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ABSTRACT The future smart grids (SGs) require advanced capabilities in terms of automation, processing,
monitoring, and communication. The most crucial component in the successful sustainability of SGs is
communication management. In the vSDNs, a hypervisor is implemented between a physical infrastructure
and a control plane that abstracts the underlying SDN infrastructure into multiple isolated virtual slices,
i.e., we can have multiple vSDNs each with its controller. For that purpose, the virtualized SDNs offer a
promising solution as they offer better network management, programmability, and virtualization. However,
vSDN-based SGs are prone to many security issues. To disturb operations of the SGs, the security of the
vSDN can be compromised by manipulating the jeopardized switches in the DDoS attacks to repress the
resources of vSDN controllers. To prevent the exploitation of a vSDN-based SG architecture and preserve its
limited resources, this paper formulates the strategic interaction between a hypervisor monitoring its vSDN
controllers and the source of new flow requests potentially launching a DDoS attack, via compromised
switches, as a non-cooperative dynamic Bayesian game of intrusion detection. Our game model enables a
hypervisor to distribute its limited resources to monitor guest vSDN controllers optimally. The performance
evaluation via simulations shows that our game model enables a hypervisor not only to increase the
probability of detecting distributed attacks and minimize false positives but at the same time, its monitoring
costs get reduced as the allocation of resources to monitor vSDN controllers depends upon its belief about
the source of the attacks that it forms based on its observation.

INDEX TERMS Software-defined networks, smart grids, DDoS attacks, hypervisor, Bayesian game theory.

I. INTRODUCTION
A Smart grid (SG) is a critically important infrastruc-
ture designed to replace the conventional power grid. The
dynamic change in the demand of users requires uninter-
rupted availability of communication [1]. Thus, the SG envi-
ronment accommodating several utilities with huge data
storage does not only calls for a common platform for data
center virtualization. But, also a platform which provides
minimal network and power management efforts [2].

The utilization of the Cloud Computing (CC) model
can significantly contribute to the SG’s computational
requirements [3]. However, a grid communication network
is a vital component for reliable and efficient transmission
of real-time data generated by deployed devices. Emerging
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cloud-based SDNs can provide better networking opportu-
nities as SDN introduces the abstraction and centralized
control, which along with CC can provide dynamism and
controllability [4].

The integration of SDNs and cloud computing can provide
splendid service delivery platforms. Irrespective of enormous
opportunities, a cloud network faces significant network chal-
lenges due to the flexible configuration of appliances, policy
enforcement complexities, and topology independence. In the
meantime, the SDN paradigm contributes significantly to
address these problems. SDNs introduce a centralized con-
troller, software-based traffic analysis established onmachine
learning and statistical techniques, and the dynamic update of
forwarding rules. The programmability offered by the SDNs
provides support for the accumulation of intelligence from
Intrusion Detection Systems (IDSs) and Intrusion Preven-
tion Systems (IPSs) [5]. Virtualization in the SDN-based SG
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has been introduced to provide network centralization and
virtualization [5].

The adaption of vSDNs can significantly enhance the flex-
ibility of SGs. Generally, a SG infrastructure is comprised of
thousands of devices to assist in monitoring and control of
resources, which further automates the process of operations
in a grid. For that purpose, the Supervisory Control and Data
Acquisition (SCADA) - distributed system is responsible
for the management and monitoring of automated processes
and components of a grid. However, to optimally operate
SCADA, efficient resource management of the underlying
communication network is required. Although a vSDN in
a SG will support the resilience system, it is necessary to
highlight that the above-discussed loopholes in the CC and
the SDNs concurrently transcend to virtualized SDNs based
SGs. Above all, it is also essential to realize the successful
attainability of a single point management failure in vSDN.

A vSDN provides dynamic network architecture and rel-
atively easier detection of the DDoS attacks due to the
network-wide knowledge. It can build secure policies to mon-
itor traffic patterns for attack detection [6]. On the contrary,
it exposes the network to many security problems. These
threats are categorized based on whether the target of an
attack is the application layer, the control layer, or the infras-
tructure layer [7]. For this reason, the security threats in the
vSDN-based SGs can belong to the three main classes: a)
devices in a vSDN or applications on a vSDN controller get
compromised, b) devices of the SG get compromised [8],
and c) a hypervisor in a vSDN either gets compromised or
becomes resource-constrained. Nonetheless, the online con-
nectivity of the future smart grids poses cyber-physical threats
which can contribute to the potential disruption of power
supply by the SGs.

One significant threat to the virtualized SDN-based SGs is
a DDoS attack. It is mostly a botnets driven attack, where
a handler under the control of an attacker directs its’ dis-
tributed automated malicious bots to launch an attack on a
targeted cyber-physical system [9]. In the vSDN-based SGs,
hypervisors and vSDN controllers are the potential targets
of the DDoS attacks. These multiple distributed bots can
synchronously flood SDN switches with packets resulting
in numerous packet-in messages sent to a vSDN controller
for flow rules [10]. Similarly, Openflow switches also get
compromised and participate in DDoS attacks. A DDoS
attack aims to cease services of the authenticated users by
flooding a server with fake requests to exhaust resources of
the victim controller. Hence, the overutilization of a single
vSDN controller affects the hypervisor layer, which degrades
the overall performance of several or all its vSDN tenants.
As a consequence, the performance of SG operations also
degrades. This intrusionmakes services unavailable for a spe-
cific time resulting in the loss of revenue and additional cost
for mitigation in SGs [11]. For instance, from [8], we infer
that a compromised switch of a vSDN in a sub-station will
have a much severe impact in comparison to a vSDN switch
in any Vehicles-to-Grid (V2G) network.

Initially, it was thought that the SDNs could provide a
better defense mechanism against the DDoS attacks. How-
ever later, the vulnerabilities of the SDNs were discovered
which need to get addressed by the research community.
In this paper, we consider a scenario in which a DDoS
attack source and a hypervisor strategically interact with
each other. A DDoS attacker launches attacks on the vSDN
controllers via compromised SDN switches to incur maxi-
mum damage to vSDN controllers and as a result the SG
applications. Contrarily, at the same time, a DDoS attack
source wants to remain undetected during monitoring by a
hypervisor. On the other hand, a hypervisor aims to optimally
distribute its limited monitoring resources over the vSDN
controllers it hosts in a way that maximizes the probability
of detecting an intrusion if any occurs. However, at the same
time, the hypervisor wants to minimize its monitoring cost.
We present an optimal resource allocation solution against
the detection of DDoS attacks affecting the control plane.
Ultimately, we advocate the use of vSDNs for timely and
reliable resource management for SG systems in case of
DDoS attacks.

The aforementioned strategic interaction between a hyper-
visor and a possible attack source via comprised switches can
be ideally formulated as a game. Algorithmic game theory
is a mathematical tool to formulate, analyze and solve the
strategic situations of conflict or cooperation in which mul-
tiple agents interact in a way that the payoffs that they get
are interdependent on the actions of each other. We present a
dynamic Bayesian game-theoretic intrusion detection model
against the DDoS attacks on the control layer to ensure flexi-
ble operations of a vSDN-based SG networks. The proposed
game model enables a hypervisor to optimally allocate its
resources to monitor the vSDN controller it hosts to detect an
intrusion, while at the same time, mitigating severe damage
to the functionality of vSDNs.

A. CONTRIBUTIONS
In our proposed work, we ensure to meet the SG’s power
system resource requirements by incorporating a mechanism
which considers the rational behavior of a hypervisor and an
attacker which is not only aware of the strategies of its oppo-
nent i.e., the defending hypervisor but incorporates a mixed
strategy to counter its actions. We present a game-theoretic
Bayesian Nash Equilibrium solution, which addresses the
issue mentioned above by distributing the available resources
to monitor the vSDN controllers hosted by a hypervisor.
Given the limited amount of resources available for detection,
a hypervisor H monitors each of its tenants by specifying
a threshold over the policy composition overhead (as in the
case of Compositional hypervisors discussed in Section-II).
Based on excessive requests from individual vSDN con-
troller hypervisor optimally distributes detection resources.
This mechanism works by forming belief toward the type of
switch. A hypervisor establishes this belief while observing
the policy formation requests from each of the tenants, which
may exceed their pre-defined limits due to legitimate or
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illegitimate reasons. Furthermore, the main contributions of
this work are summarized as follows:
• A hypervisor based dynamic Bayesian game-theoretic
IDS is modeled to build trust towards the source packetin
messages. To the best of our knowledge, this model is the
first approach in virtualized SDNs which addresses the
problem of limited resources allocated to a hypervisor
for intrusion detection.

• It is a resource-aware detection model that enables a
hypervisor to efficiently monitor its hosted vSDN con-
trollers by distributing monitoring resources over them
and provides maximum detection without overspend-
ing the security resources on monitoring. This model
addresses the realistic approach of a malicious entity,
which via a compromised switch aims to minimize its
detection by deviating its behavior between a normal
and a malicious entity. In the proposed model, the deci-
sion of a hypervisor to optimally distribute its mon-
itoring resources over its vSDN controllers depends
upon: 1) worth of each of the hosted vSDN controllers,
2) resource consumption level, 3) cost of monitoring,
4) cost of attack, 5) its belief about the maliciousness
of a controller, 6) false alarm rate and 7) the detection
rate.

• Performance of the proposed game model is evaluated
extensively via simulations. We assess the impact of
the following parameters on the strategies of both the
players: a) financial worth of the controllers, b) cost of
monitoring, c) gain cost ratio, d) detection rate and e)
false alarm rate.

II. BACKGROUND
This section provides a brief overview of: a) the architecture
of smart grids and their related issues, b) virtualization in
the software defined networks, and, c) the impact of DDoS
attacks in vSDNs.

A. SMART GRID ARCHITECTURE AND RELATED ISSUES
The traditional grid supports four tasks of power genera-
tion, transmission, distribution, and management of produced
electricity. In contrast, the future SG is an amalgam of mul-
tiple technologies [12]. Whereas, SG resilience hinges on
its timely and reliable delivery service. They constitute a
layered bi-directional communication network from which
the data is collected to be delivered to the main control center
through the Wide Area Network (WAN). SCADA systems
are considered the main components of smart grids. They
are responsible for control, monitoring, and acquisition of
data from substations and equipment for energy delivery. This
system further comprises the core control center called Mass
Terminal Unit (MTU) and widely distributed substations;
MTU is the main component to gather information and to
send commands to substations.

SDN-based communication infrastructure provides a
viable solution to transport massive amounts of data
generated by SG devices towards the servers. The SG envi-
ronment accommodates several utilities with massive data

storage which does not only call for a common platform for
data center virtualization but, also a platform which provides
minimal network and power management efforts [2]. The
utilization of the CC model can significantly contribute to
the computational requirements of smart grids [3]. However,
a communication network is a vital component of the SG
environment. Emerging cloud-based SDNs can provide bet-
ter networking opportunities as SDN introduces the abstrac-
tion and centralized control, which along with CC will pro-
vide dynamism and controllability [4]. The advancements
in digital communication have provided high data transfer
rates, P2P communication, programmability, and now virtu-
alization benefits contributed by vSDN. However, SDNs are
also prone to DDoS attacks. The cyber-resilient SG requires
dynamism, which calls for flexibility, availability, integrity,
and confidentiality of data.

B. HYPERVISORS IN VIRTUALIZED SOFTWARE DEFINED
NETWORK:
An SDN network can be virtualized by incorporating a hyper-
visor between the control plane and the SDN data plane.
Hypervisors were initially developed in CC to monitor the
hosted virtual machines and to allocate resources to them.
Analogously, virtualization in SDN-based clouds for virtual
networking adapts a hypervisor to monitor virtual networks
and to allocate network resources. The operations of multiple
virtual networks demand an infrastructure with sufficient
resources. A virtualized network in SDNs requires the imple-
mentation of a hypervisor between the physical infrastructure
and controllers. As illustrated in the Fig 1, the hypervisor
gives each virtual SDN (vSDN) controller, the perception of
being connected directly with the vSDN network. It provides
different levels of abstraction to its tenants, which depends
on the characteristics of the underlying network. One such
abstraction of the resources of physical nodes includes CPU
and flow table resources [13].

One of the design challenges of hypervisor functions in
the control plane virtualization is the confinement and protec-
tion of the tenants. The isolation is provided for the reliable
operation of tenants, whereas, protection contributes to the
independent performance of each tenant without network
degradation. Isolation is a much needed requirement in the
control plane which is highly influenced by the resources
available to a hypervisor from their hosting platforms. For
instance, computational resources can significantly influence
the packet processing performance. Likewise, the storage
capacity also restrains the control plain buffering. For this
reason, a vSDN requires the confinement and the protection
features at both the data and the control planes. Since the
hypervisor layer lies between the vSDN controllers and the
physical infrastructure, it is pertinent to provide these features
for the hypervisor processing resources among multiple ten-
ants.

C. DDOS ATTACK IN COMPOSITIONAL HYPERVISORS
Compositional Hypervisor (CH) is a policy-based hypervi-
sor responsible for constructing Openflow rules based on
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FIGURE 1. Illustration of a virtual software defined networking based
smart grid.

inputs received from multiple distinct network applications.
The CH focuses on the policy consumption overhead, which
includes the computation and rule update based overheads.
The computational overhead is due to the time required for
calculating a new table, and the rule update overhead is due to
the number of control messages sent in order to obtain a new
flow table. If any of the hosted controllers get bombardedwith
new packets, each will send a request for a new flow table,
and CH will need to compute a new policy by integrating
individual policies which will ultimately increase the policy
composition overhead [14].

If Openflow is the protocol employed for an SDN con-
troller, the DDoS attack substantially affects the working
of the vSDN controller. In the normal working of an SDN,
in case of a new packet with no policies available, the data
plane sends queries to the control plane to obtain flow
rules [15]. That is, either a packet header or a complete packet
is transmitted. Thus, the vast network traffic transmitting
complete packets to the controller consumes bandwidth and
controller’s processing capacity [7]. Due to the high volume
of the incoming packets, flow tables will get filled with fake
flows, and this behavior will consequently have an impact
on the working of CH as CH is responsible for composing
policy based on received individual policies of hosted vSDN
controllers.

To prevent a DDoS attack from affecting virtualized SDN
based SGs, we consider an attack that exploits a switch for
generating low-traffic flows to trigger packet-in messages
to the controller. This attack will ultimately overburden the

hypervisor with policy composition tasks by over-consuming
its resources. Thus, ultimately exhausting the processing and
storage resources of a hypervisor shall lead to the unavail-
ability of the services. The virtualized SDNs is a growing
research area for which the ever-growing threat of DDoS
attacks has been largely neglected. In the following section,
we discuss the DDoS attack detection mechanisms for SDNs
available in the literature.

III. RELATED WORK
The detection of the compromised switches in SDN is
a longstanding challenge. Potentially compromised SDN
switches can be manipulated to conduct several attacks
such as black-hole attacks, man-in-the-middle attacks, and
DDoS attacks. The vulnerabilities causing DDoS threats to
vSDN infrastructure naturally arise from SDN. Several tech-
niques have been proposed in the literature to detect DDoS
attacks in the SDNs. This section discusses the literature
on DDoS attacks from two different perspectives. Firstly,
as this work addresses the DDoS attacks against the control
plane, we review the detection mechanisms of compromised
switch-based attacks in the control layer. Secondly, we review
the efforts made from the game-theoretic perspective for
controller assignment based solutions.

A. DETECTION OF COMPROMISED SWITCH-BASED
ATTACKS
In this section, we discuss several approaches introduced
to detect compromised switches via which DDoS attacks
get launched. We categorize these approaches into statistical
solutions, machine learning-based solutions, and techniques
that require an additional module for compromised switch
detection.

1) STATISTICAL BASED MECHANISMS
These solutions rely on the compilation of statistical fea-
tures of the normal traffic, which are compared against
new incoming traffic to detect an anomaly. In [16], mali-
cious switch monitoring and detection system is proposed
for OpenFlow protocol. Using this technique, two kinds of
issues, i.e., packet swapper and packet dropper are inves-
tigated. For that purpose, two additional functional blocks
are added to a SDN controller. One for malicious switch
detection and prevention, and another for a policy block
containing rules against an identified malicious switch. How-
ever, the proposed solution can be extended to other forms
of abnormal behavior. Moreover, the packet dropping detec-
tion mechanism relies on the statistics reports of the ports
received from switches. Hence, the architecture overlooks
the impact of falsified information received from dishonest
switches.

To address the limitation mentioned above of incorrect
information of flow statistics from the faulty switches,
a Byzantine model-based prototype is proposed in the [17].
The objective of this model is to tolerate faulty switches
automatically. A proxy layer is implemented, which is a
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TABLE 1. Summary of related work on detection of compromised switch-based attacks.

separate function layer, only to resolve the issue of flow
statistics information collection. Nevertheless, the question
of receiving inaccurate information from the faulty switch is
still un-addressed.

To address the limitation of the ineffective distribution of
resources between legitimate users and an attacker, and to
identify the location of the attackers, a SDN secure controller
algorithm is presented in [18]. This algorithm also relies on
the information obtained from switch port statistics. Since
the controller has a global network view, it gets hold of the
location of the source of the attack. However, this mechanism
is counterproductive against DDoS attacks, as well as their
claim of addressing the problem of a compromised switch
is opaque due to the collection of flow statistics information
from the compromised switches.

A statistical tool named Sequentially Probability Ratio
Test (SPRT) is proposed to detect the compromised interfaces
causing low-traffic flow-based DDoS attacks in [10]. The
introduced mechanism reduces false positive and negative
error rates. However, the monitoring cost of the procedure is
not well considered.

To detect the problem of compromised SDN devices,
i.e., controllers and switches [19], backup controllers are

employed to identify unexpected behaviors among primary
controllers and switches. The backup controllers audit
the information of network update events received from
controllers and switches. Whereas suspected devices are
designed to support the collection of analyzed information,
yet the rational behavior of compromised devices is not taken
into account.

2) MACHINE LEARNING BASED MECHANISMS
Machine learning-based techniques encompass methods
based on statistics and data mining. However, there is a subtle
difference as they involve performance optimization based
on past results. In [20], a Hidden Markov Model (HMM) is
introduced for security awareness and quantification of the
network based on the provided sequence of observed flow
features. A total of twelve typical features of four kinds of
attacks are collected that include a flooding attack, a com-
promised switch-based attack, ARP, and network scanning
attack. These features are extracted by building a feature
extractor and HMM is used in an assessor to develop a
quantification method. Baun-Welch, an unsupervised algo-
rithm is used to train the model, whereas Viterbi algorithm is
used to predict the status of an observed sequence. However,
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TABLE 2. Summary of related work on game theory based approaches for controller assignment.

the model can be improved for more complex scenarios,
and the parameters can be optimized to provide a low error
rate.

3) MODULE BASED MECHANISMS
Apart from the frameworks discussed above, we present tech-
niques that incorporate additional modules either in a con-
troller or in an infrastructure layer. Authors in [21], address
the network topology and the data plane forwarding attacks
mounted by jeopardized switches and hosts. SPHINX is built
on a flow graph model which provides accurate real-time
verification of the network behavior by focusing on the fol-
lowing four types of messages to get the metadata: 1) the
packet in, 2) features reply, 3) flow mod and 4) stats reply.
The SPHINX intercepts Openflow messages between the
controller and the switch to build updated flow graphs and
to validate the network. However, the attack detection time
is delayed by ingress queues and long processing time of the
packet inmessages. Also, it fails to identify malicious ingress
and egress switch.

Amiddleboxmanagement architecture is proposed in [22],
to extend the functionality of the Openflow switches.
It enables the deployment of programmable middleboxes to
support the intrusion detection and the intrusion prevention
systems. The Openflow extends its support for ClickOS VMs
which serve as the isolated middelboxes in the switches.
These middleboxes are configured by a controller and are
executed in a distributive manner in VMs of the switches.
Each switch detects and prevents malignant activities locally
and reports to the controller. The controller receives multiple
alerts of the intrusion from switches and collaborates with
them to form the final intrusion decision. However, the com-
promised switches can deliberately report false alerts to con-
fuse the controller. In this case, the collaboration of alerts
prevents false alarms. Furthermore, compromised switches
are eliminated to reduce the false positive and negative rate
of alert collaboration.

From the above-discussed literature, we infer that most of
the mechanisms rely on the statistical flow-based information
obtained from suspected switches which are not a reliable
source of information; an infected switch can provide false
reports and may variate its behavior to minimize its chances
of detection. Moreover, some of the techniques introduce
an additional layered approach in SDNs due to which we
claim that SDN virtualization can provide an effective and
efficient mechanism over an additional layer with limited
functionality.

B. GAME THEORY BASED APPROACHES FOR
CONTROLLER ASSIGNMENT
Game theory provides a mathematical tool to formulate, ana-
lyze and solve the situations of strategic interactions in which
the payoffs the decision makers get are interdependent on
their actions. For instance, in the attack-defense scenario,
the payoff to an attacker increases when it causes maximum
damage, but without being caught by the defender to avoid
penalties. Similarly, the payoff of the defender increases
when it maximizes the chances of detecting an intrusion
if it happens, but by allocating as minimum monitoring
resources as possible because of the associated costs. Such
non-cooperative strategic situations of conflict can ideally be
modeled using game theory. Realizing its importance, various
problems related to SDNs such as controller assignment, mit-
igation, and decision making have been modeled as games.
In this sub-section, we highlight some of the game-theoretic
controller assignment based approaches proposed for the
security issues of the control layer in SDNs. In the following
discussed literature, a game is played between various com-
ponents of SDN infrastructure as players to maximize their
expected utilities.

In [23], authors incorporate dynamic Stackelberg’s game
model and countermeasure selection. Since the adminis-
trator has control over resource optimization, the frame-
work provides a reward and punishment model for network
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bandwidth consumption such that it degrades the bandwidth
to an attacker for a limited duration. The IDS presents the
identification of bots based on the signature match. In order
to implement a punishment mechanism to restrict the attacker
for future malicious activities, authors have implemented
the Nash Folk theorem, whereas the framework is imple-
mented on top of an ODL controller which functions through
the northbound API and evaluations are performed using
Mininet.

A two-phased dynamic SDN controller assignment mech-
anism is proposed to minimize the controller response time
and traffic overhead in [24]. This problem is formulated as
a stable matching problem and coalitional formation game.
The stable matching guarantees the improvement in response
time, which is reduced by up to 86 percent. Whereas, a group
of switches associated with the controller are perceived as a
coalition that can negotiate to improve their response time.

A zero-sum based decision-making approach is introduced
by [25] to elect the master controller for migrated switches.
This mechanism is designed to alleviate the performance of
the overloaded controller. The migrated switches are com-
modities while controllers are the players. The competing
controllers use load balancing to trade commodities in order
to increase their payoffs.

In [26], a bargaining game is modeled to obtain multi-
objective optimal placement of controllers based on: a) the
communication overhead and latency between switches and
a controller, and, b) between controllers and guaranteed load
balancing between controllers. Due to the conflicting objec-
tives, a cooperative Nash bargaining game model is used to
find a unique solution that satisfies maximum utility for both
players.

From the above discussion, we can deduce that the objec-
tive of all the players is to maximize their payoffs. Never-
theless, none of them address the varying type of concerned
players. In conclusion, SDNs lack game-theoretic IDSs for
DDoS, and most of the approaches focus on optimizing the
response time or performance of overloaded controllers.

Conclusion: This section provided a comprehensive
overview of the existing detection and mitigation schemes
against the DDoS attacks in the control plane of SDNs.
From it, we conclude that these solutions do not consider the
limited controller resources for optimal performance, as well
as, they are based on the false assumption that the compro-
mised switch will always behave maliciously. In addition,
the literature lacks a vSDNs based solution for the problem of
compromised switches aiding DDoS attack. While no solu-
tion exists to resolve the rational behavior of compromised
switches i.e., being a malicious agent, it will try to hide
its presence to induce maximum damage. Hence, we pro-
vide a hypervisor-based dynamic bayesian game-theoretic
IDS for vSDN, which eliminates the need for an additional
layer of the limited functionality [17] and allocates mon-
itoring resources to vSDN controllers efficiently. Overall,
the existing methods seek to maintain the performance of
the overloaded network by adding more to the consumption

TABLE 3. Parameters.

of resources. Our work is the first in the domain of vSDNs
to provide optimal load distribution for the detection of the
compromised switches participating in the DDoS attack.

IV. GAME MODEL
In this section, we formulate the strategic interaction between
a hypervisor H defending its set of vSDN controllers against
a DDoS attack on them, launched via a compromised switch
(S), by an attacker D. A hypervisor aims to maximize its
payoff by detecting any intrusion if it occurs, however, at the
same time, it wants to minimize the costs it incurs due to
the allocation of its limited resources to monitor vSDN con-
trollers. On the other hand, via a compromised switch, the aim
of a DDoS attackerD is to maximize its utility by exhausting,
as much as possible, the resources of the vSDN controllers
hosted by H to interrupt SG applications. Contrarily, it wants
to remain undetected during monitoring by H for which it
has to reduce its intensity of the attack. This is a strate-
gic interaction of incomplete information as the hypervisor
H does not know whether it is monitoring a set of vSDN
controllers that are experiencing resource exhaustion due to
legitimate requests from un-compromised switches, or, due to
an attack launched via a compromised switch. We formulate
this scenario as a non-cooperative reward and penalty based
dynamic Bayesian game of intrusion detection between a
Hypervisor H and a switch which might be compromised by
a DDoS attacker D to launch attacks.

A DDoS attacker allocates its resources to exhaust
resources of the hosted controllers and to compromise the
normal functioning of the vSDN infrastructure. This process
gives this malicious entity D, a payoff which depends on
worth wi of the compromised vSDN controller ki, as well
as the cost of attack ca which depends on the resources the
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FIGURE 2. Strategic interaction between a hypervisor H and an attacker D.

attacker D allocates to ki to carry out the attack. A successful
attack benefits the attacker to propagate its attack surface area
to the SG infrastructure making its services either unavailable
or damages their QoS satisfaction. Whereas, the defender
aims to monitor hosted vSDN controllers packet inmessages
to prevent disruption in SG operations. Since the hypervisor
H allocates these resources to the hosted vSDN controllers,
it monitors each vSDN controller directly from the infras-
tructure; it is not possible for the vSDN controller to hide
resource exhaustion. Nevertheless, the hypervisor may decide
to remain idle by not monitoring any of the vSDN controllers.
Similarly, a vSDN controller which is not entirely compro-
mised yet provides information to the hypervisor about the
compromised switch sending queries for flow rules.

We consider a scenario where a hypervisor H is host-
ing a set K of N number of vSDN controllers. By K =
{k1, k2, . . . , kN }, we represent the set of vSDN controllers
protected by the H, whereas R is the total resources available
to H for distribution among the N hosted vSDN controllers.

Moreover, the probability with which a hypervisor monitors
any controller ki is presented by pi, while the probability
with which D attacks any controller kj is represented by qj.
Similarly, we represent the hypervisor’s probability of not
monitoring any of the hosted controllers by p0, and the
attacker’s probability of not attacking any controller by q0.

The fig-2 depicts the four possible example scenarios of
the strategic interaction between a Hypervisor H and an
attacker D which launches attacks on the controllers via a
compromised switch. The fig-2a depicts a scenario in which
the hypervisor monitors the controller ki, and the attack
goes undetected because D launches an attack on a different
controller kj, i.e., i 6= j; this results in the loss of revenue
and resources to the hypervisor. On the other hand, fig-2b
depicts the scenario where the hypervisor monitors the same
controller that is under attack, i.e., i = j, resulting in suc-
cessful detection of the intrusion by the hypervisor.Moreover,
fig-2c presents a scenario where a hypervisor does not mon-
itor any controller with the probability p0, while D attacks a
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TABLE 4. Payoff matrix for the game between a hypervisor and an
attacker of type TS = 1.

controller kj with the probability qj. Lastly, fig-2d portrays the
scenario, where D does not attack any of the controllers with
probability q0, whereas, the hypervisor monitors a controller
ki with the probability pi.
Note that the proposed model is based assuming that a

threshold is defined over the number of packet in messages
from each switch and a list received at t1 and t2 is aggregated.
If the count of the received requests exceeds a pre-defined
threshold, the hypervisor notifies the affected controller to
isolate the infected switch. However, it is out of the scope
of this paper; the focus of our methodology is to identify
malicious intruders through a Bayesian game model and to
provide an optimal load distribution mechanism for uninter-
rupted SG operations.

From the assumptionmentioned above, we define a penalty
cje to the attacker once the hypervisor detects the malicious
switch. This penalty presents the loss the attacker suffers from
the immediate isolation of an infected switch by the vSDN
controller. cje may represent the cost an attacker may have
borne to infect the switches or any other associated costs
such as to infiltrate the vSDN or the bots via it launched
the DDoS attack. Moreover, the resource exhaustion at the
vSDNmay occur temporarily due to legitimate requests from
a legitimate user or malicious requests from a compromised
switch. Hence, the hypervisor keeps updating its belief for a
particular switch using the proposed dynamic Bayesian game
model.

In the following subsections, we discuss the payoff matri-
ces in the Tables 4 and 5 presenting the reward and the penalty
of the players, which results due to their strategic interaction.
It is pertinent to note that the hypervisor does not know
whether it is monitoring a set of vSDN controllers which have
been compromised via a DDoS attack, or, it is monitoring
the set of vSDN controllers on which no attack is launched.
Thus, the hypervisor is not sure whether it is playing the game
against a compromised vSDN as depicted in the table 4, or,
the one depicted in the table 5. For this reason, we have mod-
eled this strategic interaction as a non-cooperative Bayesian
game; the hypervisor associates a belief µ0 about the game
the being played; with the probability µ0, it assumes the
game presented in the table 4 is being played, and with the
probability 1-µ0 it, it assumes the game depicted in the table 5
is played. The hypervisor will update its belief based on its
observations. Next, we calculate the expected utilities to the
players.

A. EXPECTED PAYOFF OF AN ATTACKER
The objective of a DDoS attacker D exploiting a compro-
mised switch is to distribute its resources optimally on the

TABLE 5. Payoff matrix for the game between a hypervisor and a regular
player of type TS = 0.

hosted set of vSDN controllers managed by a single hypervi-
sor such that it can minimize its detection probability by the
hypervisor, and to consequently flood the hosted vSDN con-
trollers managing SG applications with unnecessary requests.
Hence, the attacker will assign each compromised device
the task of flooding packet in messages to each vSDN con-
troller. The attack succeeds when it drains the resources of
the attacked vSDN controller, which ultimately affects the
performance of the hypervisor to allocate resources to the rest
of the hosted vSDN controllers and the SG applications.

We now discuss the payoffs of an attacker illustrated in a
payoff matrix in Table 4. They represent the payoffs which
include the reward, cost and the penalty an attacker may
get due to its strategic interaction with the hypervisor in a
non-cooperative game. An attacker will gain a payoff of wi

as the worth of the successfully attacked vSDN controller ki
along with the gain R due to successful resource consumption
of the hypervisor, minus the cost cia of the attack; this is
shown in the fig 2a. However, if the malignant switch gets
identified for an attack, as in the case, when the belief of
H towards its type increases, the attacker receives a penalty
of cie together with the cost of the attack, as depicted in the
fig 2b. This penalty is significantly higher than the reward the
attacker achieves in the case of a successful attack. In other
words, the identified malevolent switch gets permanently
blocked from sending the flow rule requests to any vSDN
controller will cause a significant loss cie to the manipulative
attacker.

Let q0 be the probability with which an attackerD does not
overload vSDN controller with unnecessary requests, while
with probability qj, it attacks the vSDN controller kj, such
that, 1 ≤ j ≤ N . The total set of actions available toD areA =
{a0, a1, a2, . . . ., aN }, where a0 depicts the action not attack
by the DDoS attacker on any of the controllers. Likewise,
the actions {a1, a2, . . . ., aN } represent attack action on jth

vSDN controller. The action of the attacker which results in
obtaining a negative payoff is limited to the scenario where
the attacker gets identified for its malicious behavior and
gets isolated from sending any form of requests to the vSDN
controllers hosted by the hypervisor. Thus, diminishing the
consequences of a successful DDoS attack in vSDN based
SG. We now determine the expected utility of the attacker D
based on its type and strategic behavior.

UD(aj) = µ0[U (aj,mi=j)+
N∑
i

U (aj,mi 6=j)]+ (1− µ0) ∗ 0

UD(aj) = µ0[U (aj,mi=j)+
N∑
i

U (aj,mi 6=j)] (1)
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By replacing the above utilitiesU (aj,mi=j) andU (aj,mi 6=j)
with payoffs in tables 4 and 5, we obtain the expected utility
of the attacker for action attack as:

UD(aj) = µ0[qjpi=j(−cje − c
j
a)+ qj

N∑
i 6=j

pi 6=j(wj + R− cja)

+ qj(1−
N∑
i

pi)(wj + R− cja)] (2)

where ki is the vSDN controller monitored by the hypervisor
such that 1 ≤ i ≤ N .

In this paper, we address the scenario where, in each round,
a hypervisor monitors one of the vSDN controllers it hosts,
and an attack is launched by a DDoS attack source on only
one of the vSDN controllers as well. Hence in each round,
the payoff of the attacker would be the worth of an undetected
vSDN controller; one such scenario is depicted in fig 2. The
summation in equation (1) represents the utility of an attacker
in a scenario where the monitored vSDN controller is not the
one which gets attacked, i.e., i 6= j. Moreover, the summa-
tion also includes the scenario when the attack does not get
identified due to the hypervisors decision of remaining idle.
Whereas, U (aj,mi=j) in the above equation 1 demonstrates
the payoff of an attacker for a scenario when it attacks the
vSDN controller kj, and it gets caught by the hypervisor
because it monitors the same controller. So happens when
i = j. However, the attacker does not suffer any loss in the
case of normal behavior. Thus the utility of the attacker for
the action not-attack is given as;

UD(a0) = µ0[0]+ (1− µ0)(0)) = 0 (3)

We now calculate expected utility of the DDoS attacker by
adding utilities obtained in equation 2 and 3 for all actions
of attack and not attack on the hosted vSDN controllers such
that;

UD =
N∑
j=1

UD(aj)+ UD(a0)

= µ0

N∑
j=1

[−pjqj{cje + w
j
+ Rj} + qj{wj + Rj − cja}] (4)

B. EXPECTED PAYOFF OF A HYPERVISOR
In order to optimally distribute the limited monitoring
resources, the hypervisor H has to choose a mixed strat-
egy. The set of actions available to a hypervisor are M =
{m0,m1, . . . .,mN }, where m0 is the action not to monitor
any hosted controller. Likewise, mi represents the action to
monitor the guest controller ki. The payoff the hypervisor
obtains for the successful detection of a compromised switch
S is the value of the consumption resources that have been
left i.e., R(1 − ε) as well as, the worth of the attacked
vSDN controller wi, illustrated in fig 2b. On the other hand,
as depicted in fig 2a and 2c, it has to suffer the loss of vSDN
controllers worthwi alongwith the available resources in case

it has been monitoring a vSDN controller other than the one
attacked i.e.,

∑N
j UH (mi, aj 6=i), or, it has not monitored any

vSDN controller at all. Hence, any action of a hypervisor in
this static Bayesian game will ultimately impact the service
delivery of the vSDN based SGs.
As each vSDN controller has different worth and resource

consumption, we take into account the action to monitor each
hosted controller as an independent action of the defender.
Let p0 be the probability that a hypervisor does not monitor
any of the hosted vSDN controllers and with probability
pi, it monitors vSDN controller ki, where 1 ≤ i ≤ N .
We now calculate the expected payoff of the hypervisor by
determining the utilities for each of its actions. These utilities
are the result of a static Bayesian game played between a
hypervisor and an attacker.

UH (mi) = µ0[
N∑
j=1

U (mi, aj)+ U (mi, a0)]

+ (1− µ0)[UH (mi, a0)] (5)

where j is the vSDN controller which has been attacked by
the malicious switch such that 1 ≤ j ≤ n. Hence, if H
monitors the same vSDN controller whichD has attacked, i.e.
i = j, or if the attacked vSDN controller j is not monitored
by the hypervisor, i.e. i 6= j, then the expected utilities are
formulated as;

UH (mi) = µ0[UH (mi=j, aj)+
N∑
j

UH (mi, aj 6=i)]

+ (1− µ0)[UH (mi, a0)]

By replacing above utilities w.r.t each scenario with their
respective payoffs as presented in Tables 4 and 5;

UH (mi) = µ0pi[qi=j(wi=j − εR− cim)

+

N∑
j 6=i

{qj(−wj − R− cim)}

+ (1−
N∑
j=1

qj)(−cim)]+ (1− µ0)pi[−cim] (6)

The expected utility of a hypervisor when it does not
monitor any of the guest vSDN controllers is calculated as:

UH (m0) = µ0[
N∑
j=1

{UH (m0, aj)} + UH (m0, a0)]

+ (1− µ0)[UH (m0, a0)] (7)

We now input the expected payoffs as illustrated in Table 4:

UH (m0) = µ0p0[
N∑
j=1

{qj(−wj − R)} + 0]+ (1− µ0)p0 ∗ 0

= µ0p0[
N∑
j=1

{qj(−wj − R)}] (8)
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From equations 6 and 8, we obtain the expected payoff of
H w.r.t each of the possible actions. The final utility of H is
obtained by combining the above-formulated equations as:

UH =
N∑
i=1

UH (mi)+ UH (m0)

=

N∑
i=0

pi[µ0qi=j{2wi=j − R(1+ ε)}

+µ0

N∑
j 6=i

qj{−wj − R}]−
N∑
i=1

pi(cim) (9)

In this section, we formulated the total expected utilities
of both the hypervisor and the DDoS attacker. These payoffs
are obtained based on a static Bayesian game played between
them. However, in reality, this strategic interaction between
a hypervisor and a DDoS attacker shall occur repeatedly.
H builds these strategies based on its observation of the
action profile of its opponent i.e., history. In the following
section, we will discuss a dynamic Bayesian game model that
sequentially updates the belief of a hypervisor against the true
nature of the attacker.

V. DYNAMIC BAYESIAN GAME OF INTRUSION
DETECTION
We extend this extensive form of the game from one-stage to
a multi-stage dynamic game model, where a one-stage game
is played repeatedly in each time slot tn where nε{1, 2, . . . .}.
This extension resolves the problem of assigning an accurate
probability towards the type of the player and accommodate
defender by updating its belief as the game evolves.We incor-
porate the Bayes’ law as the defenders’ belief updating
mechanism.

The proposed Bayesian game is an incomplete-information
extensive-form game. In our scenario, the hypervisor does not
have exact information about the type of the switch.Whereas,
the switch is well aware of its type TD, which is a private
information TD = {0, 1}, where TD = {0} implies the switch
is compromised by an attacker D and TD = {1}1 implies it
is not. On the contrary, a hypervisor (defender) has only one
type, i.e. regular, which is a common knowledge TH = {1}.
The belief of the defender is updated at the end of each stage,
which depends on the history profile of the behavior strategy
of its opponent hHD (tn), the prior belief µ0(aD(tn)|TS , hHD (tn))
about the type of the opponent and action of the player at a
stage game tn. In the equation 10, hDH (tn) represents the action
history profile of the defender H at the game stage tn.

hHD (tn) = {aD(t0), aD(t1), . . . , aD(tn−1))} (10)

The belief is updated by determining the conditional proba-
bilities P(aD(tn)|TD, hHD (tn)). In the conditional probabilities,
we incorporate the impact of the detection rate α and the false
alarm rate β, where 1− α and 1− β represent false negative
and true negative rates respectively. These conditional proba-
bilities help in determining the actions the opponent is about

to take given the history profile and the type of an attacker in
the previous round, which are later incorporated in Baye’s law
to estimate the belief ofH towards the type of a compromised
switch. Following are the equations which help to build a
belief system:

P(aD(tn)= a0|TD = 1, hHD (tn))=α ∗
N∑
i=1

qj+β ∗ (1−
N∑
i=1

qj)

(11)

P(aD(tn) = a0|TD = 1, hHD (tn))

= (1− α) ∗
N∑
i=1

qj + (1− β) ∗ (1−
N∑
i=1

qj) (12)

P(aD(tn) = aj|TD = 0, hHD (tn)) = β (13)

P(aD(tn) = a0|TD = 0, hHD (tn)) = 1− β (14)

We use the Bayes’ law to construct the belief update system
by the hypervisor, in order to update its belief from the stage
game tn to tn+1. Hence, the belief about the type of S is
updated at the end of the game as follows:

µH (TD|aD(tn), hHD (tn))

=
µH (TD|hHD (tn))P(as(tn)|TD, h

H
d (tn))∑

µH (TD|hHD (tn))P(as(tn)|TD, h
H
D (tn))

(15)

The above equation (15) represents the posterior belief of
the hypervisor. µH (TD|hHD (tn)) exhibits the prior belief of H
which provides information about the type of D based on the
history profile hHD (tn). Whereas, the second factor represents
the probability of choosing an action aD(tn) by D against H
given the type and the history profile at the stage game tn.
In this section, we formulated the dynamic Bayesian game

model of intrusion detection between a hypervisor H and an
attack source D. This model offers a realistic approach as it
allows a hypervisor to update its belief towards the type of
its opponent in an incomplete information game. This belief
update allows each player with the opportunity to optimize
their strategies by continuously varying their actions. This
implies that both players are rational, which is an obvious
assumption in an attacker-defender scenario. The hypervisor
will prefer to maximize its payoff by not overspending its
detection resources. At the same time, an attacker via a
compromised switch will play a strategy that minimizes its
chances of detection, while at the same time depleting the
resources of vSDN to sabotage SG applications.

In the next section, we determine the Bayesian Nash Equi-
librium of the proposed game model and calculate the best
response strategies for both the players.

VI. BAYESIAN NASH EQUILIBRIUM
To gain maximum payoff, both players have to best respond
to each others’ actions by optimizing probability distributions
over their available actions. A hypervisor wants maximize the
probability to detect an intrusion if one occurs on any of its
hosted vSDN controllers, while at the same time it wants to
minimize monitoring costs; a hypervisor can conserve some
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of its resources by notmonitoring any of its hosted vSDNcon-
trollers or by monitoring one of them. Similarly, an attacker
will prefer to attain maximum payoff without being detected.
In order to identify the optimal utilities of both the players,
we analyze the extensive form of our Bayesian game. The
development of a dynamic Bayesian game also requires us
to determine its Bayesian Nash Equilibrium (BNE). For that
purpose, we need to find the probabilities of pi and qj w.r.t
each vSDN controller, such that neither of the players have a
strategy by individually deviating to which they can increase
their payoff.

A. PURE STRATEGY EQUILIBRIUM ANALYSIS
Before we begin with the one-stage Bayesian game
equilibrium analysis, we first determine the pure strate-
gies Nash equilibrium. Since the type of the attacker
is its private information, the pure strategies of σS are
dependent on its true nature. We categorize each action
of a sender σD based on its type such that σD =

{(a1 ifmalicious, .., aN ifmalicious, a0 ifregular), a0}, where
a1, a2, a3, . . . , aN represent action the attack on the Nth
vSDN controller hosted by a hypervisor. For hypervisor,
the strategy set is defined as σH = {m1,m2, . . . ,mN ,m0}.
In order to perform our analysis for the dynamic Bayesian
game Nash equilibrium, we first figure out the pure strategy
Nash equilibrium (PSNE). We consider that there exists a
belief threshold µ′0, such that for µ0 > µ′0 no pure strategy
Nash equilibrium exits. We hereby analyze the following
cases.

Case-I: σD = {(aj if malicious, a0 if regular), a0} for the
attacker while σH = {mi 6=j}. The expected payoff in this
scenario is:

UH (mi6=j) = µ0[−wj 6=i − R− cim]+ (1− µ0)[−cim]

= µ0[−wj 6=i − R]− cim (16)

If σH = {mi=j}, the expected payoff is,

UH (mi=j) = µ0[wi=j − εR]− ci=jm (17)

ForσH = {m0}, the expected payoff is,

UH (m0) = µ0[−wj − R] (18)

Now if (17)>(16) the dominant strategy for the hypervisor
is to monitor. However, the best response for the attacker
is to not attack. Hence, (σD, σH ) = {(aj if malicious, a0 if
regular),mi=j} is not a Bayesian Nash equilibrium under the

condition µ0 <
ci=jm −c

i 6=j
m

wi=j+wi 6=j−εRi+Rj) .
If (18) > (17) or (16) > (17), the best response for the

attacker is to attack. Hence, (σD, σH ) = {(aj if malicious,
a0 if regular),m0} and (σD, σH ) = {(aj if malicious, a0
if regular),mi 6=j} is a Bayesian Nash equilibrium under the

conditions µ0 =
ci=j

wi=j+wj+Rj−εRi and µ0 >
ci=jm −c

i6=j
m

wi=j+wi 6=j+Rj−εRi) .
However, this does not depict a realistic scenario, as it will
require H to remain either idle or not to monitor the attacked
vSDN controller.

Case-II: σD = {a0} for the attacker while σH =

{NotMonitor}. If the hypervisor decides to remain idle the
best response of the attacker is to attack; this will lead us to
the case when (16)>(17) or (18) >(17). Therefore, there is no
pure strategy Nash equilibrium in either of the above cases.

Above discussed cases depict that due to uncertainty
towards the type of the player, no pure strategy Nash equi-
librium exits. Hence, it is desirable to figure out the mixed
strategy Nash equilibrium.

B. MIXED STRATEGIES BAYESIAN NASH EQUILIBRIUM
This section determines the mixed strategy Nash equilib-
rium (MSNE) of the proposed game model. We also derive
the optimal probability distributions of both the players over
their actions at the MSNE. The MSNE enables the associated
players to optimize their strategies based on probability dis-
tribution to maximize their payoffs.

1) PROBABILITY DISTRIBUTIONS OF AN ATTACKER OVER ITS
ACTIONS
In order to figure out mixed strategy Nash equilibrium
(MSNE), we first present the probability distributions of a
malicious source of packet in messages qj and q0 when the
hypervisor plays its best response strategy. Thus, neither of
the players deviate from their response as none of them can
enhance their payoffs.

Let θ represents the negative payoff of a hypervisor, which
depends on the financial worth of the attacked vSDN con-
trollers along with the total resource consumption R. For
MSNE, the hypervisor must be indifferent between choos-
ing its actions, irrespective of the different characteristics of
hosted vSDN controllers. Thus the utility of monitoring any
hosted vSDN controller is equivalent to others.

UH (mN ) = UH (mN−1) =, . . . .,UH (m1) = UH (m0) (19)

Since all utilities are equivalent, we consider

UH (mi) = UH (m0) (20)

From equation 6 and 8, we know that;

mu0[qi=j(wi=j − εR− cim)+
N∑
j6=i

{qj(−wj − R− cim)}

+ (1−
N∑
j=1

qj)(−cim)]+ (1− µ0)[−cim]

= µ0[
N∑
j=1

{qj(−wj − R)}] (21)

Solving the above equation results in:

µ0[qi=j(wi=j−εR− cim)−
N∑
j6=1

qj(wj+R)+
N∑
j=1

qj(wj + R)]

−cim = 0
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µ0[qi=j(wi=j − εR− cim)+ qi=j(w
j
+ R)−

N∑
j 6=i

qj(wj + R)

+

N∑
j 6=i

qj(wj + R)]− cim = 0 (22)

qi=j =
cim

µ0[R(1− ε)+ 2wj]
(23)

Equation 23 calculates the probability of the attacker for
attacking the vSDN controller kj. The equation demonstrates
that the probability increases with the increase in the cost
of monitoring cim. The increase in the risk factor θ =
µ0[R(1−ε)+wj] providesH the means to increase pi, which
enhances the chance of the hypervisor to detect an attack. As a
result, the probability of attacking a vSDN controller gradual
reduces, which results in the improved performance of the
SG applications. As we now know that

∑N
j=0 qj = 1, and

q0 = 1−
∑N

j=1 qj, thus;

q0 = 1−
N∑
j=1

cim
µ0[R(1− ε)+ 2wj]

(24)

The equation 24 represents the probability with which the
malicious sender does not attack any guest vSDN controllers.

2) PROBABILITY DISTRIBUTIONS OF A HYPERVISOR OVER
ITS ACTIONS
We now present the probability distribution pi’s and p0 for the
hypervisor when it plays the best response strategy. To deter-
mine the BNE, we consider the indifference condition for the
attacker while determining its strategy.

UD(aN ) = UD(aN − 1) =, . . . .,= UD(a1) = UD(a0) (25)

For each pi, we consider UD(aj) = UD(a0), such that from
equations 2 and 3 we obtain;

µ0[−pi=j{cj=ie + w
j=i
+ R} + {wj=i + R− ci=ja }] = 0

pi=j =
wj=i + R− ci=ja

cj=ie + wj=i + R
(26)

Equation 26 represents the probability of H to monitor ith

vSDN controller ki, such that the probability increases with
the increase in parameters, i.e., the financial worth of the
hosted vSDN controllerwi and the overall resources available
for distribution. Hence, the more valuable the asset greater is
the probability to monitor it. Whereas, φ = cj=ie + wj=i + R
depicts the risk factor of an attacker, which significantly relies
on the penalty an attacker has to pay in case its attack gets
detected. This penalty will permanently block the device from
sending any requests to the hosted vSDN controllers. Hence,
if an attacker constantly sends requests, its risk of losing a bot
increases. Consequently, the attacker refrains from attacking
ith vSDN controller. At the same time, the hypervisor gradu-
ally decreases its probability to monitor ith vSDN controller.
Finally, we determine the probability that H does not

monitor any of its hosted vSDN controllers. The fact that

∑N
i=0 pi = 1 implies p0 = 1 −

∑N
i=1 pi, from which we

obtain:

p0 = 1−
N∑
i=1

wj=i + R− ci=ja

cj=ie + wj=i + R
(27)

In this subsection, we determined both the pure strategy
Nash equilibrium and the mixed strategies Nash equilib-
rium.We calculated the mixed strategy probabilities that both
the players play over their actions at the Nash equilibrium.
We provided a detailed analysis of the proposed dynamic
Bayesian game, which contributes to the optimal distribution
of load detection by a hypervisor among its hosted vSDN con-
trollers. In the following section, we analyze the performance
of the proposed game model.

VII. PERFORMANCE EVALUATION
In this section, we validate the performance of our dynamic
game model between a Hypervisor and an attack source.
The repeated strategic interaction between the two players is
studied via the simulations performed in MATLAB. In order
to set up the simulation environment, we have considered the
number of hosted vSDN controllers to be N = 4, where the
parameters are assigned default values of α = 0.1, β = 0.02
and ε = 0.1. Similarly, the cost of monitoring and attack for
all the controllers is initialized with cja = cim = 0.1, unless
otherwise defined. The purpose of evaluating this model is to
observe the impact of parameters over equilibrium strategies
of the participating players.

A. IMPACT OF FINANCIAL WORTH
The financial worth of a vSDN controller plays an essential
role in determining the probability distribution of an attacker
based on the associated attack gain. In the results presented
in fig 3, we have fixed the cost of monitoring, and we vary the
worth of the vSDN controllers. We obtain plots in fig 3a and
3b while keeping the worth of each vSDN controller fixed at
the minimum and maximum values of wi = 2 and wi = 7
respectively.

The plots suggest that the attacker initially distributes its
resources equally among all vSDN controllers. However,
the behavior converges by stage game 4. The attacker avoids
allocating its resources to attack any of the vSDN controllers
to avoid the penalty on a successful detection by the hyper-
visor. Similarly, plot 3b indicates that the belief approaches
its maximum value by stage game 3. Moreover, the attack on
each vSDN controller is initialized with a lower frequency in
comparison to the vSDN controllers of smaller worth.

In plot 3c, we vary the financial worth of each vSDN
controller to observe the attacker’s distribution of resources,
while in 3d, we double their financial worth for a better
analysis. From fig 3c, we infer that an attack occurs with a
higher intensity, which can be the result of the belief that
vSDN controllers with smaller worth shall get monitoredwith
a lower probability. Though, we do notice a gradual decrease
in the likelihood to attack vSDN controllers with the updates
about belief, which is similar to the results observed in
plot 3a.
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FIGURE 3. Impact of the financial worth on the strategy of players.

While the plot in fig 3d resembles the behavior observed in
plot 3b, it indicates that the attacker is conscious of attacking
vSDN controllers with higher worth.

This behavior of the attacker can be the result of two
reasons. Firstly, the attacker is aware of the fact that H will
monitor a vSDN controller having more worth with higher
probability. The attacker will have to endure the penalty of
cje, i.e., c

j
e > wi such that an attack will not impact the per-

formance of the hosted SG applications. Secondly, the gain
received at the first round of the game for vSDN controllers
of high worth sufficiently affects the SG applications, which
is adequate for the attacker to decrease its distribution for
the later rounds. Hence, the substantial attack gain implies
a reduction in the number of attacks.

B. IMPACT OF THE MONITORING COST
Fig 4 represents how monitoring cost affects the convergence
of the belief of a hypervisor against the strategy of the
attacker. In this analysis, we have varied the worth of each
vSDN controller, i.e., w1

= 2,w2
= 3,w3

= 4 and w4
= 5,

while the cost remains fixed for the plots presented in 4a.
From the graphs, we infer that the hypervisor monitors vSDN
controllers with higher probability when the monitoring cost

is lower. However, when we analyze the obtained results,
in comparison to the plots shown in fig 4b, distribution for
attack increases. On the other hand, we also notice the belief
update results in a lower distribution for the action not attack
in comparison to the fig 4a. An Attacker does so because
the increased monitoring cost restrains the hypervisor for
distributing its resources for monitoring.
Furthermore, we analyze the behavior of an attacker when

the cost to monitor vSDN controllers is different in fig 4c.
The distribution for action not attack is slightly lower than
previously observed results. However, the convergence of the
belief of the hypervisor is similar to the fig 4b. Also, the prob-
ability distribution to attack reduces at a higher rate, which
improves operations of the supported SG applications. The
rationale behind this behavior is that the attacker is well aware
of the impact of the cost escalation over the hypervisor’s
monitoring strategy. Nevertheless, the belief of the hypervisor
converges by the 5th stage and is updated in the later rounds
more frequently.

C. IMPACT OF GAIN/COST RATIO W I/C I
m

In the fig 5, we analyze how the financial worth to monitoring
cost ratio impacts the belief update of a hypervisor w.r.t each
vSDN controller. The gain cost ratio represents the difference
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FIGURE 4. Impact of monitoring cost on the strategy of players.

between the gain in terms of the financial value of an affected
vSDN controller to an attacker in comparison to the monitor-
ing cost the hypervisor needs to pay. This analysis provides
a keen approach to analyze the impact of the relationship
between the gain and cost on players strategic interaction. We
conclude that for a greater value of gain to cost ratio, the belief
converges slowly. This is because the intensity of the attacks
on the vSDN controllers having more worth will be less in
comparison to those which have lower worth. Fig 5 illustrates

FIGURE 5. Impact of gain cost ratio on the belief system update.

FIGURE 6. Impact of detection rate on the belief system update.

that the smaller the ratio of the hosted vSDN controller to
the monitoring cost is the slower the belief converges. On the
contrary, high ratio leads to frequent belief convergence as
for w/cm = 40, the belief converges by the round 25, while
for w/cm = 60, the belief converges by the stage game 15.
When the ratio is smaller, the malicious switch needs to send
requests more often to be profitable, and vice versa.

D. IMPACT OF THE DETECTION RATE
We determine the impact of varying detection rates on the
probability distribution of an attacker, and we fix the false
alarm rate, β = 0.09. As shown in the fig 6, we infer
that an attacker will prefer distributing its resources more
optimally as the detection rate increases. For the detection
rate of α = 0.5, the attacker prefers to attack with a higher
probability, while the belief of the hypervisor converges at
stage 24. On the other hand, as the detection rate increases,
we observe a gradual increment in the belief update, i.e., for
α = 0.7 and α = 0.9 the belief converges to 1, at the stage
17 and 14 respectively.

E. IMPACT OF THE FALSE ALARM RATE
Lastly, in this section, we evaluate the impact of the false
alarm rate for our model. Fig 7 demonstrates that the
increased false alarm rate provides an attacker with the
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FIGURE 7. Impact of the false alarm rate on the belief system update.

opportunity to take advantage of the situation. Nevertheless,
our model presents effective results. For β = 0.2, the belief
of the hypervisor converges to 1 at the game stage 30. While,
for β = 0.15 and β = 0.1, the belief converges rather quickly
at the game stages 21 and 13 respectively.

In this section, we evaluated the performance of the pro-
posed dynamic Bayesian game of intrusion detection against
the financial worth of the controllers, the cost of monitoring,
detection rates, false alarm rates, and the gain cost ratio. The
results show that our model effectively detects compromised
switches and minimizes their impact on the operations of
the vSDN based SG. It is evident from the results that the
restriction of a compromised switch penalty design of the
payoff relationship as a Bayesian game mitigates the mali-
cious behavior of a DDoS attacker. At the same time, the effi-
ciency of the system improves due to the optimal distribution
of monitoring resources by the hypervisor, by formulating
belief towards the type of switch based on its history profile.

VIII. CONCLUSION
To prevent the exploitation of a vSDN-based SG architec-
ture, this work formulated the strategic interaction between
a hypervisor monitoring its vSDN controllers and the source
of new flow requests sent from switches compromised by
a DDoS attacker, as a non-cooperative dynamic Bayesian
game of intrusion detection. Our game model enables a
hypervisor to distribute its limited resources to monitor guest
vSDN controllers optimally. Simulation results showed that
our game model enables a hypervisor not only to increase
the probability of detecting distributed attacks and minimize
false positives, but at the same time, its monitoring costs get
reduced as the allocation of resources to monitor vSDN con-
trollers depends upon its belief about the source of the attacks
that it forms based on its observation. We presented the
best response analysis by determining the dynamic Bayesian
gameNash equilibriumwhich depicts the players’ probability
distributions over their actions. Furthermore, we evaluated
the impact of the following parameters on the strategies of
both the players: a) financial worth, b) monitoring cost, c)
gain-cost ratio, d) detection rate and d) false alarm rate.
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