysis of all cases is
encoded using YALMIP and the equations are solved using
CPLEX 12.8.0. In particular, Uncertainty Method 2 uses the
Robust optimization module in YALMIP to solve.
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FIGURE 3. Electric busbar optimization results.
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FIGURE 4. Hot water busbar optimization results.

A. DETERMINISTIC METHOD
Using the methods and constraints defined in Chapter II and
I1I, the simulation results indicates the system operation cost

of a single day is ¥1129.5. The program running time is
0.5579s.

1) OPTIMIZATION RESULT ANALYSIS

Figure 3 to Figure 5 show the optimization results of three
important busbars in the system respectively — the electric
busbar, the hot water busbar and the air busbar.

Electric busbar: The electrical energy within the system
is mainly derived from the CHP, the photovoltaics and the
wind power. From 6 to 22, the CHP keeps operating and
provides the base electrical energy. When the photovoltaics
(from 6 to 18) and the wind power (19 — 22) are available,
they can contribute to the total electricity generation and thus
reduce the output from the CHP. In the period when CHP is
not running, the system’s electrical power is mainly generated
from the wind power.

Hot water busbar: When the CHP is in operation from
6 to 22, the hot water load is high (larger than 30 kW) and
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FIGURE 5. Air busbar optimization results.

most of the hot water power comes from the CHP. During this
period, the hot water power provided by the heat exchanger
and the electric boiler is very small. When the CHP is not
running, the hot water demand is met by the electric boiler.

Air busbar: The cooling power is mainly provided by the
energy recovered from the hot water and the flue gas through
the absorption chiller. Note that the vast majority of the power
contained in the hot water and all power within flue gas are
supplied by the CHP. Only a small amount of cooling power
is provided by the electric cooler.
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FIGURE 6. Hydrogen volume change in hydrogen storage tank.

2) UTILIZATION OF PHOTOVOLTAIC WIND POWER

As mentioned earlier, the power of photovoltaics is fully
utilized during the day. During the night time, the power of
wind is high and is greater than the load of the system. The
electric hydrogen production equipment can make full use
of such additional wind power by triggering the hydrogen
production process to fill the hydrogen storage tank. In this
way, the required amount of hydrogen produced from other
energy sources during the day time can be reduced and
thus the required energy within the system can be reduced.
Figure 6 plots the hydrogen volume change in a hydrogen
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storage tank. In the period of 1 to 7, the system uses wind
power to produce hydrogen which can provide energy during
the day. From the simulation results, the wind power is sold
to the grid for a total amount of 58.2 kWh from 22 to 24, and
the utilization rate of wind power was 89.4%.

When the electrolysis cell, hydrogen storage tank and
hydrogen fuel cell are removed for the simulation, the oper-
ating cost is ¥1168.9, which is higher than that of the sys-
tem containing these devices (¥1129.5). Moreover, a larger
amount of wind power is sold to the power grid and the
utilization rate of wind power is only 28.9%. This results
in the fact that more power needs to be purchased from
the power grid during the peak hours during the day time.
Figure 7 shows the influence of whether the system contains
hydrogen production and storage equipment on wind energy
utilization, power grid purchase and natural gas consumption.
Obviously, after the employment of hydrogen and hydrogen
storage equipment, the system operating costs are reduced
and the utilization of wind energy within the IES is more
efficient. As a result, the electricity demand from the grid is
reduced.

||:|Without hydrogen equipment I with hydrogen equipmenl|
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FIGURE 7. The influence of hydrogen production and storage devices on
wind energy utilization, power grid purchase and natural gas
consumption.

3) HYDROGEN UTILIZATION

It is mentioned in [6] that the change of hydrogen content
in the fuel of CHP unit will change the electric-heat ratio of
CHP output power, and the increase of hydrogen content will
raise the electric-heat ratio. The hydrogen content change of
CHP fuel in the system is shown in Figure 8. In order to study
the relationship between load electro-heating ratio and CHP
output electro-heating ratio, the electro-heating ratio of the
system load is defined as electric load divided by the sum
of hot water load and air cold load. From previous analysis,
the loading on electric busbar, hot water busbar and air busbar
can reflect the operation of the system. It can be observed
from Figure 8 that the CHP output electric-heating ratio and
the system load electric-heating ratio follows the same pattern
and the load electric-heating ratio is larger than the CHP
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FIGURE 8. Volume proportion of hydrogen and power to heat ratio of
CHP and load.

output electric-heating ratio because the electric energy in
the load also includes the photovoltaic output. During the
period from 7 to 10, although the load electro-thermal ratio
is changing, the value stays at high level and the hydrogen
content of the CHP fuel reaches the maximum value which
is 20%. In the period of 11 to 17, the photovoltaic output
grows and thus the electric-heating ratio of CHP decreases.
Between 20 pm and 21 pm, the energy ratio provided by CHP
is not particularly large, and the load-to-heat ratio is difficult
to reflect the CHP output electric-to-heat ratio. In the case
where electric energy is mainly supplied by the CHP, when
the hydrogen content in the CHP fuel does not reach the peak
value, the hydrogen content of the CHP fuel changes as the
load electro-thermal ratio fluctuates. In this way, the system
can plan the hydrogen content of the CHP fuel according to
the load electro-thermal ratio so that the hydrogen can be
utilized more efficiently.

4) INFLUENCE OF SOFC ON IES

Among all types of fuel cell, the SOFC operates at the highest
temperature. SOFC is known as high temperature fuel cell
which can provide large amount of heat that can be reused
for CHP system and thus improve the efficiency of fuel
utilization. However, if the simulation case uses SOFC and
optimization plan merely based on forecast data, the system
operation cost is ¥1128.2 which is only ¥1.3 less than the
case where conventional hydrogen fuel cell is used. It should
be noted that the cost of SOFC is very high. In addition,
the SOFC consumes more hydrogen than the CHP and only
23.7% of hydrogen will go to the CHP, which will dramat-
ically reduce the proportion of hydrogen within the CHP,
as illustrated in Figure 9.

B. UNCERTAINTY METHODS
1) UNCERTAINTY METHOD 1
In the Uncertainty method 1 described in section III, Y is
configured as 100 and the confidence level « as 0.95. The
number of Monte Carlo simulations is 500 and they are
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FIGURE 9. Volume proportion of hydrogen within CHP when using SOFC
and conventional hydrogen fuel cell.
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FIGURE 10. Operational expectations and CVaR values under different
CVaR weights.

run under different CVaR weights. Figure 10 illustrates the
minimum operating cost expectations and the CVaR. When
CVaR is not considered (i.e. CVaR weight = 0), the oper-
ating cost is expected to be ¥1214.9, but the CVaR is very
large at 422.4. When the weight of CVaR gradually increases
from 0, although the expectation of the operating expense
only slightly increase by less than ¥20, the CVaR decreases to
approximately 100. After the weight exceeds 0, the values of
the cost expectation and the CVaR do not obviously change.
From the optimization results, the power provided by the
electrical busbar, hot water busbar and air busbar is greater
than the load, and the later the time period is, the greater the
gap between the provided power and the load will be.

In order to balance the electric busbar, the purchased power
Pgria » and the sold power Pgyig s are set to be change freely in
this section and in the robust optimization section (Because
the system does not have access to the heating network
and the air network, the balance of the hot water busbar and
the balance of the air busbar are not considered at present.
The only requirement is to satisfy the demand that is more
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FIGURE 11. When the CVaR weight is 1, the electrical bus optimization
result of the purchase and sale of electricity is removed.

than or equal to the electricity supply). Because the operating
cost of the system is only related to the purchase and sale of
electric power as well as buying of natural gas (other related
costs are negligible), the loading of the electrical bus can
reflect the change of the operating cost of the entire system.
Take the case where the CVaR weight is 1 as an example.
Figure 11 presents the optimization result of the electrical
busbar when the interaction with the grid is excluded. In the
period when the output of the photovoltaic and wind power is
small and the CHP operation is required, the electric power
provided by the system is less than the load. This insuffi-
cient power should have been supplemented by purchasing
electricity from the grid. When the wind power is relatively
large, the excess electricity should have been sold to the
grid. When the electrical load fluctuates within appropriate
range, the scheduled operating plan can meet the operational
requirements.

2) UNCERTAINTY METHOD 2

Uncertainty method 2 described in section III is used for
day-ahead planning. In order to facilitate the compari-
son with Uncertainty method 1, the uncertainty set of the
uncertainty is set as the confidence interval of the uncer-
tainty in the upper section of Uncertainty method 1. When
the confidence level « is 0.95, the confidence range is
[Ep — 1.960", Ep 4 1.960"] with resulted uncertainty fluc-
tuation t/ of 1.960'. The system is simulated by taking a
number of different I’ values between 0 to 6. The expected
values of the running cost varying with I'! are shown in
Figure 12. When I' is 0, Uncertainty method 2 is converted to
Deterministic method, and the running cost is also ¥1129.5.
The operating cost expectation increases when I'' grows, and
the slope in the interval (1, 2) becomes smaller. When I''
is 2, the operating cost expectation reaches the maximum
value of ¥1687.2, after which it does not increase when I'?
keep growing beyond 2. Similar to Uncertainty method 1,
the optimization result of Uncertainty method 2 is that the
power provided by the electric busbar, the hot water busbar
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FIGURE 12. Uncertainty method 2 of operating costs under different
robustness control factors.
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FIGURE 13. Electrical bus optimization results for Uncertainty method
2 when grid interaction is removed (It = 0.25).

and the air busbar is greater than the load, and the gap between
the provided power and the load will become larger in later
period.

Figure 13 shows the electrical bus optimization results
using Uncertainty method 2 when the grid interaction is
removed (I’ = 0.25). Similar to Uncertainty method 1,
when the CHP is not working, the wind power is larger
than the load, and the system shall sell electricity to the
grid. However, the CHP operating period is different from
Uncertainty method 1. In the period of 10 to 17, the power
provided by the IES is greater than the load. If the load fluc-
tuates downward or the wind power and PV output fluctuates
upwards, the excess power of the system needs to be sold to
the grid, which is not efficient from the perspective of energy
and economy. Therefore, this optimization scheme tends to
be conservative during the period of CHP operation.

3) ANALYSIS OF WIND POWER UTILIZATION AND
HYDROGEN UTILIZATION

In this section, Uncertainty method 1 with a CVaR weight of 1
and Uncertainty method 2 with a robustness control factor
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of 0.25 are used for wind power utilization and hydrogen
utilization analysis.

@ Analysis of optimization results of each busbar

Figure 12 and Figure 13 show the results of the electrical
busbar optimization using Uncertainty method 1 and Uncer-
tainty method 2 after removing the interaction with the grid.
If Deterministic method is used, the electrical energy of the
system is mainly derived from the CHP, photovoltaics and
wind power. In all three methods, the period of CHP operation
is 6 — 22. The power of the system is mostly derived from
CHP during the period of CHP operation. Whilst in the period
when CHP is not running, the power of the system is mainly
produced from wind power. The hot water busbar and the
air busbar optimization results of Uncertainty method 1 and
Uncertainty method 2 are similar to Deterministic method.

@ Utilization of wind power

All three methods generate hydrogen from the electrolysis
cell at night, which is stored in the hydrogen storage tank. The
total amount of hydrogen produced is shown in Table 2 and
it can be observed that all three methods generate simi-
lar amount of hydrogen. Referring to the operation plan,
the period of hydrogen generation is from 23 pm to 8§ am the
next day.

TABLE 2. Total amount of hydrogen produced by different methods.

Deterministic Uncertainty Uncertainty
Method
method method 1 method 2
Total amount
of hydrogen
67.58 66.51 67.59
produced
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FIGURE 14. Changes in hydrogen content of CHP fuels in three methods.

@ Hydrogen utilization

In Deterministic method, the hydrogen content in the
CHP fuel varies with the load electro-thermal ratio, and this
relationship is also identified in Uncertainty method 1 and
Uncertainty method 2. As shown in Figure 14, the trend of
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Uncertainty method 2 and Deterministic method is almost the
same in the period of 8 to 17, because the uncertain variables
in Uncertainty method 2 are centered on the predicted values
and there is a close relationship between them. The trend
of Uncertainty method 1 is similar to Deterministic method
only in the period of 12 to 15. This is because the planning
of Uncertainty method 1 needs to meet all conditions of the
500 sets of Monte Carlo simulations and eventually it only
reflects the statistical characteristics of the 500 simulations
to some extent. Because various energy busbars must strictly
abide by the characteristic where the supply is greater than
demand, the changing pattern of the CHP fuel hydrogen con-
tent in Uncertainty method 1 is different from Deterministic
method. If the 500 Monte Carlo simulations are indepen-
dently optimized, the statistical trend should be the same as
Deterministic method for most of the time.

C. COMPARISON OF OPTIMIZATION RESULTS

In order to validate the resistance of proposed optimiza-
tion approaches (i.e. mixed integer linear programing, CVaR
model, robust optimization model) to the fluctuation in the
forecast data, two groups of actual data are established. Out of
these data, one group is built by introducing massive variation
to the forecast data whilst the other group is constructed by
adding tiny fluctuation. The values are shown in Figure 15.
From Figure 10 and Figure 11, the expected system oper-
ation cost is similar when CVaR weight is 1 (in approach:
Uncertainty method 1) and when I'* is 0.25 (in approach:
Uncertainty method 2). Hence, these two optimization sce-
narios are selected for the investigation of fluctuation resis-
tance. There are three main points of comparison:

- whether the optimization approach can meet the demand
of each energy busbar given that the supply is greater
than or equal to the demand

- the running cost

- the speed of the program running.

1) VERIFICATION THAT THE SUPPLY ON THE BUSBAR IS
GREATER THAN OR EQUAL TO THE DEMAND

The optimization results/plans need to be validated whether
they can satisfy the operation requirements. More specifi-
cally, the balancing equations of the energy-carrier busbars
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(1) to (4) are transformed to equations (69) to (71). If these
equations can be satisfied for all time intervals, the optimiza-
tion results/plans can satisfy the operation requirements. Note
that equation (66) of electrical busbar is slightly different
because it is assumed the buying and selling of electricity can
flexibly change without restriction.

—Pgsiap < Ppv + Pw + Purc + Pcnp

—(Le + Pup + Pgc + PeL + Peg) < Pgig s (69)

Onrc + OHE water + QCcHP water + OEB

— (Law + Qac.water) = 0 (70
QcHp.smoke — (QAC smoke + OHE smoke) = 0 (71)
Oup.c+ Qnpin+ Orc + Qac — (Lea +Lia) =2 0 (72)

2) SYSTEM OPERATION COST

The operating costs of the system are mainly composed
of electricity purchasing cost, natural gas purchasing cost
and electricity selling revenue. The amount of electricity
being purchased and sold can be derived from equation (69).
Furthermore, the cost of buying natural gas and electricity
as well as the revenue of selling electricity can be calculated
using equations (53) to (55). The resulted system operation
cost is illustrated by equation (73).

Cver = Cng + Cgria'.b - Cgrid.s (73)

The comparison results of section (1) and (2) are shown
in Table 3. The * indicates that the supply cannot meet the
demand.

TABLE 3. Operating costs of different methods under different
fluctuations.

System Operation Cost ( ¥ : yuan)
Uncertainty ~ Uncertainty ~ Uncertainty

Method Deterministic

method 1 method 2 method 2
method
B=1 (Tt = 0.25) Tt=1
No
. ¥1129.5 ¥1174.6 ¥1190.6 ¥ 1406.7
fluctuation
Small
. ¥1174.8* ¥ 12127 ¥1205.2 ¥ 14133
fluctuation
L
aree ¥ 1297.2% Y13334  ¥I13123% ¥ 14540
fluctuation

Regardless of the fluctuations, the running cost of Deter-
ministic method is always the lowest. However, the associated
planning scheme cannot meet the operational needs. By sim-
ply analyzing the uncertainty in load and output, if the load
increases or the output decreases, both by a specific amount,
Deterministic method scheme will not be able to meet the
demand.

When encountering the small fluctuations described in this
paper, Uncertainty method 1 with weight 1 and Uncertainty
method 2 with I'? of 0.25 can meet the operational require-
ments. The cost of Uncertainty method 2 is 0.62% less than
that of Uncertainty method 1. When large fluctuations exist,

VOLUME 7, 2019



S. Zhou et al.: Design and Evaluation of Operational Scheduling Approaches for HCNG Penetrated IES

IEEE Access

the operating cost of Uncertainty method 2 is 1.52% less than
that of Uncertainty method 2, but Uncertainty method 2 with
['" of 0.25 cannot meet the operational requirements of the
system. Although Uncertainty method 1 runs at a higher cost,
it can operate the system regardless of the fluctuation size.

In order to find a robust optimization scheme that can resist
the aforementioned large fluctuations, the data in Figure 14
are verified from low I'! to high I'?, and it is discovered that
when I'’ = 1, the planning scheme can satisfy the demand in
the case of large fluctuations. However, the operating cost at
this time is relatively high, and the operating costs in the cases
of no fluctuation, small fluctuations and large fluctuations
are 19.75%, 16.54% and 9.04% higher than the operating
expenses of Uncertainty method 1, respectively.
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FIGURE 16. Different method air busbar output and load.

In order to analyze why Uncertainty method 2 with I'? of
0.25 cannot meet the system operation requirements during
large fluctuations, the air busbar is selected as the investiga-
tion object. The reason for choosing the air busbar is that this
bus is the simplest busbars that is with uncertainties. Only
the load is uncertain and this bus is enough to reflect the
characteristics of the system planning. Figure 16 plots the
cooling power and the cooling load corresponding to a mixed
integer linear programing, a CVaR model with weight 1,
a robust optimization model with T'* of 0.25 and a robust
optimization model with I'" of 1 when large fluctuations
are encountered. In three intervals near 12, 16, and 18,
the cooling power of Deterministic method and Uncertainty
method 2 with I'? of 0.25 is less than the load. Consequently,
Deterministic method and Uncertainty method 2 with ' of
0.25 cannot satisfy the system operating requirements. For
the other two optimization methods satisfying the system
operation requirements, Uncertainty method 1 with weight 1
has a higher output than Uncertainty method 2 with I'* of 1
at any time and can thus resist greater fluctuations.

3) PROGRAM RUNNING TIME COMPARISON
During the planning process, the speed of the program
should also be considered, in addition to the performance of
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TABLE 4. Average running time of programs for different methods.

The main configuration of the computer is Intel Core-i7 8750H 2.2-GHz and

16G 2666MHz memory.
Deterministic Uncertainty method 1 Uncertainty
Method
method N=500 N=10 method 2
Program
running
0.74 2810.71 12.75 5.92
average
time /s

the method. Table 4 summarizes the average running time
of the program in which all three methods run 10 times
under different conditions. Deterministic method run time is
less than 1 second. The average running time of Uncertainty
method 2 is only 0.2% of Uncertainty method 1 when Monte
Carlo simulation is required to run 500 times. Even if only
10 times of Monte Carlo simulations are performed, the time
used is still more than twice that of Uncertainty method 2.
Moreover, too few Monte Carlo simulations will result in
uneven distribution of random numbers, which will affect the
reliability of the simulation results. The recommended num-
ber of Monte Carlo simulations is between 200 to 500 times.

4) SUMMARY OF COMPARISON RESULTS

According to the comparison results, although Deterministic
method is the fastest, its performance is the worst and it is not
suitable for economic dispatch. When the prediction accuracy
is high and the external influence on the system is small,
Uncertainty method 2 with appropriate robustness control
factor is more appropriate because it has the advantages of
relatively fast computing speed and relatively low operating
cost of the system. When the environment is volatile and
the accuracy of prediction is difficult to guarantee, the speed
of the program should be de-prioritized, and Uncertainty
method 1 with better risk resistance should be selected.

V. CONCLUSION

In order to absorb wind energy at night and reduce the amount
of electricity purchased from the grid during the daytime, this
paper deploys hydrogen generation and storage equipment to
the integrated energy system, and supplies hydrogen to the
CHP unit and the hydrogen fuel cells. The hydrogen content
of the fuel can affect the output electro-thermal ratio of the
CHP which can be used to design control strategy to achieve
the most efficient use of hydrogen. Taking into account the
uncertainty of wind power, photovoltaics and load, the CVaR
and the robust optimization can be used to reduce the risk.
By simulating a set of predicted values for wind power,
photovoltaics, and loads, and then constructing two sets of
data based on the predicted values, the following conclusions
can be made.

1) Compared with the integrated energy system without
hydrogen equipment, the HCNG penetrated integrated
energy system described in this paper significantly
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improves the night time wind power utilization rate by
using wind power to generate hydrogen at night, and
consumes the corresponding stored hydrogen during
the day time to reduce the electricity demand from the
grid during the day.

2) The content of hydrogen in the CHP fuel will change

with the variation of the load electro-thermal ratio.
If the CHP output ratio is extremely high and the
hydrogen content does not reach the maximum value,
the increase of the load electro-thermal ratio will
increase the hydrogen content. Using this relationship,
the efficiency of using hydrogen can be maximized and
the operating cost can be reduced.

3) When the actual value significantly deviates from the

predicted value, Uncertainty method 1 has lower sys-
tem operating cost and higher risk resistance capabil-
ity, while Uncertainty method 2 has lower operating
cost when the fluctuation is small. Considering the
performance and the computing speed, it is ideal to
use Uncertainty method 2 when the prediction is accu-
rate. By contrast, Uncertainty method 1 performs better
when it is difficult to guarantee the prediction accuracy.
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